㈠ 求一些數學小知識
數學符號的起源
數學除了記數以外,還需要一套數學符號來表示數和數、數和形的相互關系。數學符號的發明和使用比數字晚,但是數量多得多。現在常用的有200多個,初中數學書里就不下20多種。它們都有一段有趣的經歷。
例如加號曾經有好幾種,現在通用"+"號。
"+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文"più"(加的意思)的第一個字母表示加,草為"μ"最後都變成了"+"號。
"-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。
到了十五世紀,德國數學家魏德美正式確定:"+"用作加號,"-"用作減號。
乘號曾經用過十幾種,現在通用兩種。一個是"×",最早是英國數學家奧屈特1631年提出的;一個是"· ",最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:"×"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘。可是這個符號現在應用到集合論中去了。
到了十八世紀,美國數學家歐德萊確定,把"×"作為乘號。他認為"×"是"+"斜起來寫,是另一種表示增加的符號。
"÷"最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用":"表示除或比,另外有人用"-"(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將"÷"作為除號。
十六世紀法國數學家維葉特用"="表示兩個量的差別。可是英國牛津大學數學、修辭學教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數相等是最合適不過的了,於是等於符號"="就從1540年開始使用起來。
1591年,法國數學家韋達在菱中大量使用這個符號,才逐漸為人們接受。十七世紀德國萊布尼茨廣泛使用了"="號,他還在幾何學中用"∽"表示相似,用"≌"表示全等。
大於號"〉"和小於號"〈",是1631年英國著名代數學家赫銳奧特創用。至於≯""≮"、"≠"這三個符號的出現,是很晚很晚的事了。大括弧"{ }"和中括弧"[ ]"是代數創始人之一魏治德創造的。
數學的起源和早期發展:
數學與其他科學分支一樣,是在一定的社會條件下,通過人類的社會實踐和生產活動發展起來的一種智力積累.其主要內容反映了現實世界的數量關系和空間形式,以及它們之間的關系和結構.這可以從數學的起源得到印證.
古代非洲的尼羅河、西亞的底格里斯河和幼發拉底河、中南亞的印度河和恆河以及東亞的黃河和長江,是數學的發源地.這些地區的先民由於從事農業生產的需要,從控制洪水和灌溉,測量田地的面積、計算倉庫的容積、推算適合農業生產的歷法以及相關的財富計算、產品交換等等長期實踐活動中積累了豐富的經驗,並逐漸形成了相應的技術知識和有關的數學知識.
㈡ 有關數學的小知識
正常情況下,三角形內角和180°
正常情況下,水的密度是1000kg每m³
正常情況下,+代表相加
正常情況下,有東、南、西、北、東北、西北、東南和西南八個方向
正常情況下,1年有12個月,平年一年365天,閏年一年366天。
正常情況下,1元=10角;1角=10分;1元=100分
正常情況下,1平方千米=100公頃;1公頃=10000平方米
正常情況下,長方形的周長=(長+寬)×2
正常情況下,到2000年第五次全國人口普查為止,我國總人口達到1295330000人。
正常情況下,我國第一大島台灣島的面積約35760平方千米
正常情況下,一隻長頸鹿高5米把長頸鹿放進冰箱要分三步
有用不?
㈢ 有趣的數學科普小知識有哪些
有趣的數學科普小知識如下:
一、阿拉伯數字
阿拉伯數字是古代印度人發明的,後來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發明的,就把它們叫做「阿拉伯數字」。因為流傳了許多年,人們叫得順口,所以至今人們仍然將錯就錯,把這些古代印度人發明的數字元號叫做阿拉伯數字。
二、九九歌
九九歌就是我們現在使用的乘法口訣。遠在公元前的春秋戰國時代,九九歌就已經被人們廣泛使用。在當時的許多著作中,都有關於九九歌的記載。最初的九九歌是從「九九八十一」起到「二二如四」止,共36句。因為是從「九九八十一」開始,所以取名九九歌。
大約在公元五至十世紀間,九九歌才擴充到「一一如一」。大約在公元十三、十四世紀,九九歌的順序才變成和現在所用的一樣,從「一一如一」起到「九九八十一」止。現在我國使用的乘法口訣有兩種,一種是45句的,通常稱為「小九九」;還有一種是81句的,通常稱為「大九九」。
三、莫比烏斯環
莫比烏斯環是一種拓撲學結構,它只有一個面和一個邊界。可以用一根紙條扭轉成180度後,兩頭再粘接起來,就形成了莫比烏斯環。
莫比烏斯環沿著中線剪開,第一次,可以得到一個更大的環;第二次及以後,每次都會得到兩個互相嵌套的環。中間永遠不會斷開,這也是莫比烏斯環的神奇之處。
四、克萊因瓶
在1882年,著名數學家菲利克斯·克萊因發現了後來以他的名字命名的著名「瓶子」:克萊因瓶。克萊因瓶就像是一個瓶子,但是它沒有瓶底,它的瓶頸被拉長,然後似乎是穿過了瓶壁,最後瓶頸和瓶底圈連在了一起。有趣的是,如果把克萊因瓶沿著它的對稱線切下去,竟會得到兩個莫比烏斯環。
五、黃金分割
黃金分割提出者是畢達哥拉斯。
有一次,畢達哥拉斯路過鐵匠作坊,被叮叮當當的打鐵聲迷住了。為了揭開這些聲音的秘密,他測量了鐵錘和鐵砧的尺寸,發現它們存在著十分和諧的比例關系。回家後,他取出一根線,分為兩段,反復比較,最後認定1:0.618的比例最為優美。這個比例被公認為是最能引起美感的比例,因此被稱為黃金分割。
㈣ 關於數學的小知識
1,零
在很早的時候,以為「1」是「數字字元表」的開始,並且它進一步引出了2,3,4,5等其他數字。這些數字的作用是,對那些真實存在的物體,如蘋果、香蕉、梨等進行計數。直到後來,才學會,當盒子里邊已經沒有蘋果時,如何計數里邊的蘋果數。
2,數字系統
數字系統是一種處理「多少」的方法。不同的文化在不同的時代採用了各種不同的方法,從基本的「1,2,3,很多」延伸到今天所使用的高度復雜的十進製表示方法。
3,π
π是數學中最著名的數。忘記自然界中的所有其他常數也不會忘記它,π總是出現在名單中的第一個位置。如果數字也有奧斯卡獎,那麼π肯定每年都會得獎。
π或者pi,是圓周的周長和它的直徑的比值。它的值,即這兩個長度之間的比值,不取決於圓周的大小。無論圓周是大是小,π的值都是恆定不變的。π產生於圓周,但是在數學中它卻無處不在,甚至涉及那些和圓周毫不相關的地方。
4,代數
代數給了一種嶄新的解決間題的方式,一種「迴旋」的演年方法。這種「迴旋」是「反向思維」的。讓我們考慮一下這個問題,當給數字25加上17時,結果將是42。這是正向思維。這些數,需要做的只是把它們加起來。
但是,假如已經知道了答案42,並提出一個不同的問題,即現在想要知道的是什麼數和25相加得42。這里便需要用到反向思維。想要知道未知數x的值,它滿足等式25+x=42,然後,只需將42減去25便可知道答案。
5,函數
萊昂哈德·歐拉是瑞士數學家和物理學家。歐拉是第一個使用「函數」一詞來描述包含各種參數的表達式的人,例如:y = F(x),他是把微積分應用於物理學的先驅者之一。
㈤ 數學小知識簡短有哪些
數學小知識簡短:
1、目前為止世界上最大的數是多少?
從數學意義來講並不存在最大的數,但目前為止宇宙中任何一個數都為超過古戈爾(gogul),它相當於10的100次方。但正式數學證明中使用過的最大數是葛立恆數,其最後12位數是262464195387。
2、「千禧年數學難題」每一個懸賞100萬美元
美國克雷數學研究所於2000年5月24日在巴黎宣布,經一眾數學家聯合評選,對七個「千禧年數學難題」的每一個懸賞一百萬美元。「千年大獎問題」公布以來,在世界數學界產生了強烈反響,研究和破解「千年大獎問題」已成為世界數學界的熱點。
3、哪四位數學家被譽為數學界的「莎士比亞」?
這四大數學家分別是歐拉、阿基米德、牛頓、高斯。
4、「哥倫布雞蛋」0到底由中國人還是印度人發明存在爭議
最早在古代巴比倫楔形文字就有零的記錄,只是他們還沒有把零看作一個數;印度人對零的最大貢獻是承認它是一個數,而不僅僅是空位或一無所有;婆羅摩笈多對零的運算有較完整的敘述:「負數減去零是負數,正數減去零是正數,零減去零什麼也沒有;零乘負數、正數或零都是零。……零除以零是空無一物,正數或負數除以零是一個以零為分母的分數」。
我們起初用空格來表示零,後來以○表示零,但數字0到底是由中國人發明還是是經由印度傳入中國現在依然有爭議。
5、加減乘除四則運算符號歸宿不同的數學家發明
加減乘除+、-、×(•)、÷等數學四則運算符號是我們每一個人最熟悉的符號,直到17世紀中葉這些符號才全部被廣泛接受。1544年,德國數學家施蒂費爾在《整數算術》中正式用「+」和「-」表示加減,這兩個符號逐漸被公認為真正的算術符號。
則英國數學家奧特雷德在1631年出版的《數學之鑰》正式創立了「×」號,只是後來萊布尼茲認為「×」容易與「X」容易混淆,就建議用「•」表示乘號;最後除法符號「÷」是英國的瓦里斯最初使用的,並最先在英國得到廣泛推廣。
㈥ 數學小知識
數學小知識
--------------------------------------------------------------------------------
數學符號的起源
數學除了記數以外,還需要一套數學符號來表示數和數、數和形的相互關系。數學符號的發明和使用比數字晚,但是數量多得多。現在常用的有200多個,初中數學書里就不下20多種。它們都有一段有趣的經歷。
例如加號曾經有好幾種,現在通用"+"號。
"+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文"più"(加的意思)的第一個字母表示加,草為"μ"最後都變成了"+"號。
"-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。
到了十五世紀,德國數學家魏德美正式確定:"+"用作加號,"-"用作減號。
乘號曾經用過十幾種,現在通用兩種。一個是"×",最早是英國數學家奧屈特1631年提出的;一個是"· ",最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:"×"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘。可是這個符號現在應用到集合論中去了。
到了十八世紀,美國數學家歐德萊確定,把"×"作為乘號。他認為"×"是"+"斜起來寫,是另一種表示增加的符號。
"÷"最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用":"表示除或比,另外有人用"-"(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將"÷"作為除號。
十六世紀法國數學家維葉特用"="表示兩個量的差別。可是英國牛津大學數學、修辭學教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數相等是最合適不過的了,於是等於符號"="就從1540年開始使用起來。
1591年,法國數學家韋達在菱中大量使用這個符號,才逐漸為人們接受。十七世紀德國萊布尼茨廣泛使用了"="號,他還在幾何學中用"∽"表示相似,用"≌"表示全等。
大於號"〉"和小於號"〈",是1631年英國著名代數學家赫銳奧特創用。至於≯""≮"、"≠"這三個符號的出現,是很晚很晚的事了。大括弧"{ }"和中括弧"[ ]"是代數創始人之一魏治德創造的。
㈦ 數學小知識或小故事 50字左右100字以內
π的歷史
圓的周長與直徑之比是一個常數,人們稱之為圓周率。通常用希臘字母「π」來表示。1706年,英國人瓊斯首次創用π代表圓周率。他的符號並未立刻被採用,以後,歐拉予以提倡,才漸漸推廣開來。現在π已成為圓周率的專用符號,π的研究,在一定程度上反映這個地區或時代的數學水平,它的歷史是饒有趣味的。
在古代,實際上長期使用 π=3這個數值,巴比倫、印度、中國都是如此。到公元前2世紀,中國的《周髀算經》里已有周三徑一的記載。東漢的數學家又將值改為根號10(約為3.16)。真正使圓周率計算建立在科學的基礎上,首先應歸功於阿基米德。他專門寫了一篇論文《圓的度量》,用幾何方法證明了圓周率與圓直徑之比小於三又七分之一而大於三又七十一分之十。這是第一次在科學中創用上、下界來確定近似值。第一次用正確方法計算π值的,是魏晉時期的劉徽,在公元263年,他創用了用圓的內接正多邊形的面積來逼近圓面積的方法,算得π值為3.14。我國稱這種方法為「割圓術」。直到1200年後,西方人才找到了類似的方法。後人為紀念劉徽的貢獻,將3.14稱為徽率。
公元460年,南朝的祖沖之利用劉徽的割圓術,把π值算到小點後第七位3.1415926,這個具有七位小數的圓周率在當時是世界首次。祖沖之還找到了兩個分數:22/7和113/355,用分數來代替π,極大地簡化了計算,這種思想比西方也早一千多年。
祖沖之的圓周率,保持了一千多年的世界記錄。終於在1596年,由荷蘭數學家盧道夫打破了。他把π值推到小數點後第15位小數,最後推到第35位。為了紀念他這項成就,人們在他1610年去世後的墓碑上,刻上:3.這個數,從此也把它稱為「盧道夫數」。
之後,西方數學家計算 的工作,有了飛速的進展。1948年1月,費格森與雷思奇合作,算出808位小數的π值。計算機問世後,π的人工計算宣告結束。20世紀50年代,人們藉助計算機算得了10萬位小數的π值,70年代又突破這個記錄,算到了150萬位。到90年代初,用新的計算方法,算到的值已到了4.8億位。π的計算經歷了幾千年的歷史,它的每一次重大進步,都標志著技術和演算法的革新。
圓周率π的計算歷程
圓周率是一個極其馳名的數。從有文字記載的歷史開始,這個數就引進了外行人和學者們的興趣。作為一個非常重要的常數,圓周率最早是出於解決有關圓的計算問題。僅憑這一點,求出它的盡量准確的近似值,就是一個極其迫切的問題了。事實也是如此,幾千年來作為數學家們的奮斗目標,古今中外一代一代的數學家為此獻出了自己的智慧和勞動。回顧歷史,人類對 π 的認識過程,反映了數學和計算技術發展情形的一個側面。 π 的研究,在一定程度上反映這個地區或時代的數學水平。德國數學史家康托說:"歷史上一個國家所算得的圓周率的准確程度,可以作為衡量這個國家當時數學發展水平的指標。"直到19世紀初,求圓周率的值應該說是數學中的頭號難題。為求得圓周率的值,人類走過了漫長而曲折的道路,它的歷史是饒有趣味的。我們可以將這一計算歷程分為幾個階段。
㈧ 數學小常識
哥德巴赫猜想
大約在250年前,德國數字家哥德巴赫發現了這樣一個現象:任何大於5的整數都可以表示為3個質數的和。他驗證了許多數字,這個結論都是正確的。但他卻找不到任何辦法從理論上徹底證明它,於是他在1742年6月7日寫信和當時在柏林科學院工作的著名數學家歐拉請教。歐拉認真地思考了這個問題。他首先逐個核對了一張長長的數字表:
6=2+2+2=3+3
8=2+3+3=3+5
9=3+3+3=2+7
10=2+3+5=5+5
11=5+3+3
12=5+5+2=5+7
99=89+7+3
100=11+17+71=97+3
101=97+2+2
102=97+2+3=97+5
……
這張表可以無限延長,而每一次延長都使歐拉對肯定哥德巴赫的猜想增加了信心。而且他發現證明這個問題實際上應該分成兩部分。即證明所有大於2的偶數總能寫成2個質數之和,所有大於7的奇數總能寫成3個質數之和。當他最終堅信這一結論是真理的時候,就在6月30日復信給哥德巴赫。信中說:"任何大於2的偶數都是兩個質數的和,雖然我還不能證明它,但我確信無疑這是完全正確的定理"由於歐拉是頗負盛名的數學家、科學家,所以他的信心吸引和鼓舞無數科學家試圖證明它,但直到19世紀末也沒有取得任何進展。這一看似簡單實則困難無比的數論問題長期困擾著數學界。誰能證明它誰就登上了數學王國中一座高聳奇異的山峰。因此有人把它比作"數學皇冠上的一顆明珠"。
實際上早已有人對大量的數字進行了驗證,對偶數的驗證已達到1.3億個以上,還沒有發現任何反例。那麼為什麼還不能對這個問題下結論呢?這是因為自然數有無限多個,不論驗證了多少個數,也不能說下一個數必然如此。數學的嚴密和精確對任何一個定理都要給出科學的證明。所以"哥德巴赫猜想"幾百年來一直未能變成定理,這也正是它以"猜想"身份聞名天下的原因。
要證明這個問題有幾種不同辦法,其中之一是證明某數為兩數之和,其中第一個數的質因數不超過a 個,第二數的質因數不超過b個。這個命題稱為(a+b)。最終要達到的目標是證明(a+b)為(1+1)。
1920年,挪威數學家布朗教授用古老的篩選法證明了任何一個大於2的偶數都能表示為9個質數的乘積與另外9個質數乘積的和,即證明了(a+b)為(9+9)。 1924年,德國數學家證明了(7+7); 1932年,英國數學家證明了(6+6);
1937年,蘇聯數學家維諾格拉多夫證明了充分大的奇數可以表示為3個奇質數之和,這使歐拉設想中的奇數部分有了結論,剩下的只有偶數部分的命題了。
1938年,我國數學家華羅庚證明了幾乎所有偶數都可以表示為一個質數和另一個質數的方冪之和。
1938年到1956年,蘇聯數學家又相繼證明了(5+5),(4+4),(3+3)。
1957年,我國數學家王元證明了(2+3);
1962年,我國數學家潘承洞與蘇聯數學家巴爾巴恩各自獨立證明了(1+5);
1963年,潘承洞、王元和巴爾巴恩又都證明了(1+4)。 1965年,幾位數學家同時證明了(1+3)。
1966年,我國青年數學家陳景潤在對篩選法進行了重要改進之後,終於證明了(1+2)。他的證明震驚中外,被譽為"推動了群山,"並被命名為"陳氏定理"。他證明了如下的結論:任何一個充分大的偶數,都可以表示成兩個數之和,其中一個數是質數,別一個數或者是質數,或者是兩個質數的乘積。
㈨ 小學數學知識大全
良好的學習習慣能使孩子收益終身,尤其是小學階段,小學階段是孩子從一個天真頑劣的小孩到一個真正接受知識的小學生,從各個方面進行要求規范的時期。在這個時期良好的學習方法是孩子成績優異的關鍵,很多家長不知道如何給孩子補習小學數學,那今天就帶大家一起了解補習小學數學的五大技巧。
現在的時代是一個多元化的教育時代,孩子們的大腦不僅僅是課上的40分鍾,而是要勇於積極的探索,在給孩子補習小學數學的時候著眼於以上幾點,加上對課本知識的結合,孩子的成績定會有所提高,於此同時孩子更多的學習到的是掌握知識的方法。