當前位置:首頁 » 基礎知識 » 集合數學子集基礎知識

集合數學子集基礎知識

發布時間: 2022-07-09 20:04:46

1. 高一集合數學知識點有哪些

如下:

1、集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

2、集合中的元素具有確定性、互異性和無序性。

3、集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件。

4、集合,在數學上是一個基礎概念。基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下「定義」。

5、集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

性質

對任意集合 A,空集是 A 的子集:∀A:Ø ⊆ A。

對任意集合 A,空集和 A 的並集為 A:∀A:A ∪ Ø = A。

對任意非空集合 A,空集是 A的真子集:∀A,若A≠Ø,則Ø 真包含於 A。

對任意集合 A,空集和 A 的交集為空集:∀A,A ∩ Ø = Ø。

對任意集合 A,空集和 A 的笛卡爾積為空集:∀A,A × Ø = Ø。

空集的唯一子集是空集本身:∀A,若 A ⊆ Ø ⊆ A,則 A= Ø;∀A,若A= Ø,則A ⊆ Ø ⊆ A。

2. 高中數學第一章 集合知識詳細內容

集合
集合具有某種特定性質的事物的總體。 這里的「事物」可以是人,物品,也可以是數學元素。例如: 1、分散的人或事物聚集到一起;使聚集:緊急~。 2、數學名詞。一組具有某種共同性質的數學元素:有理數的~。 3、口號等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論。康托(Cantor, G.F.P.,1845年—1918年,德國數學家先驅,是集合論的創始者,目前集合論的基本思想已經滲透到現代數學的所有領域。
集合,在數學上是一個基礎概念。什麼叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下「定義」。 集合
集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。
元素與集合的關系
元素與集合的關系有「屬於」與「不屬於」兩種。
集合與集合之間的關系
某些指定的對象集在一起就成為一個集合集合符號
,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。 『說明一下:如果集合 A 的所有元素同時都是集合 B 的元素,則 A 稱作是 B 的子集,寫作 A ? B。若 A 是 B 的子集,且 A 不等於 B,則 A 稱作是 B 的真子集,一般寫作 A ? B。 中學教材課本里將 ? 符號下加了一個 ≠ 符號(如右圖), 不要混淆,考試時還是要以課本為准。 所有男人的集合是所有人的集合的真子集。』
集合的幾種運演算法則
並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作「A並B」(或「B並A」),即A∪B={x|x∈A,或x∈B} 交集: 以屬於A且屬於B的元 差集表示
素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作「A交B」(或「B交A」),即A∩B={x|x∈A,且x∈B} 例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5} 。那麼因為A和B中都有1,5,所以A∩B={1,5} 。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那麼說A∪B={1,2,3,5}。 圖中的陰影部分就是A∩B。 有趣的是;例如在1到105中不是3,5,7的整倍數的數有多少個。結果是3,5,7每項減 集合
1再相乘。48個。 對稱差集: 設A,B 為集合,A與B的對稱差集AÅB定義為: AÅB=(A-B)∪(B-A) 例如:A={a,b,c},B={b,d},則AÅB={a,c,d} 對稱差運算的另一種定義是: AÅB=(A∪B)-(A∩B) 無限集: 定義:集合里含有無限個元素的集合叫做無限集 有限集:令N*是正整數的全體,且N_n={1,2,3,……,n},如果存在一個正整數n,使得集合A與N_n一一對應,那麼A叫做有限集合。 差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)。記作:A\B={x│x∈A,x不屬於B}。 注:空集包含於任何集合,但不能說「空集屬於任何集合」.補集:是從差集中引出的概念,指屬於全集U不屬於集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬於A} 空集也被認為是有限集合。 例如,全集U={1,2,3,4,5} 而A={1,2,5} 那麼全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。 在信息技術當中,常常把CuA寫成~A。
集合元素的性質
1.確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如「個子高的同學」「很小的數」都不能構成集合。這個性質主要用於判斷一個集合是否能形成集合。 2.獨立性:集合中的元素的個數、集合本身的個數必須為自然數。 3.互異性:集合中任意兩個元素都是不同的對象。如寫成{1,1,2},等同於{1,2}。互異性使集合中的元素是沒有重復,兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。 4.無序性:{a,b,c}{c,b,a}是同一個集合。 5.純粹性:所謂集合的純粹性,用個例子來表示。集合A={x|x<2},集合A 中所有的元素都要符合x<2,這就是集合純粹性。 6.完備性:仍用上面的例子,所有符合x<2的數都在集合A中,這就是集合完備性。完備性與純粹性是遙相呼應的。
集合有以下性質
若A包含於B,則A∩B=A,A∪B=B
集合的表示方法
集合常用大寫拉丁字母來表示,如:A,B,C…而對於集合中的元素則用小寫的拉丁字母來表示,如:a,b,c…拉丁字母只是相當於集合的名字,沒有任何實際的意義。 將拉丁字母賦給集合的方法是用一個等式來表示的,例如:A={…}的形式。等號左邊是大寫的拉丁字母,右邊花括弧括起來的,括弧內部是具有某種共同性質的數學元素。
常用的有列舉法和描述法。 1.列舉法﹕常用於表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括弧內﹐這種表示集合的方法叫做列舉法。{1,2,3,……} 2.描述法﹕常用於表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括弧內﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小於π的正實數組成的集合表示為:{x|0<x<π} 3.圖示法(Venn圖)﹕為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內部表示一個集合。 集合
4.自然語言 常用數集的符號: (1)全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N;不包括0的自然數集合,記作N* (2)非負整數集內排除0的集,也稱正整數集,記作Z+;負整數集內也排除0的集,稱負整數集,記作Z- (3)全體整數的集合通常稱作整數集,記作Z (4)全體有理數的集合通常簡稱有理數集,記作Q。Q={p/q|p∈Z,q∈N,且p,q互質}(正負有理數集合分別記作Q+Q-) (5)全體實數的集合通常簡稱實數集,記作R(正實數集合記作R+;負實數記作R-) (6)復數集合計作C 集合的運算: 集合交換律 A∩B=B∩A A∪B=B∪A 集合結合律 (A∩B)∩C=A∩(B∩C) (A∪B)∪C=A∪(B∪C) 集合分配律 A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C) 集合德.摩根律 集合
Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB 集合「容斥原理」 在研究集合時,會遇到有關集合中的元素個數問題,我們把有限集合A的元素個數記為card(A)。例如A={a,b,c},則card(A)=3 card(A∪B)=card(A)+card(B)-card(A∩B) card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C) 1885年德國數學家,集合論創始人康托爾談到集合一詞,列舉法和描述法是表示集合的常用方式。 集合吸收律 A∪(A∩B)=A A∩(A∪B)=A 集合求補律 A∪CuA=U A∩CuA=Φ 設A為集合,把A的全部子集構成的集合叫做A的冪集 德摩根律 A-(BUC)=(A-B)∩(A-C) A-(B∩C)=(A-B)U(A-C) ~(BUC)=~B∩~C ~(B∩C)=~BU~C ~Φ=E ~E=Φ 特殊集合的表示 復數集 C 實數集 R 正實數集 R+ 負實數集 R- 整數集 Z 正整數集 Z+ 負整數集 Z- 有理數集 Q 正有理數集 Q+ 負有理數集 Q- 不含0的有理數集 Q* 自然數集 N 不含0自然數集 N*

3. 一個集合所有子集的個數公式。

若一個集合中有n個元素,則這個集合的子集的個數為 2^n個,真子集的個數為 (2^n)-1 個。

子集是一個數學概念:如果集合A的任意一個元素都是集合B的元素,那麼集合A稱為集合B的子集。符號語言:若∀a∈A,均有a∈B,則A⊆B。

子集的性質:

一、根據子集的定義,我們知道A⊆A。也就是說,任何一個集合是它本身的子集。

二、對於空集∅,我們規定∅⊆A,即空集是任何集合的子集。

說明:若A=∅,則∅⊆A仍成立。

對任意集合S,S的冪集按包含排序是一個有界格,與上述命題相結合,則它是一個布爾代數。

4. 介紹一下高一數學 集合的概念 (知識點)

高一數學必修1各章知識點總結

第一章 集合與函數概念

一、集合有關概念
1. 集合的含義
2. 集合的中元素的三個特性:
(1) 元素的確定性如:世界上最高的山
(2) 元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3) 元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
 注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R

1) 列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{xR| x-3>2} ,{x| x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個元素的集合
(2) 無限集 含有無限個元素的集合
(3) 空集 不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關系
1.「包含」關系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A
2.「相等」關系:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} 「元素相同則兩集合相等」
即:① 任何一個集合是它本身的子集。AA
②真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 AB, BC ,那麼 AC
④ 如果AB 同時 BA 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
 有n個元素的集合,含有2n個子集,2n-1個真子集
三、集合的運算
運算類型 交 集 並 集 補 集
定 義 由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A B(讀作『A交B』),即A B={x|x A,且x B}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A B(讀作『A並B』),即A B ={x|x A,或x B}).
設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

5. 高中數學集合知識點總結

一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
①.元素的確定性; ②.元素的互異性; ③.元素的無序性
說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
4、集合的表示:{ … } 如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員}B={12345}
2.集合的表示方法:列舉法與描述法。
注意啊:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
關於「屬於」的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 a∈A ,相反,a不屬於集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}
二、集合間的基本關系
1.「包含」關系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B或集合B不包含集合A記作A B或B A
2. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
3.「相等」關系(5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-11} 「元素相同」
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
① 任何一個集合是它本身的子集。A?A
②真子集:如果A?B且A? B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 A?B B?C 那麼 A?C
④ 如果A?B 同時 B?A 那麼A=B
三、集合的運算
1、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做AB的並集。記作:A∪B(讀作」A並B」),即A∪B={x|x∈A,或x∈B}.
2.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合叫做AB的交集.
記作A∩B(讀作」A交B」),即A∩B={x|x∈A,且x∈B}.
3、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作: CSA 即 CSA ={x ? x?S且 x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U
4、交集與並集的性質:A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A
A∪φ= A A∪B = B∪A

同學你好,如果問題已解決,記得右上角採納哦~~~您的採納是對我的肯定~謝謝哦

6. 高一數學集合知識點詳解

概要:第一章 集合與函數概念 一、集合有關概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。 2、集合的中元素的三個特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說 ...
第一章 集合與函數概念
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素的確定性; 2.元素的互異性; 3.元素的無序性
說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員}B={12345}
2.集合的表示方法:列舉法與描述法。
注意啊:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
關於「屬於」的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 a∈A ,相反,a不屬於集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}
4、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關系
1.「包含」關系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B或集合B不包含集合A記作A B或B A
2.「相等」關系(5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-11} 「元素相同」
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
① 任何一個集合是它本身的子集。A?A
②真子集:如果A?B且A? B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 A?B B?C 那麼 A?C
④ 如果A?B 同時 B?A 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
三、集合的運算
1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合叫做AB的交集.
記作A∩B(讀作」A交B」),即A∩B={x|x∈A,且x∈B}.
2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做AB的並集。記作:A∪B(讀作」A並B」),即A∪B={x|x∈A,或x∈B}.
3、交集與並集的性質:A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A
A∪φ= A A∪B = B∪A.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作: CSA 即 CSA ={x ? x?S且 x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

7. 集合數學知識點有哪些

集合數學知識點有如下:

一、集合的含義與表示

1、通過實例了解集合的含義,體會元素與集合的「屬於」關系。

2、能選擇然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。

二、集合間的基本關系

1、理解集合之間包含與相等的含義,能識別給定集合的子集。

2、在具體情境中,了解全集與空集的含義。

有限集:含有有限個元素的集合

無限集:含有無限個元素的集合

空集:不含任何元素的集合 例:{x|x2=-5}

概念:

集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素。例如全中國人的集合,它的元素就是每一個中國人。

我們通常用大寫字母如A,B,S,T,...表示集合,而用小寫字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,則稱x屬於S,記為x∈S。若y不是集合S的元素,則稱y不屬於S,記為y∉S。

8. 集合數學知識點是什麼

集合數學知識點是:

1、集合的含義

某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那麼所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。

2、集合的表示

通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬於集合A。

3、集合的三個特性

(1)無序性

指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

(2)互異性

指集合中的元素不能重復,A={2,2}只能表示為{2}

(3)確定性

集合的確定性是指組成集合的元素的性質必須明確,不允許有模稜兩可、含混不清的情況。

4、子集的定義

A包含於B,有兩種可能:A是B的一部分;A與B是同一集合,A=B,A、B兩集合中元素都相同。反之,集合A不包含於集合B。不含任何元素的集合叫做空集,空集是任何集合的子集。

5、子集規律

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。