當前位置:首頁 » 基礎知識 » 1一3年級數學知識點匯總

1一3年級數學知識點匯總

發布時間: 2022-07-14 00:26:15

『壹』 小學三年級數學知識點總結

最低0.27元/天開通網路文庫會員,可在文庫查看完整內容>
原發布者:可柯斯達
西師版小學數學三年級上冊期末復習知識點第一單元:克、千克、噸的認識【知識要點】:1、計量物品輕重的單位有克、千克、噸。2、計量較輕的物品有多重,通常用克作單位,克用字母g表示。3、計量較重的物品有多重,通常用千克作單位,也叫公斤,千克用字母kg表示。1kg=1000g4、計量很重的物品有多重,通常用噸作單位。噸用字母t表示。1t=1000kg5、相鄰質量單位間的進率是1000。40個25千克的學生重1噸。5、1T=1000kg1kg=1000g.6、換算:單位相互換算的方法(1)把噸化成千克,千克化成克,是用噸數或千克數乘進率1000。(2)把千克化成噸,克化成千克,是用千克數或克數除以進率1000。口訣:小換大減三個0,大換小加三個0如:把克換成千克、千克換成噸去掉3個0,把噸換成千克、千克換成克加上3個0.7、重量的大小比較記憶:先統一單位,再比較大小。【應用】1、1枚2分硬幣重1克;一袋食鹽重500克,2袋食鹽重1kg。1個雞蛋的重量大約是50g,1個蘋果的重量大約是250g。2、5本數學書的重量大約是1kg。1個小學生的體重大約是25kg,4個小學生的體重大約是100kg,40個小學生的體重大約是1噸。一頭大象約重6噸。3、計算:1噸+3000千克=()噸,方法是當相加或相減的數單位不一樣時,要先換成統一的單位後在計算。注意:1㎏棉花和1㎏鐵一樣重。第二單元:兩、三位數乘一位數的乘法【知識要點】:(一)兩、三位數乘一位數的乘法1.口算:①整十、整百數乘一位數的口算,計算時先計算0前

『貳』 初中數學有哪些知識點從初中一年紀到三年級。

二.知識概念
1.平行四邊形定義: 有兩組對邊分別平行的四邊形叫做平行四邊形。
2.平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。
3.平行四邊形的判定 1.兩組對邊分別相等的四邊形是平行四邊形
2.對角線互相平分的四邊形是平行四邊形;
3.兩組對角分別相等的四邊形是平行四邊形;
4.一組對邊平行且相等的四邊形是平行四邊形。
4.三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。
5.直角三角形斜邊上的中線等於斜邊的一半。
6.矩形的定義:有一個角是直角的平行四邊形。

7.矩形的性質: 矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
8.矩形判定定理: 1.有一個角是直角的平行四邊形叫做矩形。
2.對角線相等的平行四邊形是矩形。
3.有三個角是直角的四邊形是矩形。
9.菱形的定義 :鄰邊相等的平行四邊形。
10.菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。
11.菱形的判定定理:1.一組鄰邊相等的平行四邊形是菱形。
2.對角線互相垂直的平行四邊形是菱形。
3.四條邊相等的四邊形是菱形。
12.S菱形=1/2×ab(a、b為兩條對角線)
13.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
14.正方形的性質:四條邊都相等,四個角都是直角。 正方形既是矩形,又是菱形。
15.正方形判定定理: 1.鄰邊相等的矩形是正方形。 2.有一個角是直角的菱形是正方形。
16.梯形的定義: 一組對邊平行,另一組對邊不平行的四邊形叫做梯形。

17.直角梯形的定義:有一個角是直角的梯形
18.等腰梯形的定義:兩腰相等的梯形。
19.等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
20.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
一部分
很高興為您解答有用請採納

『叄』 三到六年級數學知識點歸納有哪些

三到六年級數學知識點歸納有如下:

一、倍數與約數

最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。

最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。

二、利潤

利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)。

利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

三、小數

自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414。

四、分數的倒數

找一個分數的倒數,例如3/4把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。 則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。

五、圓周率:圓的周長與直徑的比值叫做圓周率。

圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。

『肆』 小學一至六年級數學知識點

小學數學知識點總結
一年級上冊
1、 數一數(1~10)
2、 比一比(多少、長短、高矮、)
3、 1~5的認識和加減法(比大小、第幾、幾和幾、加法、減法、0的認識)
4、 認識物體和圖形(長方體、正方體、圓柱、球、長方形、正方形、三角形、圓)
5、 分類
6、 6~10的認識和加減法(連加、連減、加減混合)
7、 11~20個數的認識(數位的認識)
8、 認識鍾表(整時、半時)
9、 20以內的進位加法 (湊十、9、8、7、6加幾,5、4、3、2加幾)
10、 總復習
一年級下冊
1、 位置(上下、左右、前後、位置)
2、 20以內的退位加法
3、 圖形的拼組
4、 100以內數的認識(數數、數的組成,讀數、寫數,數的順序、比較大小、整十數加一位數及相應的減法)
5、 認識人民幣(簡單的計算)
6、 100以內的加法和減法(一)(1、整十數加減整十數2、兩位數加一位數和整十數3、兩位數減一位數和整十數)
7、 認識時間
8、 找規律
9、 統計(條形統計圖)
10、 總復習
二年級上冊
1、 長度單位
2、 100以內的加法和減法(二)(1、兩位數加兩位數、不進位加、進位加2、兩位數減兩位數、不退位減、退位減3、連加、連減和加減混合、加減混合、加減估算)
3、 角的初步認識
4、 表內乘法(一)(1、乘法的初步認識2、2~6的乘法口訣)
5、 觀察物體
6、 表內乘法(二)(7、8、9的乘法口訣)
7、 統計
8、 數學廣角
9、 總復習
二年級下冊
1、 解決問題
2、 表內除法(一)(1、除法的初步認識、平均分、除法2、用2~6的乘法口訣求商)
3、 圖形與轉換(銳角和鈍角、平移和旋轉)
4、 表內除法(二)(用7、8、9的乘法口訣求商、解決問題)
5、 萬以內數的認識(1000以內數的認識、10000以內數的認識、整百整千數的加減法)
6、 克和千克
7、 萬以內的加法和減法(一)
8、 統計
9、 找規律
10、 總復習
三年級上冊
1、 測量(毫米、分米的認識,千米的認識,噸的認識)
2、 萬以內的加法和減法(二)(1、加法,2、減法3、加減法的驗算)
3、 四邊形(四邊形、平行四邊形、周長、長方形和正方形的周長、估計)
4、 有餘數的除法
5、 時、分、秒(秒的認識、時間的計算)
6、 多位數乘一位數(1、口算乘法,2、筆算乘法)
7、 分數的初步認識(1、分數的初步認識<幾分之一、幾分之幾>,2、分數的簡單計算)
8、 可能性
9、 數學廣角
10、 總復習
三年級下冊
1、 位置和方向
2、 除數是一位數的除法(1、口算除法,2、筆算乘法)
3、 統計(1、簡單的數據分析,2、平均數)
4、 年、月、日(年月日、24小時計時法)
5、 兩位數乘兩位數(1、口算乘法,2、筆算乘法)
6、 面積(面積和面積單位、長方形和正方形面積的計算、面積單位間的進率、公頃與平方千米)
7、 小數的初步認識(認識小數、簡單的小數加減法)
8、 解決問題
9、 數學廣角
10、 總復習
四年級上冊
1、 大數的認識(億以內數的認識、數的產生、億以上數的認識、計算工具的認識、用計算器計算)
2、 角的度量(直線、射線和角,角的度量、角的分類、畫角)
3、 三位數乘兩位數(1、口算乘法,2筆算乘法)
4、 平行四邊形和梯形(垂直與平行、平行四邊形與梯形)
5、 除數是兩位數的除法(1、口算除法,2、筆算除法)
6、 統計
7、 數學廣角(烙餅問題)
8、 總復習
四年級下冊
1、 四則運算
2、 位置和方向
3、 運算定律與簡便計算(1、加法運算定律,2、乘法運算定律,3、簡便計算)
4、 小數的意義和性質(1、小數的意義和讀寫法<小數的產生和意義、小數的讀法和寫法>,2、小數的性質和大小比較<小數的大小比較、小數點移動>,3、生活中的小數,4求一個小數的近似數)
5、 三角形(三角形的特性、三角形的分類、三角形的內角和、圖形的拼組)
6、 小數的加法和減法
7、 統計
8、 數學廣角
9、 總復習
五年級上冊
1、 小數乘法(小數乘整數、小數乘小數、積的近似數,連乘、乘加、乘減,整數乘法定律推廣到小數)
2、 小數除法(小數除以整數、一個數除以小數、商的近似數、循環小數、用計算器探索規律、解決問題)
3、 觀察物體
4、 簡易方程(1、用字母表示數,1、解建議方程<方程的意義、解方程、稍復雜的方程>)
5、 多邊形的面積(平行四邊形的面積、三角形的面積、梯形的面積、組合圖形的面積)
6、 統計與可能性
7、 數學廣角
8、 總復習
五年級下冊
1、 圖形的變換(軸對稱、旋轉、欣賞設計)
2、 因數與倍數(1、因數和倍數,2、2、5、3倍數的特徵,指數和和數)
3、 長方體和正方體(1、長方體和正方體的認識,2、長方體和正方體的表面積,3、長方體和正方體的體積、體積單位間的進率、容積和容積單位)
4、 分數的意義和性質(1、分數的意義<分數的產生\分數的意義\分數與除法>,2、真分數和假分數,3、分數的基本性質,4、約分<最大公因數、約分>,5、通分<最小公倍數、通分>,6、分數和小數的互化)
5、 分數的加法和減法(1、同分母分數加減法,2、異分母分數加減法,3、分數加減混合運算)
6、 統計
7、 數學廣角
8、 總復習
六年級上冊
1、 位置
2、 分數的乘法(1、分數乘法,2、解決問題,3、倒數的認識)
3、 分數的除法(1、分數的除法,2、解決問題,3、比和比的應用<比的意義、比的基本性質、比的應用>)
4、 圓(1、認識圓,2、圓的周長,3、圓的面積)
5、 百分數(1、百分數的意義和寫法,2、百分數和分數、小數的互化,3、用百分數解決問題、折扣、納稅、合理存款)
6、 統計
7、 數學廣角
8、 總復習
六年級下冊
1、 負數
2、 圓柱與圓錐(1、圓柱<圓柱的認識、圓柱的表面積、圓柱的體積>,2、圓錐<圓錐的認識、圓錐的體積>)
3、 比例(1、比例的意義和基本性質<比例的意義、比例的基本性質、解比例>,2、正比例和反比例的意義<成正比例的量、成反比例的量>3、比例的應用<比例尺、圖形的放大與縮小、用比例解決問題>)
4、 統計
5、 數學廣角
6、 整理和復習(1、數和代數、數的運算、式與方程、常見的量、比和比例,2、空間與圖形<圖形的認識和測量、圖形與變換、圖形與位置>、3、統計與可能性,4、綜合應用)
以上回答你滿意么?

『伍』 1—6年級數學知識點有哪些

舉例如下:


1、整數【正數、0、負數】

⑴一個物體也沒有,用0表示。0和1、2、3……都是自然數。自然數是整數。

⑵最小的一位數是1,最小的自然數是0。

⑶零上4攝氏度記作+4℃;零下4攝氏度記作-4℃。「+4」讀作正四。「-4」讀作負四。 +4也可以寫成4。

⑷像 +4、19、+8844這樣的數都是正數。像-4、-11、-7、-155這樣的數都是負數。

⑸0既不是正數,也不是負數。正數都大於0,負數都小於0。

⑹通常情況下,比海平面高用正數表示,比海平面低用負數表示。

⑺通常情況下,盈利用正數表示,虧損用負數表示。

⑻通常情況下,上車人數用正數表示,下車人數用負數表示。

⑼通常情況下,收入用正數表示,支出用負數表示。

⑽通常情況下,上升用正數表示,下降用負數表示。

2、小數【有限小數、無限小數】

⑴分母是10、100、1000……的分數都可以用小數表示。一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……

⑵整數和小數都是按照十進制計數法寫出的數,個、十、百……以及十分之一、百分之一……都是計數單位。每相鄰兩個計數單位間的進率都是10。

⑶每個計數單位所佔的位置,叫做數位。數位是按照一定的順序排列的。

⑷小數的性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。

⑸根據小數的性質,通常可以去掉小數末尾的「0」,把小數化簡。

⑹比較小數大小的一般方法:先比較整數部分的數,再依次比較小數部分十分位上的數,百分位上的數,千分位上的數,從左往右,如果哪個數位上的數大,這個小數就大。

⑺把一個數改寫成用「萬」或「億」作單位的數,在萬位或億位右邊點上小數點,再在數的後面添寫「萬」字或「億」字。

⑻求小數近似數的一般方法:

①先要弄清保留幾位小數;

②根據需要確定看哪一位上的數;3用「四捨五入」的方法求得結果。

3、分數【真分數、假分數】

⑴把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。表示其中一份的數,是這個分數的分數單位。

⑵兩個數相除,它們的商可以用分數表示。即:a÷b=a/b(b≠0)。

⑶小數和分數的意義可以看出,小數實際上就是分母是10、100、1000…的分數。

⑷分數可以分為真分數和假分數。

⑸分子小於分母的分數叫做真分數。真分數小於1。

⑹分子大於或等於分母的分數叫做假分數。假分數大於或等於1。

⑺分子和分母只有公因數1的分數叫做最簡分數。

⑻分數的基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。

⑼小數的性質和分數的基本性質一致的,應用分數的基本性質,可以通分和約分。

4、百分數【稅率、利息、折扣、成數】

表示一個數是另一個數的百分之幾的數叫做百分數。百分數也叫百分率或百分比,百分數通常用「%」表示。

『陸』 1-3年級數學公式與概念

1-3年級數學公式:

長度單位換算:

1、1千米=1000米,1米=10分米,1分米=10厘米,1米=100厘米,1 厘米=10毫米 。

2、一支鉛筆長20厘米,一個鉛筆盒厚10毫米,數學書厚6毫米,一個人高100厘米。

3、人每分鍾走70米,飛機,輪船,火車,汽車每小時行80千米。

重量單位換算:

1、1噸=1000千克,1千克=1000克,1千克=1公斤。

2、小雞鴨鵝的重量用克,人狗牛豬的重量用千克,大象 鯊魚的重量用噸。

貨幣單位換算:

1、人民幣單位換算: 1元=10角,角=10分,1元=100分。

時間單位換算:

1、1世紀=100年,1年=12月,大月(31天)有135781012月,小月(30天)的有46911月,平年2月28天, 閏年2月29天,平年全年365天, 閏年全年366天。

2、1日=24小時,1時=60分,1分=60秒,1時=3600秒。

運算方法:

1、每份數×份數=總數,總數÷每份數=份數,總數÷份數=每份數。

2、1倍數×倍數=幾倍數,幾倍數÷1倍數=倍數,幾倍數÷倍數=1倍數。

3、速度×時間=路程,路程÷速度=時間,路程÷時間=速度。

4、單價×數量=總價,總價÷單價=數量,總價÷數量=單價。

5、工作效率×工作時間=工作總量,工作總量÷工作效率=工作時間,工作總量÷工作時間=工作效率。

6、加數+加數=和,和- 一個加數 = 另一個加數。

7、被減數-減數=差,被減數-差=減數,差+減數=被減數。

8、因數×因數=積,積÷一個因數=另一個因數。

9、被除數÷除數=商,被除數÷商=除數 商×除數=被除數。

1-3年級數學概念:

1、兩位數除以一位數:先除十位,再除個位,每次除得的余數要比除數小。除法可用乘法進行驗算。沒有餘數的:商×除數=被除數;有餘數的:商×除數+余數=被除數。

2、10個一是十,10個十是一百,10個百是一千,10個一千是一萬。

3、右起第一位是個位,第二位是十位,第三位是百位,第四位是千位,第五位是萬位。四位數是由幾個千、幾個百、幾個十和幾個一組成的。

4、四位數的寫法:從高位寫起,哪個數位上有幾就寫幾,哪個數位上沒有數,就寫0。四位數的讀法:從高位讀起,中間有1個0或連續有幾個0,都只讀1個0,末尾的0都不讀。

5、比較數的大小:位數不同,位數多的大;位數相同比千位;千位相同比百位;百位相同比十位;十位相同比個位,直到比出大小為止。

6、要准確測量物品有多重,要用「秤」稱一稱。稱一般物品有多重,常用千克作單位;稱比較輕的物品,常用克作單位。千克用符號「kg」表示,克用符號「g」表示。1千克=1000克。

7、長方形和正方形都有四條邊、四個角,都是四邊形。長方形對邊相等,四個角都是直角。正方形四條邊都相等,四個角都是直角。正方形是特殊的長方形。

8、平面圖形一周的總長度是周長。長方形的周長=2條長+2條寬或長方形的周長=(長+寬)×2長方形的長=周長÷2-寬長方形的寬=周長÷2-長正方形的周長=邊長×4正方形的邊長=周長÷4要在長方形里剪最大的正方形,只要邊長=寬。

9、24時記時法時間詞語有:凌晨、早上、上午、中午、下午、晚上等。A、普通記時法→24時記時法:去掉時間詞語,下午和晚上要+12B、24時記時法→普通記時法:加上時間詞語,超過12時的要-12C、求經過時間可以先統一計時法,然後用後面的時刻減前面的時刻,結果換成時間單位。

10、觀察物體。從不同的角度觀察長(正)方體,最多可以看到三個面。

11、理解「偶爾」、「經常」、「可能」、「一定」等詞語的含義,會用這些詞語舉例。

(6)1一3年級數學知識點匯總擴展閱讀:

錯誤公式特徵

1、自稱是科學的,但含糊不清,缺乏具。

2、無法使用操作定義(例如,外人也可以檢驗的通用變數、屬於、或對象)。

3、無法滿足簡約原則,即當眾多變數出現時,無法從最簡約的方式求得答案。

4、使用曖昧語言的語言,大量使用技術術語來使得文章看起來像是科學的。

5、缺乏邊界條件:嚴謹的科學理論在限定范圍上定義清晰,明確指出預測現象在何時何地適用,何時何地不適用。

『柒』 小學數學知識點總結(全部)

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

『捌』 小學數學1-6年級的考點都是什麼

小學數學知識點匯總口訣表。學會基礎加減乘。小學二年級完善乘法口訣表,學會除混合運算,基礎幾何圖形。小學三年級學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數。小學四年級線角自然數整數,素因數梯形對稱,分數小數計算。小學五年級分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積。小學六年級比例百分比概率,圓扇圓柱及圓錐。必背定義、定理公式三角形的面積=底×高÷2。公式 S= a×h÷2正方形的面積=邊長×邊長公式 S= a×a長方形的面積=長×寬公式 S= a×b平行四邊形的面積=底×高公式 S= a×h梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2內角和:三角形的內角和=180度。長方體的體積=長×寬×高公式:V=abh長方體(或正方體)的體積=底面積×高公式:V=abh正方體的體積=棱長×棱長×棱長公式:V=aaa圓的周長=直徑×π 公式:L=πd=2πr圓的面積=半徑×半徑×π 公式:S=πr2圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh圓錐的體積=1/3底面×積高。公式:V=1/3Sh分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。分數的乘法則:用分子的積做分子,用分母的積做分母。分數的除法則:除以一個數等於乘以這個數的倒數。讀懂理解會應用以下定義定理性質公式一、算術方面1、加法交換律:兩數相加交換加數的位置,和不變。2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。3、乘法交換律:兩數相乘,交換因數的位置,積不變。4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×56、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。8、什麼叫方程式?答:含有未知數的等式叫方程式。9、什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。15、分數除以整數(0除外),等於分數乘以這個整數的倒數。16、真分數:分子比分母小的分數叫做真分數。17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。20、一個數除以分數,等於這個數乘以分數的倒數。21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。數量關系計算公式方面1、單價×數量=總價2、單產量×數量=總產量3、速度×時間=路程4、工效×時間=工作總量5、加數+加數=和一個加數=和+另一個加數被減數-減數=差減數=被減數-差被減數=減數+差因數×因數=積一個因數=積÷另一個因數被除數÷除數=商除數=被除數÷商被除數=商×除數有餘數的除法:被除數=商×除數+余數一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)6、 1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1噸=1000千克 1千克= 1000克= 1公斤= 1市斤1公頃=10000平方米。 1畝=666.666平方米。1升=1立方分米=1000毫升 1毫升=1立方厘米7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:189、比例的基本性質:在比例里,兩外項之積等於兩內項之積。10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:1811、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y = k( k一定)或k / x = y百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。15、要學會把小數化成分數和把分數化成小數的化發。16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)17、互質數:公約數只有1的兩個數,叫做互質數。18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。分數計算到最後,得數必須化成最簡分數。個位上是0、2、4、6、8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 14141432、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。如3. 14159265433、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……34、什麼叫代數? 代數就是用字母代替數。35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =ab+c一般運算規則1 每份數×份數=總數總數÷每份數=份數總數÷份數=每份數2 1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數3 速度×時間=路程路程÷速度=時間路程÷時間=速度4 單價×數量=總價總價÷單價=數量總價÷數量=單價5 工作效率×工作時間=工作總量工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率6 加數+加數=和和-一個加數=另一個加數7 被減數-減數=差被減數-差=減數差+減數=被減數8 因數×因數=積積÷一個因數=另一個因數9 被除數÷除數=商被除數÷商=除數商×除數=被除數小學數學圖形計算公式1 正方形 C周長 S面積 a邊長周長=邊長×4 C=4a面積=邊長×邊長 S=a×a2 正方體 V:體積 a:棱長表面積=棱長×棱長×6 S表=a×a×6體積=棱長×棱長×棱長 V=a×a×a3 長方形 C周長 S面積 a邊長周長=(長+寬)×2 C=2(a+b)面積=長×寬 S=ab4 長方體 V:體積 s:面積 a:長 b: 寬 h:高表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)體積=長×寬×高 V=abh5 三角形 s面積 a底 h高面積=底×高÷2 s=ah÷2三角形高=面積 ×2÷底三角形底=面積 ×2÷高6 平行四邊形 s面積 a底 h高面積=底×高 s=ah7 梯形 s面積 a上底 b下底 h高面積=(上底+下底)×高÷2 s=(a+b)× h÷28 圓形 S面積 C周長 ∏ d=直徑 r=半徑周長=直徑×∏=2×∏×半徑 C=∏d=2∏r面積=半徑×半徑×∏9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長側面積=底面周長×高表面積=側面積+底面積×2體積=底面積×高體積=側面積÷2×半徑10 圓錐體 v:體積 h:高 s;底面積 r:底面半徑 體積=底面積×高÷3常用的數量關系式1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數 2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數 3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度 4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價 5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 6、加數+加數=和 和-一個加數=另一個加數7、被減數-減數=差 被減數-差=減數 差+減數=被減數 8、因數×因數=積 積÷一個因數=另一個因數 9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數 小學數學圖形計算公式 1、正方形(C:周長 S:面積 a:邊長)周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a 2、正方體(V:體積 a:棱長)表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a 3、長方形( C:周長 S:面積 a:邊長)周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab 4、長方體(V:體積 s:面積 a:長 b: 寬 h:高)(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5、三角形(s:面積 a:底 h:高) 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6、平行四邊形(s:面積 a:底 h:高) 面積=底×高 s=ah 7、梯形(s:面積 a:上底 b:下底 h:高) 面積=(上底+下底)×高÷2 s=(a+b)× h÷28、圓形(S:面積 C:周長 л d=直徑 r=半徑) (1)周長=直徑×л=2×л×半徑 C=лd=2лr (2)面積=半徑×半徑×л9、圓柱體(v:體積 h:高 s:底面積 r:底面半徑 c:底面周長) (1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑10、圓錐體(v:體積 h:高 s:底面積 r:底面半徑) 體積=底面積×高÷3 11、總數÷總份數=平均數 12、和差問題的公式:(和+差)÷2=大數 (和-差)÷2=小數 13、和倍問題:和÷(倍數-1)=小數 小數×倍數=大數 (或者和-小數=大數)14、差倍問題:差÷(倍數-1)=小數 小數×倍數=大數 (或小數+差=大數) 15、相遇問題 相遇路程=速度和×相遇時間;相遇時間=相遇路程÷速度和;速度和=相遇路程÷相遇時間 16、濃度問題 溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度 溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量17、利潤與折扣問題 利潤=售出價-成本; 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100% 漲跌金額=本金×漲跌百分比;利息=本金×利率×時間;稅後利息=本金×利率×時間×(1-20%) 常用單位換算 長度單位換算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面積單位換算:1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 體(容)積單位換算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量單位換算: 1噸=1000 千克 1千克=1000克 1千克=1公斤 人民幣單位換算: 1元=10角 1角=10分 1元=100分 時間單位換算:1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分 1分=60秒 1時=3600秒 基本概念第一章數和數的運算 一 概念 (一)整數 1 整數的意義:自然數和0都是整數。 2 自然數:我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。 一個物體也沒有,用0表示。0也是自然數。 3計數單位 一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。 每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。 4 數位:計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。 5數的整除 整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。 如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。 因為35能被7整除,所以35是7的倍數,7是35的約數。 一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。 一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。 個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。 個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。 一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。 一個數各位數上的和能被9整除,這個數就能被9整除。 能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。 一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。 能被2整除的數叫做偶數。不能被2整除的數叫做奇數。 0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。 一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。 1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。 每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。 把一個合數用質因數相乘的形式表示出來,叫做分解質因數。 例如把28分解質因數 幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。 公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況: 1和任何自然數互質。 相鄰的兩個自然數互質。 兩個不同的質數互質。 當合數不是質數的倍數時,這個合數和這個質數互質。 兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。 如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。 如果兩個數是互質數,它們的最大公約數就是1。 幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 …… 3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。 如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。 幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。 (二)小數 1 小數的意義 把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。 一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾…… 一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。 在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。 2小數的分類 純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。 帶小數:整數部分不是零的小數,叫做帶小數。例如: 3.25 、 5.26 都是帶小數。 有限小數:小數部分的數位是有限的小數,叫做有限小數。例如: 41.7 、 25.3 、 0.23 都是有限小數。 無限小數:小數部分的數位是無限的小數,叫做無限小數。例如: 4.33 …… 3.1415926 …… 無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。例如:∏ 循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。例如: 3.555 …… 0.0333 …… 12.109109 …… 一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54 」 。 純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。例如: 3.111 …… 0.5656 …… 混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 …… 寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環節只有一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。 (三)分數 1 分數的意義 把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。 在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。 把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。 2 分數的分類 真分數:分子比分母小的分數叫做真分數。真分數小於1。 假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。 帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。 3 約分和通分 把一個分數化成同它相等但是分子、分母都比較小的分數,叫做約分。 分子分母是互質數的分數,叫做最簡分數。 把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。 (四)百分數 1 表示一個數是另一個數的百分之幾的數叫做百分數,也叫做百分率或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。 運算定律 1. 加法交換律:兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。 2. 加法結合律:三個數相加,先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c) 。 3. 乘法交換律:兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。 4. 乘法結合律:三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把後兩個數相乘,再和第一個數相乘,它們的積不變,即(a×b)×c=a×(b×c) 。5. 乘法分配律:兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。 6. 減法的性質:從一個數里連續減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c) 。