當前位置:首頁 » 基礎知識 » 復數的知識數學小報
擴展閱讀
怎麼在抖音里上傳歌詞 2025-01-19 23:02:21
動漫有哪些神 2025-01-19 23:02:15

復數的知識數學小報

發布時間: 2022-07-13 23:08:11

① 數學手抄報內容

祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.

祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率,外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".

祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理,但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".

② 有關數學手抄報的內容 小學六年級上冊

高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。

高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。

老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。

1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。

1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。

1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。

希臘時代的數學家已經知道如何用尺規作出正 2m×3n×5p 邊形,其中 m 是正整數,而 n 和 p 只能是0或1。但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了:

一個正 n 邊形可以尺規作圖若且唯若 n 是以下兩種形式之一:

1、n = 2k,k = 2, 3,…

2、n = 2k × (幾個不同「費馬質數」的乘積),k = 0,1,2,…

費馬質數是形如 Fk = 22k 的質數。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。

1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理:

任一多項式都有(復數)根。這結果稱為「代數學基本定理」(Fundamental Theorem of Algebra)。

事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。

在1801年,高斯二十四歲時出版了《算學研究》(Disquesitiones Arithmeticae),這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章。

這本書除了第七章介紹代數基本定理外,其餘都是數論,可以說是數論第一本有系統的著作,高斯第一次介紹「同餘」(Congruent)的概念。「二次互逆定理」也在其中。

二十四歲開始,高斯放棄在純數學的研究,作了幾年天文學的研究。

當時的天文界正在為火星和木星間龐大的間隙煩惱不已,認為火星和木星間應該還有行星未被發現。在1801年,義大利的天文學家Piazzi,發現在火星和木星間有一顆新星。它被命名為「穀神星」(Cere)。現在我們知道它是火星和木星的小行星帶中的一個,但當時天文學界爭論不休,有人說這是行星,有人說這是彗星。必須繼續觀察才能判決,但是Piazzi只能觀察到它9度的軌道,再來,它便隱身到太陽後面去了。因此無法知道它的軌道,也無法判定它是行星或彗星。

高斯這時對這個問是產生興趣,他決定解決這個捉摸不到的星體軌跡的問題。高斯自己獨創了只要三次觀察,就可以來計算星球軌道的方法。他可以極准確地預測行星的位置。果然,穀神星准確無誤的在高斯預測的地方出現。這個方法--雖然他當時沒有公布--就是「最小平方法」 (Method of Least Square)。

1802年,他又准確預測了小行星二號--智神星(Pallas)的位置,這時他的聲名遠播,榮譽滾滾而來,俄國聖彼得堡科學院選他為會員,發現Pallas的天文學家Olbers請他當哥廷根天文台主任,他沒有立刻答應,到了1807年才前往哥廷根就任。

1809年他寫了《天體運動理論》二冊,第一冊包含了微分方程、圓椎截痕和橢圓軌道,第二冊他展示了如何估計行星的軌道。高斯在天文學上的貢獻大多在1817年以前,但他仍一直做著觀察的工作到他七十歲為止。雖然做著天文台的工作,他仍抽空做其他研究。為了用積分解天體運動的微分力程,他考慮無窮級數,並研究級數的收斂問題,在1812年,他研究了超幾何級數(Hypergeometric Series),並且把研究結果寫成專題論文,呈給哥廷根皇家科學院。

1820到1830年間,高斯為了測繪汗諾華(Hanover)公國(高斯住的地方)的地圖,開始做測地的工作,他寫了關於測地學的書,由於測地上的需要,他發明了日觀測儀(Heliotrope)。為了要對地球表面作研究,他開始對一些曲面的幾何性質作研究。

1827年他發表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵蓋一部分現在大學念的「微分幾何」。

在1830到1840年間,高斯和一個比他小廿七歲的年輕物理學家-韋伯(Withelm Weber)一起從事磁的研究,他們的合作是很理想的:韋伯作實驗,高斯研究理論,韋伯引起高斯對物理問題的興趣,而高斯用數學工具處理物理問題,影響韋伯的思考工作方法。

1833年高斯從他的天文台拉了一條長八千尺的電線,跨過許多人家的屋頂,一直到韋伯的實驗室,以伏特電池為電源,構造了世界第一個電報機。

1835年高斯在天文台里設立磁觀測站,並且組織「磁協會」發表研究結果,引起世界廣大地區對地磁作研究和測量。

高斯已經得到了地磁的准確理,他為了要獲得實驗數據的證明,他的書《地磁的一般理論》拖到1839年才發表。

1840年他和韋伯畫出了世界第一張地球磁場圖,而且定出了地球磁南極和磁北極的位置。 1841年美國科學家證實了高斯的理論,找到了磁南極和磁北極的確實位置。

高斯對自己的工作態度是精益求精,非常嚴格地要求自己的研究成果。他自己曾說:「寧可發表少,但發表的東西是成熟的成果。」許多當代的數學家要求他,不要太認真,把結果寫出來發表,這對數學的發展是很有幫助的。 其中一個有名的例子是關於非歐幾何的發展。非歐幾何的的開山祖師有三人,高斯、 Lobatchevsky(羅巴切烏斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父親是高斯大學的同學,他曾想試著證明平行公理,雖然父親反對他繼續從事這種看起來毫無希望的研究,小Bolyai還是沉溺於平行公理。最後發展出了非歐幾何,並且在1832~1833年發表了研究結果,老Bolyai把兒子的成果寄給老同學高斯,想不到高斯卻回信道:

to praise it would mean to praise myself.我無法誇贊他,因為誇贊他就等於誇獎我自己。

早在幾十年前,高斯就已經得到了相同的結果,只是怕不能為世人所接受而沒有公布而已。

美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》(Men of Mathematics) 一書里曾經這樣批評高斯:

在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。

在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了。
高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。

高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。

老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。

1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。

1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。

1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。

希臘時代的數學家已經知道如何用尺規作出正 2m×3n×5p 邊形,其中 m 是正整數,而 n 和 p 只能是0或1。但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了:

一個正 n 邊形可以尺規作圖若且唯若 n 是以下兩種形式之一:

1、n = 2k,k = 2, 3,…

2、n = 2k × (幾個不同「費馬質數」的乘積),k = 0,1,2,…

費馬質數是形如 Fk = 22k 的質數。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。

1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理:

任一多項式都有(復數)根。這結果稱為「代數學基本定理」(Fundamental Theorem of Algebra)。

事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。

在1801年,高斯二十四歲時出版了《算學研究》(Disquesitiones Arithmeticae),這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章。

這本書除了第七章介紹代數基本定理外,其餘都是數論,可以說是數論第一本有系統的著作,高斯第一次介紹「同餘」(Congruent)的概念。「二次互逆定理」也在其中。

二十四歲開始,高斯放棄在純數學的研究,作了幾年天文學的研究。

當時的天文界正在為火星和木星間龐大的間隙煩惱不已,認為火星和木星間應該還有行星未被發現。在1801年,義大利的天文學家Piazzi,發現在火星和木星間有一顆新星。它被命名為「穀神星」(Cere)。現在我們知道它是火星和木星的小行星帶中的一個,但當時天文學界爭論不休,有人說這是行星,有人說這是彗星。必須繼續觀察才能判決,但是Piazzi只能觀察到它9度的軌道,再來,它便隱身到太陽後面去了。因此無法知道它的軌道,也無法判定它是行星或彗星。

高斯這時對這個問是產生興趣,他決定解決這個捉摸不到的星體軌跡的問題。高斯自己獨創了只要三次觀察,就可以來計算星球軌道的方法。他可以極准確地預測行星的位置。果然,穀神星准確無誤的在高斯預測的地方出現。這個方法--雖然他當時沒有公布--就是「最小平方法」 (Method of Least Square)。

1802年,他又准確預測了小行星二號--智神星(Pallas)的位置,這時他的聲名遠播,榮譽滾滾而來,俄國聖彼得堡科學院選他為會員,發現Pallas的天文學家Olbers請他當哥廷根天文台主任,他沒有立刻答應,到了1807年才前往哥廷根就任。

1809年他寫了《天體運動理論》二冊,第一冊包含了微分方程、圓椎截痕和橢圓軌道,第二冊他展示了如何估計行星的軌道。高斯在天文學上的貢獻大多在1817年以前,但他仍一直做著觀察的工作到他七十歲為止。雖然做著天文台的工作,他仍抽空做其他研究。為了用積分解天體運動的微分力程,他考慮無窮級數,並研究級數的收斂問題,在1812年,他研究了超幾何級數(Hypergeometric Series),並且把研究結果寫成專題論文,呈給哥廷根皇家科學院。

1820到1830年間,高斯為了測繪汗諾華(Hanover)公國(高斯住的地方)的地圖,開始做測地的工作,他寫了關於測地學的書,由於測地上的需要,他發明了日觀測儀(Heliotrope)。為了要對地球表面作研究,他開始對一些曲面的幾何性質作研究。

1827年他發表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵蓋一部分現在大學念的「微分幾何」。

在1830到1840年間,高斯和一個比他小廿七歲的年輕物理學家-韋伯(Withelm Weber)一起從事磁的研究,他們的合作是很理想的:韋伯作實驗,高斯研究理論,韋伯引起高斯對物理問題的興趣,而高斯用數學工具處理物理問題,影響韋伯的思考工作方法。

1833年高斯從他的天文台拉了一條長八千尺的電線,跨過許多人家的屋頂,一直到韋伯的實驗室,以伏特電池為電源,構造了世界第一個電報機。

1835年高斯在天文台里設立磁觀測站,並且組織「磁協會」發表研究結果,引起世界廣大地區對地磁作研究和測量。

高斯已經得到了地磁的准確理,他為了要獲得實驗數據的證明,他的書《地磁的一般理論》拖到1839年才發表。

1840年他和韋伯畫出了世界第一張地球磁場圖,而且定出了地球磁南極和磁北極的位置。 1841年美國科學家證實了高斯的理論,找到了磁南極和磁北極的確實位置。

高斯對自己的工作態度是精益求精,非常嚴格地要求自己的研究成果。他自己曾說:「寧可發表少,但發表的東西是成熟的成果。」許多當代的數學家要求他,不要太認真,把結果寫出來發表,這對數學的發展是很有幫助的。 其中一個有名的例子是關於非歐幾何的發展。非歐幾何的的開山祖師有三人,高斯、 Lobatchevsky(羅巴切烏斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父親是高斯大學的同學,他曾想試著證明平行公理,雖然父親反對他繼續從事這種看起來毫無希望的研究,小Bolyai還是沉溺於平行公理。最後發展出了非歐幾何,並且在1832~1833年發表了研究結果,老Bolyai把兒子的成果寄給老同學高斯,想不到高斯卻回信道:

to praise it would mean to praise myself.我無法誇贊他,因為誇贊他就等於誇獎我自己。

早在幾十年前,高斯就已經得到了相同的結果,只是怕不能為世人所接受而沒有公布而已。

美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》(Men of Mathematics) 一書里曾經這樣批評高斯:

在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。

在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了......

1客車長190米,貨車長240米,兩車分別以每秒20米和每秒23M的速度前進.在雙軌鐵路上,相遇時從車頭相遇到車尾相離需幾秒?
答案:10秒.
2 計算1234+2341+3412+4123=?
答案:11110
3 一個等差數列的首項是5.6 ,第六項是20.6,求它的第4項
答案:14.6
4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
答案:22.5
5 求解下列同餘方程:
(1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4)
答案:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4)
6 請問數2206525321能否被7 11 13 整除?
答案:能
7現有1分.2分.5分硬幣共100枚,總共價值2元.已知2分硬幣總價值比一分硬幣總價值多13分,三類硬幣各幾枚?
答案:一分幣51`枚.二分幣32枚.5分幣17枚.
8 找規律填數:
0 , 3,8,15,24,35,___,63 答案: 48
9 100條直線最多能把平面分為幾個部分?
答案:5051
10 A B兩人向大洋前進,每人備有12天食物,他們最多探險___天
答案:8天
11 100以內所有能被2或3或5或7整除的自然數個數
答案:78個
12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=?
答案:343/330
13 從1,2,3,......2003,2004這些數中最多可取幾個數,讓任意兩數差不等於9?
答案:1005
14 求360的全部約數個數. 答案: 24
15 停車場上,有24輛車,汽車四輪,摩托車3輪,共86個輪.三輪摩托車____輛. 答案:10輛.
16 約數共有8個的最小自然數為____. 答案:24
17求所有除4餘一的兩位數和 答案;1210
可以出一些奧數題,名字就叫<<練兵場>>
盡量不要寫笑話,多寫知識,問題,名人.

③ 高中數學復數講解

2.復數中的難點

(1)復數的向量表示法的運算.對於復數的向量表示有些學生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難.對此應認真體會復數向量運算的幾何意義,對其靈活地加以證明.

(2)復數三角形式的乘方和開方.有部分學生對運演算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應對此認真地加以訓練.

(3)復數的輻角主值的求法.

(4)利用復數的幾何意義靈活地解決問題.復數可以用向量表示,同時復數的模和輻角都具有幾何意義,對他們的理解和應用有一定難度,應認真加以體會.

3.復數中的重點

(1)理解好復數的概念,弄清實數、虛數、純虛數的不同點.

(2)熟練掌握復數三種表示法,以及它們間的互化,並能准確地求出復數的模和輻角.復數有代數,向量和三角三種表示法.特別是代數形式和三角形式的互化,以及求復數的模和輻角在解決具體問題時經常用到,是一個重點內容.

(3)復數的三種表示法的各種運算,在運算中重視共軛復數以及模的有關性質.復數的運算是復數中的主要內容,掌握復數各種形式的運算,特別是復數運算的幾何意義更是重點內容.

(4)復數集中一元二次方程和二項方程的解法.

【總結】2013年精品學習網為小編在此為您收集了此文章「高中數學復數知識點講解」,今後還會發布更多更好的文章希望對大家有所幫助,祝您在精品學習網學習愉快!

更多精彩內容請點擊:高中 > 高中數學學習 > 高中數學講解

④ 高中數學復數知識點有哪些

將數集拓展到實數范圍內,仍有些運算無法進行。比如判別式小於0的一元二次方程仍無解,因此將數集再次擴充,達到復數范圍, 並建立了與實數軸垂直的數軸來表示復數。

規定形如z=a+bi(a,b均為任意實數)的數稱為復數,其中a稱為實部,b稱為虛部,i稱為虛數單位,且i^2=i×i=-1。

當虛部等於零時,這個復數可以視為實數;當z的虛部不等於零時,實部等於零時,常稱z為純虛數。

復數的加法法則:

復數的加法法則:設z₁=a+bi,z₂=c+di是任意兩個復數。兩者和的實部是原來兩個復數實部的和,它的虛部是原來兩個虛部的和。兩個復數的和依然是復數;

復數的運算律:

加法交換律:z₁+z₂=z₂+z₁;

乘法交換律:z₁×z₂=z₂×z₁;

加法結合律:(z₁+z₂)+z₃=z₁+(z₂+z₃);

乘法結合律:(z₁×z₂)×z₃=z₁×(z₂×z₃);

分配律:z₁×(z₂+z₃)=z₁×z₂+z₁×z₃;

⑤ 要做小報 小學數學小知識 十萬火急

先總的介紹數學:
數學源自於古希臘語,是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學的基本要素是:邏輯和直觀、分析和推理、共性和個性。
名稱的來源:
數學源自於古希臘語的μ?θημα(máthēma),其有學習、學問、科學,以及另外還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義和與學習有關的,亦會被用來指數學的。其在英語的復數形式,及在法語中的復數形式+es成 mathématiques,可溯至拉丁文的中性復數mathematica,由西塞hjt數學(math)。以前我國古代把數學叫算術,又稱算學,最後才改為數學。
名人故事:高斯(1+……100),陳景潤找出了華羅庚的一處錯誤。
數學題:奧數題,如雞兔同籠問題,植樹問題等

⑥ 關於數學的知識有哪些,我要做手抄報

在網路里搜 數學 有一大串關於數學的知識
如果做手抄報 建議分成幾大塊 比如 數學定理 數學故事 數學家。。。。

⑦ 六年級數學手抄報內容,急需!

  1. 有一位老人,他有三個兒子和十七匹馬。他在臨終前對他的兒子們說:「我已經寫好了遺囑,我把馬留給你們,你們一定要按我的要求去分。」

老人去世後,三兄弟看到了遺囑。遺囑上寫著:「我把十七匹馬全都留給我的三個兒子。長子得一半,次子得三分之一,給幼子九分之一。不許流血,不許殺馬。你們必須遵從父親的遺願!」

這三個兄弟迷惑不解。盡管他們在學校里學習成績都不錯,可是他們還是不會用17除以2、用17除以3、用17除以9,又不讓馬流血。於是他們就去請教當地一位公認的智者。這位智者看了遺囑以後說:「我借給你們一匹馬,去按你們父親的遺願分吧!」


2.高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。

老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。

1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。

1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(LawofQuadraticReciprocity)、質數分布定理(primenumertheorem)、及算術幾何平均(arithmetic-geometricmean)。

1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。

希臘時代的數學家已經知道如何用尺規作出正2m×3n×5p邊形,其中m是正整數,而n和p只能是0或1。但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了:

一個正n邊形可以尺規作圖若且唯若n是以下兩種形式之一:

1、n=2k,k=2,3,…

2、n=2k×(幾個不同「費馬質數」的乘積),k=0,1,2,…

費馬質數是形如Fk=22k的質數。像F0=3,F1=5,F2=17,F3=257,F4=65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。

1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理:

任一多項式都有(復數)根。這結果稱為「代數學基本定理」(FundamentalTheoremofAlgebra)。

事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。

在1801年,高斯二十四歲時出版了《算學研究》(DisquesitionesArithmeticae),這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章

美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》(MenofMathematics)一書里曾經這樣批評高斯:

在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。

在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了。

⑧ 急需數學手抄報資料

數學報就需要你寫一些數學的故事,一些小難題!
如:有這樣一個傳說,一次,數學家歐基里德教一個學生學習某個定理。結束後這個年輕人問歐基里德,他學了能得到什麼好處。歐基里德叫過一個奴隸,對他說:「給他3個奧波爾,他說他學了東西要得到好處。」在數學還非常哲學化的古希臘,探究世界的本原、萬物之道,而要得到什麼「好處」,受到鄙視是可以理解的。這就像另一個故事:在巴黎的一個酒吧里,一個姑娘問她的情人遲到的原因,那年輕人說他在趕做一道數學題,姑娘搖著腦袋,不解地問:「我真不明白,你花那麼多時間搞數學,數學到底有什麼用啊?」那年輕人長久地看著她,然後說:「寶貝兒,那麼愛情,到底有什麼用啊?」

由經驗構成的分散的知識,顯然沒有成體系的知識可信,我們歷來都對知識的體系更有信任感。例如牛頓的力學體系,可以精確地計算物體的運動,即使推測1億年的日食也幾乎絲毫不差;達爾文以物種進化和自然選擇為核心的進化論,把整個生物世界統括為一個有序的、有機的系統,使得我們知道不同物種之間的關系。

但是,即使是經典的知識體系,也不足以始終承載我們的全部信任,因為新的經驗、新的研究會調整、更新舊的知識體系,新理論會替代舊理論。愛因斯坦相對論的出現,使得牛頓的力學體系成為一種更廣泛理論中的特例;基因學說的發展和化石證據的積累,使得達爾文進化論中漸變的思想受到挑戰,這樣的事例充滿了整個科學發展的歷史,讓我們不時用懷疑的眼光打量一下那些彷彿無懈可擊的知識體系,對它們心存警惕。

不過,在人們追求確定性、可靠性的時候,還有一塊安寧的綠洲,那就是數學。數學是我們最可信賴的科學,什麼東西一經數學的證明,便板上釘釘,確鑿無疑。另外,新的數學理論開拓新的領域,可以包容但不會否定已有的理論。數學是惟一一門新理論不推翻舊理論的科學,這也是數學值得信賴的明證。

終極的確定

數學追求什麼?我們稱古希臘的賢哲泰勒斯是古代數學第一人,是因為他不像埃及或巴比倫人那樣,對任意一個規則物體求數值解,他的雄心是揭示一個系列的真理。比如圓,他的答案不是關於一個特殊圓,而是任意圓,他對全世界所有的圓感興趣,他創造的理想的圓可以斷言:任何經過圓心的直線都將圓分割為兩等分,他找到的真理揭示了圓的性質。

數學要求普遍的確定性。

數學要劃清結果和證明的界限。

世界再變幻不定,我們也總要有所憑信,有所依託,把這種憑信的根據推到極致,我們能體會到數學的力量。數學之大用也在於此。

我們的先人很早就開始用數學來解決具體的工程問題,在這方面,各古文明都有上佳的表現,但是古希臘人對數學的理解更值得我們敬佩。首先是畢達哥拉斯學派,他們把數看作是構成世界的要素,世上萬物的關系都可以用數來解析,這絕不是我們現代「數字地球」之類的概念可以比擬的,那是一種世界觀,萬物最終可以歸結為數,由數學說明的東西可以成為神聖的信仰,我想,持這樣想法的人,一定對自然常存敬畏,不會專橫自欺的。

其次,古希臘人把數學用於辯論,他們要求數學提供關於政治、法律、哲學論點的論據,要求絕對可靠的證據,要求「不可駁斥性」;他們也不滿足於(例如埃及、巴比倫前輩那樣的)經驗性的證據,而是進一步要求證明,要求普遍的確定性。多麼可愛、嚴正的要求!有這樣要求的人,必定明達事理,光明磊落。

為了保證思想可靠,古希臘的思想家制定了思想的規則,在人類歷史上,思想第一次成為思想的對象,這些規則我們稱之為邏輯。比如不可同時承認正命題和反命題,換句話說,一個論點和它的反論點不能同時為真,即矛盾律;比如一正論點與反論點不可同時為假,即排中律。所有這些努力,都特別體現著人類對確定、可靠的知識的追求,一部數學史,就是人類不斷擴大確知領域的歷史。
1、一個長方形的長、寬、高分別是8、6、4分米,把它截成棱長為整分米數的小正方體,最少能截多少個,截成後表面積增加了多少平方分米?

要截得最少,則正方體的邊長要最大,8、6、4的最大公約數是:2,所以正方體的邊長是:2

那麼截成:8/2*6/2*4/2=24個
一個正方體的表面積是:2*2*6=24平方厘米
則所有正方體的表面積是:24*24=576平方厘米
原來表面積是:2*(8*6+8*4+6*4)=208

增加:576-208=368平方厘米

2、把10克水加到鹽的質量分數為20%的50克鹽水中,要使鹽的質量分數為37.5%的鹽水需要加鹽多少克?

原來鹽的質量是:50*20%=10克,水是:50+10-10=50克

那麼現在的鹽水重量是:50/[1-37。5%]=80克

即要加鹽:80-(10+50)=20克

這是我找到的,希望滿意