Ⅰ 數學知識點總結
小學數學知識匯總
圖形的周長、面積、體積公式及相關知識
長方形周長 =(長+寬)×2
長方形面積 =長×寬
正方形周長 = 邊長 × 4
正方形面積 = 邊長×邊長
三角形面積 = 底×高÷2
平行四邊形面積 = 底 × 高
梯形面積 = (上底 +下底)×高÷2
圓的周長等於∏×直徑或∏×半徑×2 即C =∏d或C = 2∏r
圓的面積等於3.14×半徑的平方。
環形的面積等於3.14×(大半徑的平方-
小半徑的平方)
半圓的周長 = 圓的周長的一半 + 直徑
即:∏ r + 2 r
長方體的表面積 = (長×寬 + 長×高 + 寬×高)× 2
長方體的體積 = 長 × 寬 × 高
或
底面積×高
正方體的表面積 = 棱長×棱長× 6
正方體的體積 = 棱長×棱長×棱長
圓柱體的表面積=2個底面積 + 側面積
側面積=底面周長×高
圓柱體的體積 = 底面積 × 高
圓錐體的體積 = 底面積 × 高 ÷ 3
長方體和正方體都有6個面、8個頂點和12條棱。
相交於同一頂點的三條棱分別叫做長方體的長、寬、高。
正方體可以看作是特殊的長方體。
最少需要8個相同的小正方體才能拼成一個大正方體。
圓柱體上下兩個底面都是圓形,而且它們的面積都相等。
圓柱體的側面展開是長方形,它的長是圓柱底面的周長,它的高是圓柱的高。
圓錐的底面也是圓形,側面展開是扇形。
圓柱體的體積是和它等底等高的圓錐體的體積的3倍。
大圓的半徑是小圓的直徑,則大圓的面積是小圓的面積的4倍。
在正方形里剪一個最大的圓,正方形的邊長就是圓的直徑。
在長方形里剪一個最大的圓,長方形的寬就是圓的直徑。
把一個長方形拉成一個平行四邊形以後,面積比原來變小了。
長方形的周長要先除以2,然後再按比例分配;而長方體的棱長總和要先除以4,然後再分配。
圓的半徑擴大3倍,周長也擴大3倍,面積擴大9倍。
正方體的棱長擴大3倍,則表面積擴大9倍,體積擴大27倍。
圓柱體或圓錐體的底面半徑擴大2倍,體積擴大4倍。
常見的統計圖有條形統計圖、折線統計圖和扇形統計圖。
條形統計圖的特點是很容易看出各種數量的多少;折線統計圖的特點是不但可以看出各種數量的多少,而且能夠清楚地表示出數量增減變化的情況;扇形統計圖的特點是可以清楚地表示出各部分數量和總數之間的關系
幾何初步知識
直線沒有端點,兩端可以無限延長,不能測量長度。
射線有一個端點,一端可以無限延長,不能測量長度。
線段有兩個端點,不能延長,可以測量長度。
過一點可以畫無數條直線,過兩點可以畫一條直線。
在同一平面內,兩條直線的相互位置有相交和平行兩種。
在同一平面內,不相交的兩條直線叫做平行線。
一個頂點和從這個頂點出發的兩條射線組成的圖形叫做角。
大於0度小於90度的角叫銳角;大於90度小於180度的角叫鈍角。
三角形的內角和是180度;四邊形的內角和是360度。
直角是90度,平角是180度,周角是360度。
三角形按角可以分為直角三角形、銳角三角形和鈍角三角形。
三角形按邊可分為等邊三角形、等腰三角形和不等邊三角形;等邊三角形三條邊都相等,三個角都是60度。
長方形和正方形都是特殊的平行四邊形。
當圓、正方形和長方形的周長相等時,圓的面積最大,長方形的面積最小。
三角形具有穩定性,平行四邊形容易變形。
等底等高的情況下,三角形的面積是平行四邊形面積的一半。
圓是平面上的一種曲線圖形,圍成圓的曲線的長度叫做圓的周長;圓所在的平面的大小叫做圓的面積。
從圓心到圓上任意一點的線段叫做圓的半徑。
通過圓心,並且兩端都在圓上的線段叫做圓的直徑。
頂點在圓心的角叫做圓心角;圓內最長的線段是直徑。
圓有無數條半徑和無數條直徑。
在同一圓內,所有的半徑都相等,所有的直徑也都相等。
在同一圓內,直徑是半徑的2倍。
圓的周長與直徑的比值叫做圓周率,用字母∏來表示,是祖沖之最早計算出來的。∏≈ 3.14
圓心決定了圓的位置,半徑決定了圓的大小。
扇形的大小是由半徑和圓心角來決定的 。
圓規兩角間的距離指的是圓的半徑。
如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就叫做軸對稱圖形,摺痕所在的直線叫做對稱軸。
圓有無數條對稱軸,長方形有兩條對稱軸,正方形有四條對稱軸,等腰三角形有一條對稱軸,等邊三角形有三條對稱軸,等腰梯形有一條對稱軸,半圓或扇形都有一條對稱軸。
量的計量
常用的長度單位有千米、米、分米、厘米和毫米。
常用的面積單位有平方千米,公頃、平方米,平方分米和平方厘米。
常用的體積單位有立方米,立方分米,立方厘米。
常用的容積單位有升和毫升。1升=1000毫升。
立方分米就是升,立方厘米就是毫升。
常用的重量單位有噸,千克和克。
常用的人民幣單位有元、角、分。
常用的時間單位有世紀、年、月、日、時、分、秒。
1世紀=100年,1年=12月,大月31天,小月30天。
一年有12個月,分為四個季度,每個季度三個月。
每四年中有三個平年和一個閏年。平年2月有28天,閏年2月有29天。
代數初步知識
含有未知數的等式叫做方程。
求方程的解的過程叫做解方程。
兩個數相除又叫做兩個數的比;表示兩個比相等的式 子叫做比例。
比的後項不能為0。
比的前項除以後項的商,叫做比值。比值可以是整數、小數或分數。
比的前項和後項都乘上或除以相同的數(0除外),比值不變,叫做比的基本性質。
在比例里,兩個內項的積等於兩個外項的積,叫做比例的基本性質 。
圖上距離和實際距離的比叫做比例尺。
比例尺有數值比例尺和線段比例尺兩種。
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值一定,這兩種量就叫做乘正比例的量,它們的關系叫做正比例關系。即: x ÷ y = k (一定)
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做乘反比例的量,它們的關系叫做反比例關系。即: x × y = k ( 一定 )
圓的半徑和面積不成比例 和 周長成正比例。
三角形的面積一定,底和高成反比例。
比例尺一定,圖上距離和實際距離成正比例。
一種商品先降價10%,再提價10%,價格比原來降低了。
甲比乙多25%,則乙比甲少20%。
數和數的運算
我們在數物體的時候,用來表示物體個數的1 ,2 ,3 …… 叫做自然數。0也是自然數,是最小的自然數,沒有最大的自然數。自然數都是整數。
把單位「l」平均分成若干份,表示這樣的一份或幾份的數叫做分數。表示其中一份的數是這個分數的分數單位。
兩個整數相除,它們的商可以用分數表示。即:a÷b = (b≠0)
分子和分母是互質數的分數叫做最簡分數。
真分數的倒數一定大於1,但假分數的倒數不一定小於1。
分數的分子和分母同時乘上或者除以相同的數(0除外),分數的大小不變,叫做分數的基本性質。
小數的末尾添上「0」或者去掉「0」,小數的大小不變,這叫做小數的基本性質。
一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷地重復出現,這樣的小數叫做循環小數。
循環節從小數部分第一位就開始的叫做純循環小數;循環節不是從小數部分第一位開始的叫做混循環小數。
表示一個數是另一個數的百分之幾的數叫做百分數,也叫做百分率或百分比。百分數沒有單位。
整數a除以整數b( b≠0 ),除得的商正好是整數而沒有餘數,我們就說a能被b整除,或者b能整除a 。
如果a能被b整除,我們就說a是b的倍數,b是a的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它的本身。
一個數的倍數的個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。
一個數,如果只有1和它本身兩個約數,叫做質數。
一個數,如果除了1和它本身,還有別的約數,叫做合數。
把一個合數寫成幾個質數相乘的形式,叫做分解質因數。
幾個數公有的倍數叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
幾個數公有的約數叫做這幾個數的公約數,其中最大的一個數叫做這幾個數的最大公約數。
公約數只有1的兩個數,叫做互質數。
能被2整除的數叫做偶數,不能被2整除的數叫做奇數。一個自然數不是偶數就是奇數。
最小的偶數是0,最小的奇數是1 ,最小的質數是2 ,最小的合數是4 。
除了0和2以外,所有的偶數都是合數。
能同時被2、3、5整除的最小的兩位數是30,最小的三位數是120。
一個算式,如果只含有同一級運算,要按照從左往右的順序依次計算。如果含有兩級運算,要先算乘除,後算加減。如果有括弧,還要先算括弧裡面的,再算括弧外面的。
乘積是1的兩個數叫做互為倒數。
甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
利息 = 本金 × 利率 × 時間
稅後利息 = 本金 × 利率 × 時間 ×80%
概念
數的讀法和寫法
1. 整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個「億」或「萬」字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。
2. 整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3. 小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作「點」,小數部分從左向右順次讀出每一位數位上的數字。
4. 小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。
5. 分數的讀法:讀分數時,先讀分母再讀「分之」然後讀分子,分子和分母按照整數的讀法來讀。
6. 分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。
7. 百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。
8. 百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。
1. 准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。 例如把 1254300000 改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。
2. 近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。
3. 四捨五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略 345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。
4. 大小比較
1. 比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
2. 比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
(三)數的互化
1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
2. 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3. 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。
4. 小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。
5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
6. 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除
1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。
2. 求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數。
3. 求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4. 成為互質關系的兩個數:1和任何自然數互質;相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質;兩個合數的公約數只有1時,這兩個合數互質。
(五)約分和通分
約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
第一章 數和數的運算
(一)整數
整數的意義
自然數和0都是整數。
自然數
我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
數位
計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
數的整除
整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。
一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。
一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
例如把28分解質因數
幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。
公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:
1和任何自然數互質。
相鄰的兩個自然數互質。
兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。
如果兩個數是互質數,它們的最大公約數就是1。
幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……
3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。
如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
(二)小數的意義
把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。
小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。
帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。
有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54 」 。
純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環節只有一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
(三)分數的意義
把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。
分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。
帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。
約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數,叫做約分。
分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數
表示一個數是另一個數的百分之幾的數叫做百分數,也叫做百分率或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。
Ⅱ 中考數學重點知識歸納內容是什麼
一、圓周角定理及其推論
1、圓周角
頂點在圓上,並且兩邊都和圓相交的角叫做圓周角。
2、圓周角定理
一條弧所對的圓周角等於它所對的圓心角的一半。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推論3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。
二、一些基本公式
三倍角的正弦、餘弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
三、二元一次方程組
1、二元一次方程
含有兩個未知數,並且未知項的最高次數是1的整式方程叫做二元一次方程。
2、二元一次方程的解
使二元一次方程左右兩邊的值相等的一對未知數的值,叫做二元一次方程的一個解。
3、二元一次方程組
兩個(或兩個以上)二元一次方程合在一起,就組成了一個二元一次方程組。一般形式:(不全為0)
4、二元一次方程組的解
使二元一次方程組的兩個方程左右兩邊的值都相等的兩個未知數的值,叫做二元一次方程組的解。
5、二元一次方程組的解法
四、基本思想:"消元"
解法:(1)代入法(2)加減法(3)二元一次方程組一元一次方程組.
6、三元一次方程
把含有三個未知數,並且含有未知數的項的次數都是1的整式方程。
五、列方程(組)解應用題
注意:千萬不要死記硬背例題的類型及其解法,要具體問題具體分析,一般來講,應按下面的步驟進行:
1、審題:弄清題意和題目中的已知量、未知量,並能找出能夠表示應用問題的全部含義的等量關系。
2、設未知數:選擇一個或幾個適當的未知量,用字母表示,並根據題目的數量關系,用含未知數的代數式表示相關的未知量。
3、列方程(組):根據等量關系列出方程(組)。
4、解方程(組):其過程可以省略,但要注意技巧和方法。
5、檢驗:首先檢查所列方程(組)是否正確,然後檢驗所得方程的解是否符合題意。
6、寫答:不要忘記單位名稱。
7、分式方程的解法
①一般解法:去分母法,即方程兩邊同乘以最簡公分母。
②特殊解法:換元法。
(2)驗根:由於在去分母過程中,當未知數的取值范圍擴大而有可能產生增根.因此,驗根是解分式方程必不可少的步驟,一般把整式方程的根的值代人最簡公分母,看結果是不是零,使最簡公分母為零的根是原方程的增根,必須捨去。
說明:解分式方程,一般先考慮換元法,再考慮去分母法。
六、相交線中的角
兩條直線相交,可以得到四個角,我們把兩條直線相交所構成的四個角中,有公共頂點但沒有公共邊的兩個角叫做對頂角。我們把兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角叫做臨補角。
臨補角互補,對頂角相等。
直線AB,CD與EF相交(或者說兩條直線AB,CD被第三條直線EF所截),構成八個角。其中∠1與∠5這兩個角分別在AB,CD的上方,並且在EF的同側,像這樣位置相同的一對角叫做同位角;∠3與∠5這兩個角都在AB,CD之間,並且在EF的異側,像這樣位置的兩個角叫做內錯角;∠3與∠6在直線AB,CD之間,並側在EF的同側,像這樣位置的兩個角叫做同旁內角。
七、線段的性質
1、線段公理:所有連接兩點的線中,線段最短。也可簡單說成:兩點之間線段最短。
2、連接兩點的線段的長度,叫做這兩點的距離。
3、線段的中點到兩端點的距離相等。
4、線段的大小關系和它們的長度的大小關系是一致的。
5、線段垂直平分線的性質定理及逆定理
垂直於一條線段並且平分這條線段的直線是這條線段的垂直平分線。線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等。逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
Ⅲ 數學中考知識點歸納有哪些
數學中考知識點如下:
1、絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。
2、求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當a看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。
3、合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
4、在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
5、除法的估算方法是多樣的,通常我們將被除數(三位數)看成一個接近它的整百整十數,除數(一位數)不變,然後計算。或者按照乘法口訣把被除數估成一個合適的數,再計算。
Ⅳ 初一數學的知識點
不同版本學的內容不同,你學的什麼版本?至於學的哪些知識點,你看一下目錄就明白了。
Ⅳ 小學數學知識點總結(全部)
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
Ⅵ 高二數學重點知識歸納有哪些
高二數學重點知識歸納如下:
一、復合函數定義域
若函數y=f(u)的定義域是B,u=g(x)的定義域是A,則復合函數y=f的定義域是D={x|x∈A,且g(x)∈B}綜合考慮各部分的x的取值范圍,取他們的交集。
求函數的定義域主要應考慮以下幾點:
⑴當為整式或奇次根式時,R的值域。
⑵當為偶次根式時,被開方數不小於0(即≥0)。
⑶當為分式時,分母不為0;當分母是偶次根式時,被開方數大於0。
⑷當為指數式時,對零指數冪或負整數指數冪,底不為0。
⑸當是由一些基本函數通過四則運算結合而成的,它的定義域應是使各部分都有意義的自變數的值組成的集合,即求各部分定義域集合的交集。
⑹分段函數的定義域是各段上自變數的取值集合的並集。
⑺由實際問題建立的函數,除了要考慮使解析式有意義外,還要考慮實際意義對自變數的要求。
⑻對於含參數字母的函數,求定義域時一般要對字母的取值情況進行分類討論,並要注意函數的定義域為非空集合。
⑼對數函數的真數必須大於零,底數大於零且不等於1。
二、復合函數常見題型
(ⅰ)已知f(x)定義域為A,求f的定義域:實質是已知g(x)的范圍為A,以此求出x的范圍。
(ⅱ)已知f定義域為B,求f(x)的定義域:實質是已知x的范圍為B,以此求出g(x)的范圍。
(ⅲ)已知f定義域為C,求f的定義域:實質是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然後將其作為h(x)的范圍,以此再求出x的范圍。
Ⅶ 跪求新目標高中數學知識點總結及解題方法
數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:
一、課內重視聽講,課後及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
*****************************************************************************************************
一、 高中數學課的設置
高中數學內容豐富,知識面廣泛,將有:《代數》上、下冊、《立體幾何》和《平面解析幾何》四本課本,高一年級學習完《代數》上冊和《立體幾何》兩本書。高二將學習完《代數》下冊和《平面解析幾何》兩本書。一般地,在高一、高二全部學習完高中的所有高中三年的知識內容,高三進行全面復習,高三將有數學「會考」和重要的「高考」。
二、初中數學與高中數學的差異。
1、知識差異。
初中數學知識少、淺、難度容易、知識面笮。高中數學知識廣泛,將對初中的數學知識推廣和引伸,也是對初中數學知識的完善。如:初中學習的角的概念只是「0—1800」范圍內的,但實際當中也有7200和「—300」等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》,將在三維空間中求一些幾何實體的體積和表面積;還將學習「排列組合」知識,以便解決排隊方法種數等問題。如:①三個人排成一行,有幾種排隊方法,( =6種);②四人進行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學習統計這些排列的數學方法。初中中對一個負數開平方無意義,但在高中規定了i2=-1,就使-1的平方根為±i.即可把數的概念進行推廣,使數的概念擴大到復數范圍等。這些知識同學們在以後的學習中將逐漸學習到。
2、學習方法的差異。
(1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課後老師布置作業,然後通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數學的學習隨著課程開設多(有九們課學生同時學習),每天至少上六節課,自習時間三節課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數學學習的時間相對比初中少,數學教師將相初中那樣監督每個學生的作業和課外練習,就能達到相初中那樣把知識讓每個學生掌握後再進行新課。
(2)模仿與創新的區別。
初中學生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數學成績也只能是一般程度。現在高考數學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創新思維和培養學生的創造能力培養。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數學生不會分類討論。
3、學生自學能力的差異
初中學生自學那能力低,大凡考試中所用的解題方法和數學思想,在初中教師基本上已反復訓練,老師把學生要學生自己高度深刻理解的問題,都集中表現在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,知識要全部要教師訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去一類型習題的解法。另外,科學在不斷的發展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數學題型的開發在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應現代科學的發展。
其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養,人的一生只有18---24年時間是有導師的學習,其後半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。
4、思維習慣上的差異
初中學生由於學習數學知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現實生活中三維空間,但初中只學了平面幾何,那麼就不能對三維空間進行嚴格的邏輯思維和判斷。代數中數的范圍只限定在實數中思維,就不能深刻的解決方程根的類型等。高中數學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養學生高素質思維。提高學生的思維遞進性。
5、定量與變數的差異
初中數學中,題目、已知和結論用常數給出的較多,一般地,答案是常數和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數學學習中我們將會大量地、廣泛地應用代數的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們採用對方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變數的分析,探索出分析、解決問題的思路和解題所用的數學思想。
三、如何學好高中數學
良好的開端是成功的一半,高中數學課即將開始與初中知識有聯系,但比初中數學知識系統。高一數學中我們將學習函數,函數是高中數學的重點,它在高中數學中是起著提綱的作用,它融匯在整個高中數學知識中,其中有數學中重要的數學思想方法;如:函數與方程思想、數形結合思想等,它也是高考的重點,近年來,高考壓軸題都以函數題為考察方法的。高考題中與函數思想方法有關的習題占整個試題的60%以上。
1、 有良好的學習興趣
兩千多年前孔子說過:「知之者不如好之者,好之者不如樂之者。」意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。「好」和「樂」就是願意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的「認識」過程,這自然會變為立志學好數學,成為數學學習的成功者。那麼如何才能建立好的學習數學興趣呢?
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
(3)思考問題注意歸納,挖掘你學習的潛力。
(4)聽課中注意老師講解時的數學思想,多問為什麼要這樣思考,這樣的方法怎樣是產生的?
(5)把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸於現實生活,如角的概念、至交坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能使對概念的理解切實可靠,在應用概念判斷、推理時會准確。
2、 建立良好的學習數學習慣。
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
3、 有意識培養自己的各方面能力
數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想像能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想像能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,並在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計「智力課」和「智力問題」比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。
四、其它注意事項
1、注意化歸轉化思想學習。
人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握後再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。
2、學會數學教材的數學思想方法。
數學教材是採用蘊含披露的方式將數學思想溶於數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。
課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求3、-5的相反數,相反數是 的數是_____.②從數軸角度理解:什麼樣的兩點表示數是互為相反數的。(關於原點對稱的點)③從絕對值角度理解:絕對值_______的兩個數是互為相反數的。④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。
五、學數學的幾個建議。
1、記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。
2、建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
3、記憶數學規律和數學小結論。
4、與同學建立好關系,爭做「小老師」,形成數學學習「互助組」。
5、爭做數學課外題,加大自學力度。
6、反復鞏固,消滅前學後忘。
7、學會總結歸類。可:①從數學思想分類②從解題方法歸類③從知識應用上分類
參考資料:http://yangltez.blogchina.com/3894500.html
*****************************************************************************************************
高中數學學習方法談
進入高中以後,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由於學生不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點,談一下高中數學學習方法,供同學參考。
一、 高中數學與初中數學特點的變化
1、數學語言在抽象程度上突變
初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。
2、思維方法向理性層次躍遷
高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什麼,再看什麼等。因此,初中學習中習慣於這種機械的,便於操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。
3、知識內容的整體數量劇增
高中數學與初中數學又一個明顯的不同是知識內容的「量」上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。
4、知識的獨立性大
初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便於記憶,又適合於知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。
二、如何學好高中數學
1、養成良好的學習數學習慣。
建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
2、及時了解、掌握常用的數學思想和方法
學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。
3、逐步形成 「以我為主」的學習模式
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究「活」,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。
4、針對自己的學習情況,採取一些具體的措施
² 記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中
拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。
² 建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再
犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
² 熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化
或半自動化的熟練程度。
² 經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化,
使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。
² 閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課
外題,加大自學力度,拓展自己的知識面。
² 及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏
固,消滅前學後忘。
² 學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解
題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。
² 經常在做題後進行一定的「反思」,思考一下本題所用的基礎知識,數學
思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。
² 無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,而
不是一味地去追求速度或技巧,這是學好數學的重要問題。
對新初三學生來說,學好數學,首先要抱著濃厚的興趣去學習數學,積極展開思維的翅膀,主動地參與教育全過程,充分發揮自己的主觀能動性,愉快有效地學數學。
其次要掌握正確的學習方法。鍛煉自己學數學的能力,轉變學習方式,要改變單純接受的學習方式,要學會採用接受學習與探究學習、合作學習、體驗學習等多樣化的方式進行學習,要在教師的指導下逐步學會「提出問題—實驗探究—開展討論—形成新知—應用反思」的學習方法。這樣,通過學習方式由單一到多樣的轉變,我們在學習活動中的自主性、探索性、合作性就能夠得到加強,成為學習的主人。
在新學期要上好每一節課,數學課有知識的發生和形成的概念課,有解題思路探索和規律總結的習題課,有數學思想方法提煉和聯系實際的復習課。要上好這些課來學會數學知識,掌握學習數學的方法。
概念課
要重視教學過程,要積極體驗知識產生、發展的過程,要把知識的來龍去脈搞清楚,認識知識發生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣我們就能從知識形成、發展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。
習題課
要掌握「聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯」的訣竅。除了聽老師講,看老師做以外,要自己多做習題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發現創造性的證法及解法,學會「小題大做」和「大題小做」的解題方法,即對選擇題、填空題一類的客觀題要認真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把「大」拆「小」,以「退」為「進」,也就是把一個比較復雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規律,然後再來一個飛躍,進一步升華,就能湊成一個大題,即退中求進了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什麼題目難得倒我們。
復習課
在數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習應是一個反思性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什麼特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為這些基本問題;要反思自己的錯誤,找出產生錯誤的原因,訂出改正的措施。在新學期大家准備一本數學學習「病例卡」,把平時犯的錯誤記下來,找出「病因」開出「處方」,並且經常拿出來看看、想想錯在哪裡,為什麼會錯,怎麼改正,通過你的努力,到中考時你的數學就沒有什麼「病例」了。並且數學復習應在數學知識的運用過程中進行,通過運用,達到深化理解、發展能力的目的,因此在新的一年要在教師的指導下做一定數量的數學習題,做到舉一反三、熟練應用,避免以「練」代「復」的題海戰術。
最後,要有意識地培養好自己個人的心理素質,全面系統地進行心理訓練,要有決心、信心、恆心,更要有一顆平常心。
中小學數學網
http://www.mathcn.com/
中國數學在線
http://www.mathfan.com/
小學數學專業網
http://www.shuxueweb.com/
延安數學教育網站
http://yamaths.diy.myrice.com/
1+E數學樂園
http://www.aoshu.com/
數學網站聯盟
http://www.sxlm.net/index2.asp
中學數學教學網
http://www.rasx.net/
華師大數學網站
http://www.hsdczsx.com/Article_Index.asp
快樂數學
http://klsx.diy.myrice.com/
數學時空
http://www.shuxue123.com/
數學教育教學資源中心
http://www.esx.net/
數學人
http://www.mathren.com/
初中數學網
http://www.czsx.com.cn/
中國奧數網
http://www.aoshu.cn/
廣州市中學數學之窗
http://maths.guangztr.e.cn/Index.html
高中數學網
http://www.gzmath.com/
我形我數
http://www.wxws.cn/
數學中國
http://www.madio.net/Index.html
中學數學題庫
http://www.tiku.net/
數學456資源網
http://www.maths456.net/
上海數學
http://www.shmaths.cn/Index.html
麥斯數學網
http://www.czmaths.com/
滿分數學網
http://www.mfsx.com/
數學網路學術資源導航
http://www.lib.pku.e.cn/is/Navigation/Mathematics/index.htm
Ⅷ 小學的數學知識點總結歸納
1、數與代數:數的認識、數的運算、式與方程、比和比例。
2、空間與圖形:線與角、平面圖形、立體圖形、圖形與變換、圖形與位置。
3、統計與可能性:量的計量、統計、可能性。
4、實踐與綜合應用:探索規律、一般復合應用問題、典型應用問題、分數和百分數應用問題、比和比例問題、解決問題的策略、綜合應用問題。
(8)數學各科知識點總結擴展閱讀:
整數
1、整數的意義:…像-4,-3,-2,-1,0,1,2,3,…這樣的數叫整數。
2、自然數:我們在數物體的時候,用來表示物體個數的1,2,3,4……叫做自然數。一個物體也沒有,用0表示,0也是自然數。
3、計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4、數位
計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
5、數的整除:整數a除以整數b(b≠0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a。
如果數a能被數b(b≠0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
解比例的依據是比例的基本性質。
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y=k(k一定)或k/x=y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化法。
16、最大公因數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數:公因數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公因數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整,即能用2進行
約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。
32、一天的時間:一天有24小時,一小時60分,1分60秒
Ⅸ 數學高考必考知識點總結怎麼寫
數學高考必考知識點總結寫法如下:
1、對於含參函數,奇函數沒有偶次方項,偶函數沒有奇次方項。
2、復合函數奇偶性:內偶則偶,內奇同外。
3、周期函數未必存在最小周期,如:常數函數。c.周期函數加周期函數未必是周期函數,如:y=sinxy=sin派x相加不是周期函數。
4、轉換法:當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。
5、當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大於0的所有實數;如果a為負數,則x肯定不能為0。
Ⅹ 數學初三知識點歸納有哪些
數學初三知識點如下:
1、含有兩個未知數,並且未知項的最高次數是1的整式方程叫做二元一次方程。2、同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
3、使二元一次方程組的兩個方程左右兩邊的值都相等的兩個未知數的值,叫做二元一次方程組的解。
4、若已知函數圖像與x軸的兩個交點坐標,可設為交點式。
5、一元二次方程解法的選擇順序是:先特殊後一般,如沒有要求,一般不用配方法。