當前位置:首頁 » 基礎知識 » 五年級數學上冊知識樹手抄報
擴展閱讀
淘寶小知識點總結 2024-11-15 16:25:18

五年級數學上冊知識樹手抄報

發布時間: 2022-07-07 07:45:59

A. 五年級上數學手抄報

參考資料:
•1.失明的數學家歐拉
• 歐拉的驚人成就並不是偶然的。他可以在任何不良的環境中工作,經常抱著孩子在膝上完成論文,也不顧較大的孩子在旁邊喧嘩。歐拉在28歲時,不幸一支眼睛失明,過了30年以後,他的另一隻眼睛也失明了。在他雙目失明以後,也沒有停止過數學研究。他以驚人的毅力和堅韌不拔的精神繼續工作著,在他雙目失明至逝世的十七年間,還口述著作了幾本書和400篇左右的論文。由於歐拉的著作甚多,出版歐拉全集是十分困難的事情,1909年瑞士自然科學會就開始整理出版,直到現在還沒有出完,計劃是72卷。
• 歐拉在他的886種著作中,屬於他生前發表的有530本書和論文,其中不少是教科書。他的著作文筆流暢、淺顯、通俗易懂,讀後引人入勝十分令讀者敬佩。尤其值得一提的是他編寫的平面三角課本,採用的記號如sinx,cosx,……等等直到現今還在用。
• 歐拉1720年秋天入巴塞爾大學,由於異常勤奮和聰慧,受到約翰•伯努利的嘗識,給以特別的指導。歐拉同約翰的兩個兒子尼古拉•伯努力和丹尼爾•伯努利也結成了親密的朋友。
• 歐拉19歲寫了一篇關於船桅的論文,獲得巴黎科學院的獎金,從此開始了創作生涯。以後陸續得獎多次。1725年丹尼爾兄弟赴俄國,向沙皇喀德林一世推薦歐拉,於是歐拉於1727年5月17日到了彼得堡,1733年丹尼爾回巴塞爾,歐拉接替他任彼得堡科學院數學教授,時年僅26歲。
• 1735年,歐拉解決一個天文學的難題(計算慧星軌道)。
• 這個問題幾個著名數學家,幾個月的努力才得以解決,歐拉卻以自已發明的方法,三日而成。但過度的工作使他得了眼病,不幸右眼失明,這時才28歲。
• 2.數學家的故事——蘇步青
• 蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父母省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。
• 那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。
• 楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍藏著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。
• 17歲時,蘇步青赴日留學,並以第一名的成績考取東京高等工業學校,在那裡他如飢似渴地學習著。為國爭光的信念驅使蘇步青較早地進入了數學的研究領域,在完成學業的同時,寫了30多篇論文,在微分幾何方面取得令人矚目的成果,並於1931年獲得理學博士學位。獲得博士之前,蘇步青已在日本帝國大學數學系當講師,正當日本一個大學准備聘他去任待遇優厚的副教授時,蘇步青卻決定回國,回到撫育他成長的祖任教。回到浙大任教授的蘇步青,生活十分艱苦。面對困境,蘇步青的回答是「吃苦算得了什麼,我甘心情願,因為我選擇了一條正確的道路,這是一條愛國的光明之路啊!」
• 這就是老一輩數學家那顆愛國的赤子之心
• 3.數學家的墓誌銘
• 一些數學家生前獻身於數學,死後在他們的墓碑上,刻著代表著他們生平業績的標志。
• 古希臘學者阿基米德死於進攻西西里島的羅馬敵兵之手(死前他還在主:「不要弄壞我的圓」。)後,人們為紀念他便在其墓碑上刻上球內切於圓柱的圖形,以紀念他發現球的體積和表面積均為其外切圓柱體積和表面積的三分之二。 德國數學家高斯在他研究發現了正十七邊形的尺規作法後,便放棄原來立志學文的打算 而獻身於數學,以至在數學上作出許多重大貢獻。甚至他在遺囑中曾建議為他建造正十七邊形的稜柱為底座的墓碑。
• 16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後35位,後人稱之為魯 道夫數,他死後別人便把這個數刻到他的墓碑上。 瑞士數學家雅谷•伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」。這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關語
• 4.祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
• 祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
• 祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.
• 祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理, 但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".
• 5.數學奇才——伽羅華
• 1832年5月30日晨,在巴黎的葛拉塞爾湖附近躺著一個昏迷的年輕人,過路的農民從槍傷判斷他是決斗後受了重傷,就把這個不知名的青年抬到醫院。第二天早晨十點鍾,他就離開了人世。數學史上最年輕、最有創造性的頭腦停止了思考。人們說,他的死使數學發展推遲了好幾十年。這個青年就是死時不滿21歲的伽羅華。
• 伽羅華生於離巴黎不遠的一個小城鎮,父親是學校校長,還當過多年市長。家庭的影響使伽羅華一向勇往直前,無所畏懼。1823年,12歲的伽羅華離開雙親到巴黎求學,他不滿足呆板的課堂灌輸,自己去找最難的數學原著研究,一些老師也給他很大幫助。老師們對他的評價是「只宜在數學的尖端領域里工作」。
• 1828年,17歲的伽羅華開始研究方程論,創造了「置換群」的概念和方法,解決了幾百年來使人頭痛的方程來解決問題。伽羅華最重要的成就,是提出了「群」的概念,用群論改變了整個數學的面貌。1829年5月,伽羅華把他的成果寫成論文,遞交法國科學院,但伴隨著這篇傑作而來的是一連串的打擊和不幸。先是父親因不堪忍受教士誹謗而自殺,接著因他的答辯既簡捷又深奧令考官們不滿而未能進入著名的巴黎綜合技術學校。至於他的論文,先是被認為新概念太多又過於簡略而要求重寫;第二份推導詳盡的稿子又因審稿人病逝而下落不明;1831年1月提交的第三份論文又因評閱人不能全部看懂而被否定。
• 稱量皇冠的難題
• 6.王冠的重量
• 在一般人看來,阿基米德是個「怪人」。用羅馬歷史學家普魯塔克的話說:「他象是一個中了邪術的人,對於飯食和自己的身體全不關心。」有時候,飯擺在桌子上叫他吃飯,他好象沒聽見,仍舊在火盆的灰里畫他的幾何圖形。他的妻子,要時時看守他。譬如他用油擦身的時候,便呆坐著用油在自己身上畫圖案,而忘記原來是作什麼事的了。他的妻子更怕送他到浴堂里去洗澡,這個笑話是因為國王的一個新冠冕而引起的。
• 國王在前不久,叫一個工匠替他打造一頂金皇冠。國王給了工匠他所需要的數量的黃金。工匠的手藝非常高明,製做的皇冠精巧別致,而且重量跟當初國王所給的黃金一樣重。可是,有人向國王報告說:「工匠製造皇冠時,私下吞沒了一部分黃金,把同樣重的銀子摻了進去。」國王聽後,也懷疑起來,就把阿基米德找來,要他想法測定,金皇冠里摻沒摻銀子,工匠是否私吞黃金了。這次,可把阿基米德難住了。他回到家裡苦思苦想了好久,也沒有想出辦法,每天飯吃不下,覺睡不好,也不洗澡,象著了魔一樣。
• 有一天,國王派人來催他進宮匯報。他妻子看他太臟了,就逼他去洗澡。他在澡堂洗澡的時候,腦子里還想著稱量皇冠的難題。突然,他注意到,當他的身體在浴盆里沉下去的時候,就有一部分水從浴盆邊溢出來。同時,他覺得入水愈深,則他的體量愈輕。於是,他立刻跳出浴盆,忘了穿衣服,就跑到人群的街上去了。一邊跑,一邊叫:「我想出來了,我想出來了,解決皇冠的辦法找到啦!」
• 他進皇宮後,對國王說:「請允許我先做一個實驗,才能把結果報告給你。」國王同意了。阿基米德將與皇冠一樣重的金子、一塊銀子和皇冠,分別一一放在水盆里,看金塊排出的水量比銀塊排出的水量少,而皇冠排出的水量比金塊排出的水量多。
• 阿基米德對國王說:「皇冠摻了銀子!」國王看了實驗,沒有弄明白,讓阿基米德給解釋一下。阿基米德說:「一公斤的木頭和一公斤的鐵比較,木頭的體積大。如果分別把它們放入水中,體積大的木頭排出的水量,比體積小的鐵排出的水量多。我把這個道理用在金子、銀子和皇冠上。因為金子的密度大,而銀子的密度小,因此同樣重的金子和銀子,必然是銀子的體積大於金子的體積。所 以同樣重的金塊和銀塊放入水中,那麼金塊排出的水量就比銀塊的水量少。剛才的實驗表明,皇冠排出的水量比金塊多,說明皇冠的密度比金塊的密度小,這就證明皇冠不是用純金製造的。」阿基米德有條理的講述,使國王信服了。實驗結果證明,那個工匠私吞了黃金。
• 很多滴瀝~ ~ ~ ~我找了六個,希望你認真看看~ ~ ~ 1。從一加到一百
• 高斯有許多有趣的故事,故事的第一手資料常來自高斯本人,因為他在晚年時總喜歡談他小時後的事,我們也許會懷疑故事的真實性,但許多人都證實了他所談的故事。
• 高斯的父親作泥瓦廠的工頭,每星期六他總是要發薪水給工人。在高斯三歲夏天時,有一次當他正要發薪水的時候,小高斯站了起來說:「爸爸,你弄錯了。」然後他說了另外一個數目。原來三歲的小高斯趴在地板上,一直暗地裡跟著他爸爸計算該給誰多少工錢。重算的結果證明小高斯是對的,這把站在那裡的大人都嚇的目瞪口呆。
• 高斯常常帶笑說,他在學講話之前就已經學會計算了,還常說他問了大人字母如何發音後,就自己學著讀起書來。
• 七歲時高斯進了 St. Catherine小學。大約在十歲時,老師在算數課上出了一道難題:「把 1到 100的整數寫下來,然後把它們加起來!」每當有考試時他們有如下的習慣:第一個做完的就把石板〔當時通行,寫字用〕面朝下地放在老師的桌子上,第二個做完的就把石板擺在第一張石板上,就這樣一個一個落起來。這個難題當然難不倒學過算數級數的人,但這些孩子才剛開始學算數呢!老師心想他可以休息一下了。但他錯了,因為還不到幾秒鍾,高斯已經把石板放在講桌上了,同時說道:「答案在這兒!」其他的學生把數字一個個加起來,額頭都出了汗水,但高斯卻靜靜坐著,對老師投來的,輕蔑的、懷疑的眼光毫不在意。考完後,老師一張張地檢查著石板。大部分都做錯了,學生就吃了一頓鞭打。最後,高斯的石板被翻了過來,只見上面只有一個數字:5050(用不著說,這是正確的答案。)老師吃了一驚,高斯就解釋他如何找到答案:1+100=101,2+99=101,3+98= 101,……,49+52=101,50+51=101,一共有50對和為 101的數目,所以答案是 50×101=5050。由此可見高斯找到了算術級數的對稱性,然後就像求得一般算術級數合的過程一樣,把數目一對對地湊在一起。
• 2。波蘭偉大的數學家伯格曼(Stefan Bergman,1898-1977年)離開波蘭後,先後在美國布朗大學、哈佛大學和斯坦福大學工作。他不大講課,生活支出主要靠各種課題費維持。由於很少講課,他的外語得不到鍛煉,無論口語還是書面語都很晦澀。但伯格曼本人從不這樣認為。他說:「我會講12種語言,英語最棒。」事實上他有點口吃,無論講什麼話別人都很難聽懂。有一次他與波蘭的另一位分析大師用母語談話,不一會對方提醒他:「還是說英語吧,也許更好些。」
• 1950年國際數學大會期間,義大利一位數學家西切拉(Sichera)偶然提起伯格曼的一篇論文可能要加上「可微性假設」,伯格曼非常有把握地說:「不,沒必要,你沒看懂我的論文。」說著拉著對方在黑板上比劃起來,同事們耐心地等著。過了一會西切拉覺得還是需要可微性假設。伯格曼反而更加堅定起來,一定要認真解釋一下。同事們插話:「好了,別去想它,我們要進午餐了。」伯格曼大聲嚷了起來:「不可微—不吃飯。」(No differentiability, no lunch)最終西切拉留下來聽他一步一步論證完。
• 有證據表明伯格曼總在考慮數學問題。有一次清晨兩點鍾,他撥通了一個學生家裡的電話號碼:「你在圖書館嗎?我想請你幫我查點東西!」
• 還有一次伯格曼去西海岸參加一個學術會議,他的一個研究生正好要到那裡旅行結婚,他們恰好乘同一輛長途汽車。這位學生知道他的毛病,事先商量好,在車上不談數學問題。伯格曼滿口答應。伯格曼坐在最後一排,這對要去度蜜月的年輕夫婦恰巧坐在他前一排靠窗的位置。10分鍾過後,伯格曼腦子里突然有了靈感,不自覺地湊上前去,斜靠著學生的座位,開始討論起數學。再過一會,那位新娘不得不挪到後排座位,伯格曼則緊挨著他的學生坐下來。一路上他們興高采烈地談論著數學。幸好,這對夫婦婚姻美滿,有一個兒子,還成了著名數學家。
• 3。哥德爾(Kurt Godel,1906-1978年)的舉止以「新穎」和「古怪」著稱,愛因斯坦是他要好的朋友,他們當時都在普林斯頓。他們經常在一起吃飯,聊著非數學話題,常常是政治方面的。麥克阿瑟將軍從朝鮮戰場回來後,在麥迪遜大街舉行隆重的慶祝遊行。第二天哥德爾吃飯時煞有介事地對愛因斯坦說,《紐約時報》封面上的人物不是麥克阿瑟,而是一個騙子。證據是什麼呢?哥德爾拿出麥克阿瑟以前的一張照片,又拿了一把尺子。他比較了兩張照片中鼻子長度在臉上所佔的比例。結果的確不同:證畢。
• 哥德爾一生花了很大精力想搞清楚連續統假設(CH)是否獨立於選擇公理(AC)。在60年代早期,一個初出茅廬的年輕數學家柯恩(Paul J.Cohen),與斯坦福大學的同事們聊天時揚言:他也許可以通過解決某個希爾伯特(Hilbert)問題或者證明CH獨立於AC而一舉成名。實話說,柯恩當時只是傅里葉分析方面的行家,對於邏輯和遞歸函數,他只擺弄過不長時間。柯恩果然去專攻邏輯了,大約用了一年的時間,真的證明了CH與AC獨立。這項成果被認為是20世紀最偉大的智力成就之一,他因此獲得菲爾茲獎(Fieids Medal,比自然科學界的諾貝爾獎還難獲得)。柯恩的技術是「力迫」(forcing)法,現已成為現代邏輯的一種重要工具。
• 當初的情形是:柯恩拿著證明手稿去高等研究院找哥德爾,請他核查證明是否有漏洞。
• 哥德爾起初自然很懷疑,因為柯恩早已不是第一個向他聲明解決了這一難題的人了。在哥德爾眼裡,柯恩根本就不是邏輯學家。柯恩找到哥德爾家,敲了門。門只開了6英寸的一道縫,一支冷冰冰的手伸出來接過手稿,隨後門「砰」地關上了。柯恩很尷尬,悻悻而去。不過,兩大後,哥德爾特別邀請柯恩來家裡喝茶。柯恩的證明是對的:大師已經認可了。
• 4。維納(1894-1964年)是最早為美洲數學贏得國際榮譽的大數學家,關於他的軼事多極了。維納早期在英國,有一次遇見英國著名數學家李特爾伍德(Littlewood)時說:「噢,還真有你這么個人。我原以為Littlewood只是哈代(Hardy)為寫得比較差的文章署的筆名呢。」維納本人對這個笑話很懊惱,在自傳中極力否認此事。此故事的另一種版本說的是朗道(Edmund Laudau):朗道很懷疑李特爾伍德的存在性,為此專程去英國親自看了這個人。
• 維納後來赴美國麻省理工學院任職,長達25年。他是校園中大名鼎鼎的人物,人人都想與他套點近乎。有一次一個學生問維納怎樣求解一個具體問題,維納思考片刻就寫出了答案。實際上這位學生並不想知道答案,只是問他「方法」。維納說:「可是,就沒有別的方法了嗎?」思考片刻,他微笑著隨即寫出了另一種解法。維納最有名的故事是有關搬家的事。一次維納喬遷,妻子熟悉維納的方方面面,搬家前一天晚上再三提醒他。她還找了一張便條,上面寫著新居的地址,並用新居的房門鑰匙換下舊房的鑰匙。第二天維納帶著紙條和鑰匙上班去了。白天恰有一人問他一個數學問題,維納把答案寫在那張紙條的背面遞給人家。晚上維納習慣性地回到舊居。他很吃驚,家裡沒人。從窗子望進去,傢具也不見了。掏出鑰匙開門,發現根本對不上齒。於是使勁拍了幾下門,隨後在院子里踱步。突然發現街上跑來一小女孩。維納對她講:「小姑娘,我真不走運。我找不到家了,我的鑰匙插不進去。」小女孩說道:「爸爸,沒錯。媽媽讓我來找你。」
• 有一次維納的一個學生看見維納正在郵局寄東西,很想自我介紹一番。在麻省理工學院真正能與維納直接說上幾句話、握握手,還是十分難得的。但這位學生不知道怎樣接近他為好。這時,只見維納來來回回踱著步,陷於沉思之中。這位學生更擔心了,生怕打斷了先生的思維,而損失了某個深刻的數學思想。但最終還是鼓足勇氣,靠近這個偉人:「早上好,維納教授!」維納猛地一抬頭,拍了一下前額,說道:「對,維納!」原來維納正欲往郵簽上寫寄件人姓名,但忘記了自己的……。
• 5。蘋果樹下的例行出步
• 希爾伯特在海德爾堡上了一學期以後,接下來的一個學期,本來可以允許他再轉到柏林去聽課,但他深深地依戀自己的家鄉,於是他又回到了哥尼斯堡大學.再下一個學期——1882年春天,希爾伯特仍決定留在哥尼斯堡.
• 這時赫爾曼•閱可夫斯基從柏林學習了三個學期後也回到了哥尼斯堡大學.閩可夫斯基從小就數學才能出眾,據說有一次上數學課,老師因把問題理解錯了而「掛了黑板」,同學們異口同聲叫道:「閉可夫斯基去幫幫忙!」在柏林上學時,他因為出色的數學工作曾得到過一筆獎金.這時,年僅17歲的閱可夫斯基正沉浸在一項很深奧的研究之中——解巴黎科學院出榜征解的一個問題:把一個數表成五個平方數的和.一年後,1883年春天,18歲的閱可夫斯基和英國著名的數學家史密斯共享巴黎科學院的這項大獎.這件事轟動了整個哥尼斯堡.希爾伯特的父親因此曾告誡自己的兒子不要冒冒失失地去和「這樣知名的人」交朋友.但由於對數學的熱愛和共同的信念,希爾伯特和比他小兩歲的閩可夫斯基很快成了好朋友.
• 1884年春天,年輕的數學家阿道夫•赫維茨從哥廷根來到哥尼斯堡擔任副教授,年齡還不到25歲,在函數論方面已有出色的研究成果.希爾伯特和閩可夫斯基很快就和他們的新老師建立了密切的關系.他們這三個年輕人每天下午准5點必定相會去蘋果樹下散步.希爾伯特後來回憶道:「日復一日的散步中,我們全都埋頭討論當前數學的實際問題;相互交換我們對問題新近獲得的理解,交流彼此的想法和研究計劃.」在他們三人中,赫維茨有著廣泛「堅實的基礎知識,又經過很好的整理,」所以他是理所當然的帶頭人,並使其他兩位心悅誠服.當時希爾伯特發現,這種學習方法比鑽在昏暗的教室或圖書館里啃書本不知要好多少倍,這種例行的散步一直持續了整整八年半之久.以這種最悠然而有趣的學習方式,他們探索了數學的「每一個角落」,考察著數學世界的每一個王國,希爾伯特後來回憶道:「那時從沒有想到我們竟會把自己帶到那麼遠!」三個人就這樣「結成了終身的友誼.」
• 正如徐利治教授所指出的,良師益友間的互相切磋討論對希爾伯特的成長發展也起了十分重要的作用,可以想見那段時間是希爾伯特才、學、識獲得迅速成長的重要階段,假如沒有這段經歷,那麼希爾伯特在1900年竟能在許多重要領域中一次提出那麼多著名難題,倒是不易想像的了.有關希爾伯特散步的這個小故事告訴我們,師生除了在課堂上的活動以外,師生在課外的交流以及同學間的課外交流,也是一種重要的學習方式,對數學學習非常有益。而且,在散步中交流因為沒有書本,也不用紙和筆,因此沒有繁瑣的推導和計算,只能交談那些能用話「說出來」的東西,即對問題的理解,分析總是中的思想和方法,挖掘統帥形式推導的靈魂,......而這些對學好數學非常重要。同學們不妨經常邀幾位要好的同學一起散步交談,肯定會其樂無究的。

B. 五年級上冊數學手抄報怎麼做啊

畫一些數字堆在一起,或數字插著翅膀在天空中飛,數字最好是彩色的,翅膀是白色的,也可以畫一個問號,其餘可以寫一些關於數學家的故事,數字中的奧秘等等,你還可以花一些數學家的簡單肖像畫,主要是文字,畫什麼都無所謂,在文字後面可以輕輕地畫一些花,草,也可以畫一些簡單的分數。

希望能夠幫助你。
祝你好好學習天天向上 。
你也一定要選我哦,謝謝

C. 五年級數學手抄報內容

「聰明在於勤奮,天才在於積累」————華羅庚
「幹下去還有50%成功的希望,不幹便是100%的失敗。」
————王菊珍
「一個人就好像一個分數,他的實際才能好比分子,而他對自己的估價好比分母。分母越大,則分數的值就越小。」 ----托爾斯泰
「數學的本質在於它的自由。」———— 康托(Cantor)
「在數學的領域中, 提出問題的藝術比解答問題的藝術更為重要。」————康托(Cantor)
「沒有任何問題可以向無窮那樣深深的觸動人的情感, 很少有別的觀念能像無窮那樣激勵理智產生富有成果的思想, 然而也沒有任何其他的概念能向無窮那樣需要加以闡明。」————希爾伯特(Hilbert)
「數學是無窮的科學。」————赫爾曼外爾
「問題是數學的心臟。」————P.R.哈爾莫斯
「只要一門科學分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預示著獨立發展的終止或衰亡。」 ————Hilbert
「數學中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深。」———— 卡爾·弗里德里希·高斯
「時間是個常數,但對勤奮者來說,是個『變數』。用『分』來計算時間的人比用『小時』來計算時間的人時間多59倍。」 ————雷巴柯夫
「在學習中要敢於做減法,就是減去前人已經解決的部分,看看還有那些問題沒有解決,需要我們去探索解決。」 ————華羅庚
「天才=2%的靈感+98%的血汗。」————托馬斯·阿爾瓦·愛迪生(有些版本是「天才=1%的靈感+99%的血汗。」)
「要利用時間,思考一下一天之中做了些什麼,是『正號』還是『負號』,倘若是『+』,則進步;倘若是『-』,就得吸取教訓,採取措施。」 ————季米特洛夫
「近代最偉大的科學家愛因斯坦在談成功的秘訣時,寫下一個公式:A=x+y+z。並解釋道:A代表成功,x代表艱苦的勞動,y代表正確的方法,Z代表少說空話。」 ----阿爾伯特·愛因斯坦
「數學中的一些美麗定理具有這樣的特性:它們極易從事實中歸納出來, 但證明卻隱藏的極深。 數學是科學之王。」 --——高斯
「在數學的領域中, 提出問題的藝術比解答問題的藝術更為重要。」 ----康托爾
「只要一門科學分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預示獨立發展的終止或衰亡。」 ----希爾伯特
「在數學的天地里,重要的不是我們知道什麼,而是我們怎麼知道什麼。」 ----畢達哥拉斯
「一門科學,只有當它成功地運用數學時,才能達到真正完善的地步。」 ----卡爾·海因里希·馬克思
「一個國家的科學水平可以用它消耗的數學來度量。」 ----拉奧
「數學——科學不可動搖的基石,促進人類事業進步的豐富源泉。」 ---- 巴羅
「在奧林匹斯山上統治著的上帝,乃是永恆的數。」 ----雅可比
「如果沒有數所製造的關於宇宙的永恆的仿造品,則人類將不能繼續生存。」 ----尼采
「不懂幾何者免進。」 ----柏拉圖
「幾何無王者之道!」 ---- 歐幾里得
「數學家實際上是一個著迷者,不迷就沒有數學。」 ---- 諾瓦利斯
「沒有大膽的猜測,就做不出偉大的發現。」 ---- 艾薩克·牛頓
「數統治著宇宙。」----畢達哥拉斯
「數學,科學的女皇;數論,數學的女皇。」----卡爾·弗里德里希·高斯
「上帝創造了整數,所有其餘的數都是人造的。」 ----克隆內克
「上帝是一位算術家」 ----雅克比
「一個沒有幾分詩人氣的數學家永遠成不了一個完全的數學家。」----維爾斯特拉斯
「純數學這門科學再其現代發展階段,可以說是人類精神之最具獨創性的創造。」----懷德海
「可以數是屬統治著整個量的世界,而算數的四則運算則可以看作是數學家的全部裝備。」----麥克斯韋
「數論是人類知識最古老的一個分支,然而他的一些最深奧的秘密與其最平凡的真理是密切相連的。」----史密斯
「無限!再也沒有其他問題如此深刻地打動過人類的心靈。」----希爾伯特
「發現每一個新的群體在形式上都是數學的,因為我們不可能有其他的指導。」----達爾文
「宇宙的偉大建築是現在開始以純數學家的面目出現了。」----京斯
「這是一個可靠的規律,當數學或哲學著作的作者以模糊深奧的話寫作時,他是在胡說八道。」----A?N?懷德海
「給我五個系數,我講畫出一頭大象;給我六個系數,大象將會搖動尾巴。」----柯西
「純數學是魔術家真正的魔杖。」----諾瓦列斯
「如果誰不知道正方形的對角線同邊是不可通約的量,那他就不值得人的稱號。」----柏拉圖
「整數的簡單構成,若干世紀以來一直是使數學獲得新生的源泉。」----伯克霍夫
「數學不可比擬的永久性和萬能性及他對時間和文化背景的獨立行是其本質的直接後果。」----A.埃博
「生命只為兩件事,發展數學與教授數學」 ----普爾森
「用心智的全部力量, 來選擇我們應遵循的道路。」----笛卡兒
「我不知道, 世上人會怎樣看我; 不過, 我自己覺得, 我只像一個在海濱玩耍的孩子, 一會撿起塊比較光滑的卵石, 一會兒找到個美麗的貝殼; 而在我前面, 真理的大海還完全沒有發現。」 ----艾薩克·牛頓
「我之所以比笛卡兒看得遠些, 是因為我站在巨人的肩上。」 ----艾薩克·牛頓
「不親自檢查橋梁的每一部分的堅固性就不過橋的旅行者是不可能走遠的。 甚至在數學中有些事情也要冒險。」
----賀拉斯。蘭姆
「前進吧, 前進將使你產生信念。」----達朗貝爾
「讀讀歐拉, 讀讀歐拉, 他是我們大家的老師。」 ----拉普拉斯
「如果我繼承可觀的財產, 我在數學上可能沒有多少價值了。」----拉格朗日
「我把數學看成是一件有意思的工作, 而不是想為自己建立什麼紀念碑。 可以肯定地說, 我對別人的工作比自己的更喜歡。 我對自己的工作總是不滿意。 」----拉格朗日
「一個人的貢獻和他的自負嚴格地成反比,這似乎是品行上的一個公理。 」----拉格朗日
「看在上帝的份上, 千萬別放下工作!這是你最好的葯物。 」----達朗貝爾
「我的成功只依賴兩條。 一條是毫不動搖地堅持到底; 一條是用手把腦子里想出的圖形一絲不差地製造出來。」
----蒙日
「天文科學的最大好處是消除由於忽視我們同自然的真正關系而造成的錯誤。 因為社會秩序必須建立在這種關系之上, 所以這類錯誤就更具災難性。 真理和正義是社會秩序永恆不變的基礎。 但願我們擺脫這種危險的格言, 說什麼進行欺騙和奴役有時比保障他們的幸福更有用! 各個時代的歷史經驗證明, 誰破壞這些神聖的法則, 必將遭到懲罰。」
----拉普拉斯
「有時候, 你一開始未能得到一個最簡單,最美妙的證明, 但正是這樣的證明才能深入到高等算術真理的奇妙聯系中去。 這是我們繼續研究的動力, 並且最能使我們有所發現。」 ----高斯
「如果別人思考數學的真理像我一樣深入持久, 他也會找到我的發現。」 ----高斯
「人死了, 但事業永存。 」 ----柯西
「精巧的論證常常不是一蹴而就的,而是人們長期切磋積累的成果。 我也是慢慢學來的,而且還要繼續不斷的學習。」 ----阿貝爾
「到底是大師的著作, 不同凡響!」----伽羅瓦
「異常抽象的問題, 必須討論得異常清楚。 」 - ---笛卡兒
「我思故我在。」----笛卡兒
「我決心放棄那個僅僅是抽象的幾何。這就是說,不再去考慮那些僅僅是用來練思想的問題。我這樣做,是為了研究另一種幾何,即目的在於解釋自然現象的幾何。」----笛卡兒
"數學是人類知識活動留下來最具威力的知識工具,是一些現象的根源。數學是不變的,是客觀存在的,上帝必以數學法則建造宇宙。」----笛卡兒
「直接向大師們而不是他們的學生學習。」 ----阿貝爾
「挑選好一個確定得研究對象, 鍥而不舍。 你可能永遠達不到終點, 但是一路上准可以發現一些有趣的東西。」 ---克萊因
「我決不把我的作品看做是個人的私事, 也不追求名譽和贊美。 我只是為真理的進展竭盡所能。 是我還是別的什麼人, 對我來說無關緊要, 重要的是它更接近於真理。 」 ----維爾斯特拉斯
「思維的運動形式通常是這樣的:有意識的研究-潛意識的活動-有意識的研究。」----龐加萊
「人生就是持續的斗爭, 如果我們偶爾享受到寧靜, 那是我們先輩頑強地進行了斗爭。 假使我們的精神, 我們的警惕鬆懈片刻, 我們將失去先輩為我們贏得的成果。 」 ----龐加萊
「如果我們想要預見數學的將來, 適當的途徑是研究這門學科的歷史和現狀。 」----龐加萊
「我們必須知道, 我們必將知道。」 ----希爾伯特
「扔進冰水, 由他們自己學會游泳, 或者淹死。 很多學生一直要到掌握了其他人做過的, 與他們問題有關的一切,才肯試著靠自己去工作, 結果是只有極少數人養成了獨立工作的習慣。 」 ----E.T.貝爾
「一個人如果做了出色的數學工作, 並想引起數學界的注意, 這實在是容易不過的事情, 不論這個人是如何位卑而且默默無聞, 他只需做一件事:把他對結果的論述寄給 處於領導地位的權威就行了。」
----莫德爾
「數學家通常是先通過直覺來發現一個定理; 這個結果對於他首先是似然的, 然後他再著手去製造一個證明。」 ----哈代
「一個做學問的人, 除了學習知識外, 還要有「taste」, 這個詞不太好翻譯, 有的譯成品味, 喜愛。 一個人要有大的成就, 就要有相當清楚的「taste。 」----楊振寧
「如果認為只有在幾何證明裡或者在感覺的證據里才有必然,那會是一個嚴重的錯誤。給我五個系數,我將畫出一頭大象;給我第六個系數,大象將會搖動尾巴。人必須確信,如果他是在給科學添加許多新的術語而讓讀者接著研究那擺在他們面前的奇妙難盡的東西,已經使科學獲得了巨大的進展。」----柯西
「數學是一門演繹的學問,從一組公設,經過邏輯的推理,獲得結論。」----陳省身
「科學需要實驗。但實驗不能絕對精確。如有數學理論,則全靠推論,就完全正確了。這是科學不能離開數學的原因。許多科學的基本觀念,往往需要數學觀念來表示。所以數學家有飯吃了,但不能得諾貝爾獎,是自然的。」
---陳省身
「數學中沒有諾貝爾獎,這也許是件好事。諾貝爾獎太引人注目,會使數學家無法專注於自己的研究。」
----陳省身
「我們欣賞數學,我們需要數學。」----陳省身
「一個數學家的目的,是要了解數學。歷史上數學的進展不外兩途:增加對於已知材料的了解,和推廣范圍。」
----陳省身
「雖然不允許我們看透自然界本質的秘密,從而認識現象的真實原因,但仍可能發生這樣的情形:一定的虛構假設足以解釋許多現象。」----歐拉
「因為宇宙的結構是最完善的而且是最明智的上帝的創造,因此,如果在宇宙里沒有某種極大的或極小的法則,那就根本不會發生任何事情。」----歐拉
「遲序之數,非出神怪,有形可檢,有數可推。」----祖沖之
「事類相推,各有攸歸,故枝條雖分而同本干知,發其一端而已。又所析理以辭,解體用圖,庶亦約而能周,通而不黷,覽之者思過半矣。」————劉徽
「虛數是奇妙的人類棈神寄託,它好像是存在與不存在之間的一種兩棲動物。」————萊布尼茨
「不發生作用的東西是不會存在的。」————萊布尼茨
「考慮了很少的那幾樣東西之後,整個的事情就歸結為純幾何,這是物理和力學的一個目標。」 ————萊布尼茨
「幾何看來有時候要領先於分析,但事實上,幾何的先行於分析,只不過像一個僕人走在主人的前面一樣,是為主人開路的。」————西爾維斯特
「也許我可以並非不適當地要求獲得數學上亞當這一稱號,因為我相信數學理性創造物由我命名(已經流行通用)比起同時代其它數學家加在一起還要多。 」————西爾維斯特
「一個沒有幾分詩人才能的數學家決不會成為一個完全的數學家。」————魏爾斯特拉斯
歐拉(Leonhard Euler 公元1707-1783年),1707年出生在瑞士的巴塞爾(Basel)城,13歲就進巴塞爾大學讀書,得到當時最有名的數學家約翰·伯努利(Johann Bernoulli,1667-1748年)的精心指導。
歐拉是科學史上最多產的一位傑出的 傑出數學家 歐拉數學家,據統計他那不倦的一生,共寫下了886本書籍和論文,其中分析、代數、數論佔40%,幾何佔18%,物理和力學佔28%,天文學佔11%,彈道學、航海學、建築學等佔3%,彼得堡科學院為了整理他的著作,足足忙碌了四十七年。19世紀偉大數學家高斯(Gauss,1777-1855年)曾說:"研究歐拉的著作永遠是了解數學的最好方法。"
過度的工作使他得了眼病,並且不幸右眼失明了,這時他才28歲。1741年歐拉應普魯士彼德烈大帝的邀請,到柏林擔任科學院物理數學所所長,直到1766年,後來在沙皇喀德林二世的誠懇敦聘下重回彼得堡,不料沒有多久,左眼視力衰退,最後完全失明。不幸的事情接踵而來,1771年彼得堡的大火災殃及歐拉住宅,帶病而失明的64歲的歐拉被圍困在大火中,雖然他被別人從火海中救了出來,但他的書房和大量研究成果全部化為灰燼了。
沉重的打擊,仍然沒有使歐拉倒下,他發誓要把損失奪回來。在他完全失明之前,還能朦朧地看見東西,他抓緊這最後的時刻,在一塊大黑板上疾書他發現的公式,然後口述其內容,由他的學生特別是大兒子A·歐拉(數學家和物理學家)筆錄。歐拉完全失明以後,仍然以驚人的毅力與黑暗搏鬥,憑著記憶和心算進行研究,直到逝世,竟達17年之久。
歐拉的記憶力和心算能力是罕見的,他能夠復述年青時代筆記的內容,心算並不限於簡單的運算,高等數學一樣可以用心算去完成。
歐拉的風格是很高的,拉格朗從19歲起和歐拉通信,討論等周問題的一般解法,這引起變分法的誕生。等周問題是歐拉多年來苦心考慮的問題,拉格朗日的解法,博得歐拉的熱烈贊揚,歐拉充沛的精力保持到最後一刻,1783年9月18日下午,歐拉為了慶祝他計算氣球上升定律的成功,請朋友們吃飯,那時天王星剛發現不久,歐拉寫出了計算天王星軌道的要領,還和他的孫子逗笑,喝完茶後,突然疾病發作,煙斗從手中落下,口裡喃喃地說:「我死了」。歐拉終於「停止了生命和計算」。
1975年7月15日,陶哲軒,出生在澳大利亞阿得雷德,是家中的長子。現任教於美國加州大學洛杉磯分校(UCLA)數學系的華裔數學家,澳洲惟一榮獲數學最高榮譽「菲爾茨獎」的澳籍華人數學教授,繼1982年的丘成桐之後獲此殊榮的第二位華人。其於1996年獲普林斯頓大學博士學位後任教於UCLA,24歲時便被UCLA聘為正教授。
法國巴黎的「發現宮」科學博物館中有祖沖之的大名與他所發現的圓周率值並列。他 祖沖之 像曾經算出月球繞地球一周為時27.21223日,與現代公認的27.21222日幾乎沒有誤差,在那個時代能有那麼偉大的成就,實在讓人佩服,難怪西方科學家把月球上許多火山口中的一個命名為「祖沖之」。而即使在社會主義共產國家「老大哥」蘇俄,在莫斯科國立大學禮堂廊壁上,用彩色大理石鑲嵌的世界各國著名的科學家肖像中,也有中國的祖沖之和李時珍,祖氏有那麼傑出的表現,我們不能不對他稍有認識。
丘成桐博士為國際著名數學家,美國科學院院士,中國科學院外籍院士。1982年由於他在 丘成桐 「菲爾茨獎」獲得者幾何方面的傑出工作,獲得了菲爾茨獎(被稱之為數學的諾貝爾獎)。1994年,獲得了瑞典皇家學員頒發的國際上著名的克雷福德獎(Clifford)。1997年獲美國國家科學獎。
丘成桐博士在科研方面做出了傑出的成就,贏得了許多榮譽。更為可貴的是,他十分關注中國基礎研究的發展,並將其同自己的科研發展緊密聯系在一起,多年來,一直運用他在國際上的影響和活動能力,協同各方面力量,為中國數學的發展作了大量的工作。

D. 5年級數學小報內容有哪些

在學習和工作中,大家對手抄報都再熟悉不過了吧,手抄報具有開拓視野、積累知識的作用。那什麼樣的手抄報才是大家都稱贊的呢?以下是幫大家整理的五年級上冊數學手抄報內容,歡迎大家分享。

一、最小的數字。

古老而龐大的自然數家族,是由全體自然數1、2、3、4、5、6、7、8、9、10……集合在一起組成的。其中最小的是「1」,找不到最大的。如果你有興趣的話,可以找一找。

二、沒有最大的自然數。

也許你認為可以找到一個最大的自然數(n),但是,你立刻就會發現另一個自然數(n+1),它大於n。這就說明在自然數家族中永遠找不到最大的自然數。

三、「1」確實是自然數家族中最小的。

自然數是無限的,而「1」是自然數中最小的。有人提出異議,不同意「1」是最小的自然數,說「0」比「1」小,「0」應該是最小的自然數。這是不對的,因為自然數指的是正整數,「0」是唯一的非正非負的整數,因而「0」不屬於自然數家族。「1」確實是自然數家族中最小的。

可別小看了這個最小的「1」,它是自然數的單位,是自然數中的第一代,人類最先認識的是「1」,有了「1」,才能得到1、2、3、4……

給你講了萬數之首「1」的特殊地位,所以,你千萬別小看了它哦。

E. 數學五年級上冊手抄報內容

1.有兩根不均勻分布的香,香燒完的時間是一個小時,你能用什麼方法來確定一段15分鍾的時間?

2.有三個人去住旅館,住三間房,每一間房$10元,於是他們一共付給老闆$30,
第二天,老闆覺得三間房只需要$25元就夠了於是叫小弟退回$5給三位客人,
誰知小弟貪心,只退回每人$1,自己偷偷拿了$2,這樣一來便等於那三位客人每人各花了九元,
於是三個人一共花了$27,再加上小弟獨吞了不$2,總共是$29。可是當初他們三個人一共付出$30那麼還有$1呢?

3.有兩位盲人,他們都各自買了兩對黑襪和兩對白襪,八對襪了的布質、大小完全相同,
而每對襪了都有一張商標紙連著。兩位盲人不小心將八對襪了混在一起。他們每人怎樣才能取回黑襪和白襪各兩對呢?

4.有一輛火車以每小時15公里的速度離開洛杉磯直奔紐約,另一輛火車以每小時20公里的速度從紐約開往洛杉磯。如果有一隻鳥,以30公里每小時的速度和兩輛火車同時啟動,從洛杉磯出發,碰到另一輛車後返回,依次在兩輛火車來回飛行,直到兩輛火車相遇,請問,這只小鳥飛行了多長距離?

5.你有兩個罐子,50個紅色彈球,50個藍色彈球,隨機選出一個罐子,隨機選取出一個彈球放入罐子,怎麼給紅色彈球最大的選中機會?在你的計劃中,得到紅球的准確幾率是多少?

6.你有四個裝葯丸的罐子,每個葯丸都有一定的重量,被污染的葯丸是沒被污染的重量+1.只稱量一次,如何判斷哪個罐子的葯被污染了?

7.你有一桶果凍,其中有%%,綠色,紅色三種,閉上眼睛,抓取兩個同種顏色的果凍。抓取多少個就可以確定你肯定有兩個同一顏色的果凍?

8.對一批編號為1~100,全部開關朝上(開)的燈進行以下*作:凡是1的倍數反方向撥一次開關;2的倍數反方向又撥一次開關;3的倍數反方向又撥一次開關……問:最後為關熄狀態的燈的編號。

9.想像你在鏡子前,請問,為什麼鏡子中的影像可以顛倒左右,卻不能顛倒上下?

10.一群人開舞會,每人頭上都戴著一頂帽子。帽子只有黑白兩種,黑的至少有一頂。每個人都能看到其它人帽子的顏色,卻看不到自己的。主持人先讓大家看看別人頭上戴的是什幺帽子,然後關燈,如果有人認為自己戴的是黑帽子,就打自己一個耳光。第一次關燈,沒有聲音。於是再開燈,大家再看一遍,關燈時仍然鴉雀無聲。一直到第三次關燈,才有劈劈啪啪打耳光的聲音響起。問有多少人戴著黑帽子?

11.兩個圓環,半徑分別是1和2,小圓在大圓內部繞大圓圓周一周,問小圓自身轉了幾周?如果在大圓的外部,小圓自身轉幾周呢?

12.1元錢一瓶汽水,喝完後兩個空瓶換一瓶汽水,問:你有20元錢,最多可以喝到幾瓶汽水?
答案:
1.一隻兩頭點燃,另一隻一頭點燃,當第一隻燒完後,第二隻丙再頭點燃,就可以得到15`

2.怎麼會是每人第天九元呢,每人每天 (25/3) + 1,那一元差在25 - 24 = 1

3.每人取每雙中的一隻就可以了

4.(D / 35 ) * 30 = D

5.自己睜著眼睛挑一個紅色的啊,這樣是給紅色最大的機會了,除了你是色盲,呵呵 ,當然他們的幾率都是1/2。

6.一個中取一個編號,然後稱一下就知道

7.4個

8. 當該數的方根為整數時超下,其它的超上。這樣 1、4、9、16、25、36、49、64、81、100號超下

9. 因為照鏡子時,鏡子是與你垂直平行的,但在水平方向剛好轉了180度。

10.應該是三個人:
1,若是兩個人,設A、B是黑帽子,第二次關燈就會有人打耳光。原因是A看到B第一次沒打耳光,就知道B也一定看到了有帶黑帽子的人,可A除了知道B帶黑帽子外,其他人都是白帽子,就可推出他自己是帶黑帽子的人!同理B也是這么想的,這樣第二次熄燈會有兩個耳光的聲音。
2,如果是三個人,A,B,C. A第一次沒打耳光,因為他看到B,C都是帶黑帽子的;而且假設自己帶的是白帽子,這樣只有BC戴的是黑帽子;按照只有兩個人帶黑帽子的推論,第二次應該有人打耳光;可第二次卻沒有。。。於是他知道B和C一定看到了除BC之外的其他人帶了黑帽子,於是他知道BC看到的那個人一定是他,所以第三次有三個人打了自己一個耳光!
3,若是第三次也沒有人打耳光,而是第四次有人打了耳光,那麼應該有幾個人帶了黑貓子呢?大家給個結果看看^_^

11.可以把圓看成一根繩子,大繩是小繩的2倍長,所以應該是2圈吧。

12.一開始20瓶沒有問題,隨後的10瓶和5瓶也都沒有問題,接著把5瓶分成4瓶和1瓶,前4個空瓶再換2瓶,喝完後2瓶再換1瓶,此時喝完後手頭上剩餘的空瓶數為2個,把這2個瓶換1瓶繼續喝,喝完後把這1個空瓶換1瓶汽水,喝完換來的那瓶再把瓶子還給人家即可,所以最多可以喝的汽水數為:20+10+5+2+1+1+1=40
寫幾題上去就行了!
故事:
高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。

高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。

老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。

1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。

1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。

1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。

希臘時代的數學家已經知道如何用尺規作出正 2m×3n×5p 邊形,其中 m 是正整數,而 n 和 p 只能是0或1。但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了:

一個正 n 邊形可以尺規作圖若且唯若 n 是以下兩種形式之一:

1、n = 2k,k = 2, 3,…

2、n = 2k × (幾個不同「費馬質數」的乘積),k = 0,1,2,…

費馬質數是形如 Fk = 22k 的質數。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。

1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理:

任一多項式都有(復數)根。這結果稱為「代數學基本定理」(Fundamental Theorem of Algebra)。

事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。

在1801年,高斯二十四歲時出版了《算學研究》(Disquesitiones Arithmeticae),這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章。

這本書除了第七章介紹代數基本定理外,其餘都是數論,可以說是數論第一本有系統的著作,高斯第一次介紹「同餘」(Congruent)的概念。「二次互逆定理」也在其中。

二十四歲開始,高斯放棄在純數學的研究,作了幾年天文學的研究。

當時的天文界正在為火星和木星間龐大的間隙煩惱不已,認為火星和木星間應該還有行星未被發現。在1801年,義大利的天文學家Piazzi,發現在火星和木星間有一顆新星。它被命名為「穀神星」(Cere)。現在我們知道它是火星和木星的小行星帶中的一個,但當時天文學界爭論不休,有人說這是行星,有人說這是彗星。必須繼續觀察才能判決,但是Piazzi只能觀察到它9度的軌道,再來,它便隱身到太陽後面去了。因此無法知道它的軌道,也無法判定它是行星或彗星。

高斯這時對這個問是產生興趣,他決定解決這個捉摸不到的星體軌跡的問題。高斯自己獨創了只要三次觀察,就可以來計算星球軌道的方法。他可以極准確地預測行星的位置。果然,穀神星准確無誤的在高斯預測的地方出現。這個方法--雖然他當時沒有公布--就是「最小平方法」 (Method of Least Square)。

1802年,他又准確預測了小行星二號--智神星(Pallas)的位置,這時他的聲名遠播,榮譽滾滾而來,俄國聖彼得堡科學院選他為會員,發現Pallas的天文學家Olbers請他當哥廷根天文台主任,他沒有立刻答應,到了1807年才前往哥廷根就任。

1809年他寫了《天體運動理論》二冊,第一冊包含了微分方程、圓椎截痕和橢圓軌道,第二冊他展示了如何估計行星的軌道。高斯在天文學上的貢獻大多在1817年以前,但他仍一直做著觀察的工作到他七十歲為止。雖然做著天文台的工作,他仍抽空做其他研究。為了用積分解天體運動的微分力程,他考慮無窮級數,並研究級數的收斂問題,在1812年,他研究了超幾何級數(Hypergeometric Series),並且把研究結果寫成專題論文,呈給哥廷根皇家科學院。

1820到1830年間,高斯為了測繪汗諾華(Hanover)公國(高斯住的地方)的地圖,開始做測地的工作,他寫了關於測地學的書,由於測地上的需要,他發明了日觀測儀(Heliotrope)。為了要對地球表面作研究,他開始對一些曲面的幾何性質作研究。

1827年他發表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵蓋一部分現在大學念的「微分幾何」。

在1830到1840年間,高斯和一個比他小廿七歲的年輕物理學家-韋伯(Withelm Weber)一起從事磁的研究,他們的合作是很理想的:韋伯作實驗,高斯研究理論,韋伯引起高斯對物理問題的興趣,而高斯用數學工具處理物理問題,影響韋伯的思考工作方法。

1833年高斯從他的天文台拉了一條長八千尺的電線,跨過許多人家的屋頂,一直到韋伯的實驗室,以伏特電池為電源,構造了世界第一個電報機。

1835年高斯在天文台里設立磁觀測站,並且組織「磁協會」發表研究結果,引起世界廣大地區對地磁作研究和測量。

高斯已經得到了地磁的准確理,他為了要獲得實驗數據的證明,他的書《地磁的一般理論》拖到1839年才發表。

1840年他和韋伯畫出了世界第一張地球磁場圖,而且定出了地球磁南極和磁北極的位置。 1841年美國科學家證實了高斯的理論,找到了磁南極和磁北極的確實位置。

高斯對自己的工作態度是精益求精,非常嚴格地要求自己的研究成果。他自己曾說:「寧可發表少,但發表的東西是成熟的成果。」許多當代的數學家要求他,不要太認真,把結果寫出來發表,這對數學的發展是很有幫助的。 其中一個有名的例子是關於非歐幾何的發展。非歐幾何的的開山祖師有三人,高斯、 Lobatchevsky(羅巴切烏斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父親是高斯大學的同學,他曾想試著證明平行公理,雖然父親反對他繼續從事這種看起來毫無希望的研究,小Bolyai還是沉溺於平行公理。最後發展出了非歐幾何,並且在1832~1833年發表了研究結果,老Bolyai把兒子的成果寄給老同學高斯,想不到高斯卻回信道:

to praise it would mean to praise myself.我無法誇贊他,因為誇贊他就等於誇獎我自己。

早在幾十年前,高斯就已經得到了相同的結果,只是怕不能為世人所接受而沒有公布而已。

美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》(Men of Mathematics) 一書里曾經這樣批評高斯:

在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。

在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了。

太長了,簡化一下就行了!
加油!祝你成功

F. 五年級上數學手抄報資料有哪些

數學是無窮的科學。——赫爾曼外爾
數學中的一些美麗定理具有這樣的特性:它們極易從事實中歸納出來,但證明卻隱藏的極深。數學是科學之王。——高斯
在數學的領域中,提出問題的藝術比解答問題的藝術更為重要。——康扥爾
只要一門科學分支能提出大量的問題,它就充滿著生命力,而問題缺乏則預示獨立發展的終止或衰亡。——希爾伯特
在數學的天地里,重要的不是我們知道什麼,而是我們怎麼知道什麼。——畢達哥拉斯
一門科學,只有當它成功地運用數學時,才能達到真正完善的地步。——馬克思
一個國家的科學水平可以用它消耗的數學來度量。——拉奧
數學的本質在於它的自由.——康扥爾(Cantor)
在數學的領域中,提出問題的藝術比解答問題的藝術更為重要.——康扥爾(Cantor)
沒有任何問題可以向無窮那樣深深的觸動人的情感,很少有別的觀念能像無窮那樣激勵理智產生富有成果的思想, 然而也沒有任何其他的概念能向無窮那樣需要加以闡明.——希爾伯特(Hilbert)
只要一門科學分支能提出大量的問題,它就充滿著生命力,而問題缺乏則預示著獨立發展的終止或衰亡.——希爾伯特

加減乘除(+、-、×(·)、÷(∶))等數學符號是我們每一個人最熟悉的符號,因為不光在數學學習中離不開它們,幾乎每天的日常的生活也離不開它們.別看它們這么簡單,直到17世紀中葉才全部形成.

法國數學家許凱在1484年寫成的《算術三篇》中,使用了一些編寫符號,如用D表示加法,用M表示減法.這兩個符號最早出現在德國數學家維德曼寫的《商業速演算法》中,他用「+」表示超過,用「—」表示不足.到1514年,荷蘭的赫克首次用「+」表示加法,用「—」表示減法.1544年,德國數學家施蒂費爾在《整數算術》中正式用「+」和「—」表示加減,這兩個符號逐漸被公認為真正的算術符號,廣泛採用.

以符號「×」代表乘是英國數學家奧特雷德首創的.他於1631年出版的《數學之鑰》中引入這種記法.據說是由加法符號+變動而來,因為乘法運算是從相同數的連加運算發展而來的.後來,萊布尼茲認為「×」容易與「X」相混淆,建議用「·」表示乘號,這樣,「·」也得到了承認.

除法符號「÷」是英國的瓦里斯最初使用的,後來在英國得到了推廣.除的本意是分,符號「÷」的中間的橫線把上、下兩部分分開,形象地表示了「分」.至此,四則運算符號齊備了,當時還遠未達到被各國普遍採用的程度.

1、點錯的小數點
學習數學不僅解題思路要正確,具體解題過程也不能出錯,差之毫釐,往往失之千里. 美國芝加哥一個靠養老金生活的老太太,在醫院施行一次小手術後回家.兩星期後,她接到醫院寄來的一張帳單,款數是63440美元.她看到偌大的數字,不禁大驚失色,駭得心臟病猝發,倒地身亡.後來,有人向醫院一核對,原來是電腦把小數點的位置放錯了,實際上只需要付63.44美元.
點錯一個小數點,竟要了一條人命.正如牛頓所說:"在數學中,最微小的誤差也不能忽略.

2、蒲豐試驗
一天,法國數學家蒲豐請許多朋友到家裡,做了一次試驗.蒲豐在桌子上鋪好一張大白紙,白紙上畫滿了等距離的平行線,他又拿出很多等長的小針,小針的長度都是平行線的一半.蒲豐說:「請大家把這些小針往這張白紙上隨便仍吧!」客人們按他說的做了。
蒲豐的統計結果是:大家共擲2212次,其中小針與紙上平行線相交704次,2210÷704≈3.142。蒲豐說:「這個數是π的近似值。每次都會得到圓周率的近似值,而且投擲的次數越多,求出的圓周率近似值越精確。」這就是著名的「蒲豐試驗」。

3、數學魔術家
1981年的一個夏日,在印度舉行了一場心算比賽。表演者是印度的一位37歲的婦女,她的名字叫沙貢塔娜。當天,她要以驚人的心算能力,與一台先進的電子計算機展開競賽。
工作人員寫出一個201位的大數,讓求這個數的23次方根。運算結果,沙貢塔娜只用了50秒鍾就向觀眾報出了正確的答案。而計算機為了得出同樣的答數,必須輸入兩萬條指令,再進行計算,花費的時間比沙貢塔娜要多得多。
這一奇聞,在國際上引起了轟動,沙貢塔娜被稱為「數學魔術家」。

G. 數學五年級上冊的手抄報

1畫些關於科技的圖
2有一位老人,他有三個兒子和十七匹馬。他在臨終前對他的兒子們說:「我已經寫好了遺囑,我把馬留給你們,你們一定要按我的要求去分。」
老人去世後,三兄弟看到了遺囑。遺囑上寫著:「我把十七匹馬全都留給我的三個兒子。長子得一半,次子得三分之一,給幼子九分之一。不許流血,不許殺馬。你們必須遵從父親的遺願!」
這三個兄弟迷惑不解。盡管他們在學校里學習成績都不錯,可是他們還是不會用17除以2、用17除以3、用17除以9,又不讓馬流血。於是他們就去請教當地一位公認的智者。這位智者看了遺囑以後說:「我借給你們一匹馬,去按你們父親的遺願分吧!」

0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」

「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。

「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……

愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。
3寫些經典例題
4外加些數學家的故事
例如
數學家高斯的故事
高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。
1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。
1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。
1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。
希臘時代的數學家已經知道如何用尺規作出正 2m×3n×5p 邊形,其中 m 是正整數,而 n 和 p 只能是0或1。但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了:
一個正 n 邊形可以尺規作圖若且唯若 n 是以下兩種形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (幾個不同「費馬質數」的乘積),k = 0,1,2,…
費馬質數是形如 Fk = 22k 的質數。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。
1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理:
任一多項式都有(復數)根。這結果稱為「代數學基本定理」(Fundamental Theorem of Algebra)。
事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。
在1801年,高斯二十四歲時出版了《算學研究》(Disquesitiones Arithmeticae),這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章
美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》(Men of Mathematics) 一書里曾經這樣批評高斯:
在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。
在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了。

數學手抄報資料

一元錢哪裡去了

三人住旅店,每人每天的價格是十元,每人付了十元錢,總共給了老闆三十元,後來老闆優惠了五元,讓服務員退給他們,結果服務員貪污了兩元,剩下三元每人退了一元錢,也就是說每人消費了9元錢。三個人總共花了27元,加上服務員貪污的2元總共29元。那一元錢到哪去了?

分蘋果

小咪家裡來了5位同學。小咪的爸爸想用蘋果來招待這6位小朋友,可是家裡只有5個蘋果。怎麼辦呢?只好把蘋果切開了,可是又不能切成碎塊,小咪的爸爸希望每個蘋果最多切成3塊。這就成了又一道題目:給6個孩子平均分配5個蘋果,每個蘋果都不許切成3塊以上。

小咪的爸爸是怎樣做的呢?

小馬虎數雞

春節里,養雞專業戶小馬虎站在院子里,數了一遍雞的總數,決定留下 ,1/2外,把1/4慰問解放軍,1/3送給養老院。他把雞送走後,聽到房內有雞叫,才知道少數了10隻雞。於是把房內房外的雞重數一遍,沒有錯,不多不少,正是留下1/2的數。小馬虎奇怪了。問題出在哪裡呢?你知道小馬虎在院里數的雞是多少只嗎? 『本文由第一範文網www.DiYiFanWen.com整理,版權歸原作者、原出處所有。』

來了多少客人一天,小林正在家裡洗碗,小強看見了問道:「怎麼洗那麼多的碗 ?」「

家裡來了客人了。」「來了多少人?」小林說:「我沒有數,只知道他們每人用一個飯碗,,二人合用一個湯碗,三人合用一個菜碗,四人合用一個大酒碗,一共用了15個碗。」你知道來了多少客人嗎?

H. 五年級上冊數學手抄報(要圖片)北大師版

是全文嗎?

I. 小學五年級上冊數學手抄報寫點啥

一到三單元的數學知識與概念知識
把重要的概念和公式寫上,再抄點需要別人回答的問題,不用太多,趣味的也行,書上的課後題也行,不用太難,再畫點圖片
可以先畫幾個圖片,再寫一些對數學的認識,還可以寫對學習數學的看法。
採取四個模塊
第一個:摘抄一道練習題(1-3單元的)
第二個:一到三單元的數學知識與概念(一個,並做解釋)
第三個:一個數學小故事
第四個:自己學習的感受
可多畫幾個圖片

J. 關於數學的手抄報五年級(清晰一點的)

五年級數學的手抄報
某店來了三位顧客,急於要買餅趕火車,限定時間不能超過16分鍾。幾個廚師都說無能為力,因為要烙熟一個餅的兩面各需要五分鍾,一口鍋一次可放兩個餅,那麼烙熟三個餅就得2O分鍾。這時來了廚師老李,他說動足腦筋只要15分鍾就行了。你知道該怎麼來烙嗎?

數學的起源:數學是一門最古老的學科,它的起源可以上溯到一萬多年以前。但是,公元1000年以前的資料留存下來的極少。迄今所知,只有在古代埃及和巴比倫發現了比較系統的數學文獻。
遠在1 萬5千年前人類就已經能相當逼真地描繪出人和動物的形象。這是萌發圖形意識的最早證據。後來就逐漸開始了對圓形和直線形的追求,因而成為數學圖形的最早的原型。在日常生活和生產實踐中又逐漸產生了計數意識和計數系統,人類摸索過多種記數方法,有開始的結繩記數,用石塊記數,語言點數進一步用符號,逐步發展到今天我們所用的數字。圖形意識和計數意識發展到一定程度,又產生了度量意識。
這一系列的發展演變逐漸形成了今天我們所熟悉的完整的數學這一門學科,它包括算術、幾何、代數、三角、微積分、統計和概率(其實它一開始是人們為了鑽研賭博而來的呢)……等等各個分支,而且還在不斷發展下去。

阿拉伯數字並不是阿拉伯人發明創造的,而是發源於古印度,後來被阿拉伯人掌握、改進,並傳到了西方,西方人便將這些數字稱為阿拉伯數字。以後,以訛傳訛,世界各地都認同了這個說法。
阿拉伯數字是古代印度人在生產和實踐中逐步創造出來的。
在古代印度,進行城市建設時需要設計和規劃,進行祭祀時需要計算日月星辰的運行,於是,數學計算就產生了。大約在公元前3000年,印度河流域居民的數字就比較先進,而且採用了十進位的計算方法。
到公元前三世紀,印度出現了整套的數字,但在各地區的寫法並不完全一致,其中最有代表性的是婆羅門式:這一組數字在當時是比較常用的。它的特點是從「1」到「9」每個數都有專字。現代數字就是由這一組數字演化而來。在這一組數字中,還沒有出現「0」(零)的符號。「0」這個數字是到了笈多王朝(公元320—550年)時期才出現的。公元四世紀完成的數學著作《太陽手冊》中,已使用「0」的符號,當時只是實心小圓點「·」。後來,小圓點演化成為小圓圈「0」。這樣,一套從「1」到「0」的數字就趨於完善了。這是古代印度人民對世界文化的巨大貢獻。

華羅庚(1910年11月12日-1985年6月12日),是中國在世界上最有影響的數學家之一,他的研究成果被國際數學界命名為「華氏定理」、「布勞威爾-加當-華定理」、「華-王方法」、「華氏運算元」、「華氏不變式」等。