㈠ 學習變頻器需要哪些知識
是學維修,還是使用維護?
總的來說:
1.對於維護使用,變頻器的基本工作原理和變頻方法要懂。要是維修,則對交直流整流逆變這塊要多花心思,且《電力電子》這門課程很有必要學學,《模擬電路》和《數字電路》也要有一定的造詣,維修比較難學的。
2.變頻器的基本的幾種控制方式和原理要掌握,例如:V/F控制,矢量控制,恆轉矩控制等,面板控制和遠程式控制制實現方法等;還有就是一些自動控制相關的一些控制方法,例如:開環控制,閉環控制,閉環PID控制等要知曉。
3.就是變頻器運行常設的一些參數和其意義,不同變頻器參數設置功能不同,但是其參數功能都大同小異,例如:基本頻率,最大最小頻率,加減速時間,過電流保護值等等。
4.因變頻器的安裝和測試都需要通三相電,連接電機,所以也要掌握一定的電工知識,尤其是電機方面更要注重。
5.變頻器的面板控制及遠程式控制制變換區分及組合應用,變頻器與PLC或一些控制器的連接方法,以及變頻器和PLC和電腦通訊的方法,還有含變頻器組成的自動控制系統中變頻器的功用與控制方法。
6.因變頻器是一種多功能的電力電器設備,能改變交流電頻率和改善電能利用率
的同時,也會產生一定的諧波干擾,所以對變頻器的干擾防護也比較重要,還有就是變頻器常見故障及處理措施。
想學好,想學維修本領,要學的東西則多且要多實踐,想學一般的應用使用,則達到第1-4條足以。
㈡ 變頻器基本知識及應用
1、什麼是變頻器?
變頻器是利用電力半導體器件的通斷作用將工頻電源變換為另一頻率的電能控制裝置,能
變頻器
實現對交流非同步電機的軟起動、變頻調速、提高運轉精度、改變功率因數、過流/過壓/過載保護等功能。
2、PWM和PAM的不同點是什麼?
PWM是英文Pulse Width Molation(脈沖寬度調制)縮寫,按一定規律改變脈沖列的脈沖寬度,以調節輸出量和波形的一種調制方式。PAM是英文Pulse Amplitude Molation (脈沖幅值調制) 縮寫,是按一定規律改變脈沖列的脈沖幅度,以調節輸出量值和波形的一種調制方式。
3、電壓型與電流型有什麼不同?
變頻器的主電路大體上可分為兩類:電壓型是將電壓源的直流變換為交流的變頻器,直流迴路的濾波是電容;電流型是將電流源的直流變換為交流的變頻器,其直流迴路濾波是電感。
4、為什麼變頻器的電壓與頻率成比例的改變?
任何電動機的電磁轉矩都是電流和磁通相互作用的結果,電流是不允許超過額定值的,否則將引起電動機的發熱。因此,如果磁通減小,電磁轉矩也必減小,導致帶載能力降低。
由公式E=4.44*K*F*N*Φ 可以看出,在變頻調速時,電動機的磁路隨著運行頻率fX是在相當大的范圍內變化,它極容易使電動機的磁路嚴重飽和,導致勵磁電流的波形嚴重畸變,產生峰值很高的尖峰電流。
因此,頻率與電壓要成比例地改變,即改變頻率的同時控制變頻器輸出電壓,使電動機的磁通保持一定,避免弱磁和磁飽和現象的產生。這種控制方式多用於風機、泵類節能型變頻器。
5、電動機使用工頻電源驅動時,電壓下降則電流增加;對於變頻器驅動,如果頻率下降時電壓也下降,那麼電流是否增加?
頻率下降(低速)時,如果輸出相同的功率,則電流增加,但在轉矩一定的條件下,電流幾乎不變。
6、採用變頻器運轉時,電機的起動電流、起動轉矩怎樣?
採用變頻器運轉,隨著電機的加速相應提高頻率和電壓,起動電流被限制在150%額定電流以下(根據機種不同,為125%~200%)。用工頻電源直接起動時,起動電流為額定電流6~7倍,因此,將產生機械電氣上的沖擊。採用變頻器傳動可以平滑地起動(起動時間變長)。起動電流為額定電流的1.2~1.5倍,起動轉矩為70%~120%額定轉矩;對於帶有轉矩自動增強功能的變頻器,起動轉矩為100%以上,可以帶全負載起動。
7、V/f模式是什麼意思?
頻率下降時電壓V也成比例下降,這個問題已在回答4說明。V與f的比例關系是考慮了電機特性而預先決定的,通常在控制器的存儲裝置(ROM)中存有幾種特性,可以用開關或標度盤進行選擇。
8、按比例地改V和f時,電機的轉矩如何變化?
頻率下降時完全成比例地降低電壓,那麼由於交流阻抗變小而直流電阻不變,將造成在低速下產生地轉矩有減小的傾向。因此,在低頻時給定V/f,要使輸出電壓提高一些,以便獲得一定地起動轉矩,這種補償稱增強起動。可以採用各種方法實現,有自動進行的方法、選擇V/f模式或調整電位器等方法。
9、在說明書上寫著變速范圍60~6Hz,即10:1,那麼在6Hz以下就沒有輸出功率嗎?
在6Hz以下仍可輸出功率,但根據電機溫升和起動轉矩的大小等條件,最低使用頻率取6Hz左右,此時電動機可輸出額定轉矩而不會引起嚴重的發熱問題。變頻器實際輸出頻率(起動頻率)根據機種為0.5~3Hz。。
10、對於一般電機的組合是在60Hz以上也要求轉矩一定,是否可以?
通常情況下時不可以的。在60Hz以上(也有50Hz以上的模式)電壓不變,大體為恆功率特性,在 高速下要求相同轉矩時,必須注意電機與變頻器容量的選擇。
11、所謂開環是什麼意思?
給所使用的電機裝置設速度檢出器(PG),將實際轉速反饋給控制裝置進行控制的,稱為「閉環 」,不用PG運轉的就叫作「開環」。通用變頻器多為開環方式,也有的機種利用選件可進行PG反饋.無速度感測器閉環控制方式是根據建立的數學模型根據磁通推算電機的實際速度,相當於用一個虛擬的速度感測器形成閉環控制。
12、實際轉速對於給定速度有偏差時如何辦?
開環時,變頻器即使輸出給定頻率,電機在帶負載運行時,電機的轉速在額定轉差率的范圍內(1%~5%)變動。對於要求調速精度比較高,即使負載變動也要求在近於給定速度下運轉的場合,可採用具有PG反饋功能的變頻器(選用件)。
13、如果用帶有PG的電機,進行反饋後速度精度能提高嗎?
具有PG反饋功能的變頻器,精度有提高。但速度精度的值取決於PG本身的精度和變頻器輸出頻率的解析度。
14、失速防止功能是什麼意思?
如果給定的加速時間過短,變頻器的輸出頻率變化遠遠超過轉速(電角頻率)的變化,變頻器將因流過過電流而跳閘,運轉停止,這就叫作失速。為了防止失速使電機繼續運轉,就要檢出電流的大小進行頻率控制。當加速電流過大時適當放慢加速速率。減速時也是如此。兩者結合起來就是失速功能。
15、有加速時間與減速時間可以分別給定的機種,和加減速時間共同給定的機種,這有什麼意義?
加減速可以分別給定的機種,對於短時間加速、緩慢減速場合,或者對於小型機床需要嚴格給定生產節拍時間的場合是適宜的,但對於風機傳動等場合,加減速時間都較長,加速時間和減速時間可以共同給定。
16、什麼是再生制動?
電動機在運轉中如果降低指令頻率,則電動機變為非同步發電機狀態運行,作為制動器而工作,這就叫作再生(電氣)制動。
17、是否能得到更大的制動力?
從電機再生出來的能量貯積在變頻器的濾波電容器中,由於電容器的容量和耐壓的關系,通用變頻器的再生制動力約為額定轉矩的10%~20%。如採用選用件制動單元,可以達到50%~100%。
18、請說明變頻器的保護功能?
保護功能可分為以下兩類:
(1)檢知異常狀態後自動地進行修正動作,如過電流失速防止,再生過電壓失速防止。
(2)檢知異常後封鎖電力半導體器件PWM控制信號,使電機自動停車。如過電流切斷、再生過電壓切斷、半導體冷卻風扇過熱和瞬時停電保護等。
19、為什麼用離合器連接負載時,變頻器的保護功能就動作?
用離合器連接負載時,在連接的瞬間,電機從空載狀態向轉差率大的區域急劇變化,流過的大電流導致變頻器過電流跳閘,不能運轉。
20、在同一工廠內大型電機一起動,運轉中變頻器就停止,這是為什麼?
電機起動時將流過和容量相對應的起動電流,電機定子側的變壓器產生電壓降,電機容量大時此壓降影響也大,連接在同一變壓器上的變頻器將做出欠壓或瞬停的判斷,因而有時保護功能(IPE)動作,造成停止運轉。 21、什麼是變頻解析度?有什麼意義?
對於數字控制的變頻器,即使頻率指令為模擬信號,輸出頻率也是有級給定。這個級差的最小單位就稱為變頻解析度。 變頻解析度通常取值為0.015~0.5Hz.例如,解析度為0.5Hz,那麼23Hz的上面可變為23.5、24.0 Hz,因此電機的動作也是有級的跟隨。這樣對於像連續卷取控制的用途就造成問題。在這種情況下,如果解析度為0.015Hz左右,對於4級電機1個級差為1r/min 以下,也可充分適應。另外,有的機種給定解析度與輸出解析度不相同。
22、裝設變頻器時安裝方向是否有限制。
變頻器內部和背面的結構考慮了冷卻效果的,上下的關系對通風也是重要的,因此,對於單元型在盤內、掛在牆上的都取縱向位,盡可能垂直安裝。
23、不採用軟起動,將電機直接投入到某固定頻率的變頻器時是否可以?
在很低的頻率下是可以的,但如果給定頻率高則同工頻電源直接起動的條件相近。將流過大的起動電流(6~7倍額定電流),由於變頻器切斷過電流,電機不能起動。
24、電機超過60Hz運轉時應注意什麼問題?
超過60Hz運轉時應注意以下事項:
(1)機械和裝置在該速下運轉要充分可能(機械強度、雜訊、振動等)。
(2)電機進入恆功率輸出范圍,其輸出轉矩要能夠維持工作(風機、泵等軸輸出功率於速度的立方成比例增加,所以轉速少許升高時也要注意)。
(3)產生軸承的壽命問題,要充分加以考慮。
(4)對於中容量以上的電機特別是2極電機,在60Hz以上運轉時要與廠家仔細商討。
25、變頻器可以傳動齒輪電機嗎?
根據減速機的結構和潤滑方式不同,需要注意若干問題。在齒輪的結構上通常可考慮70~80Hz為最大極限,採用油潤滑時,在低速下連續運轉關繫到齒輪的損壞等。
26、變頻器能用來驅動單相電機嗎?可以使用單相電源嗎?
基本上不能用。對於調速器開關起動式的單相電機,在工作點以下的調速范圍時將燒毀輔助繞組;對於電容起動或電容運轉方式的,將誘發電容器爆炸。變頻器的電源通常為3相,但對於小容量的,也有用單相電源運轉的機種。
27、變頻器本身消耗的功率有多少?
它與變頻器的機種、運行狀態、使用頻率等有關,但要回答很困難。不過在60Hz以下的變頻器效率大約為94%~96%,據此可推算損耗,但內藏再生制動式(FR-K)變頻器,如果把制動時的損耗也考慮進去,功率消耗將變大,對於操作盤設計等必須注意。
28、為什麼不能在6~60Hz全區域連續運轉使用?
一般電機利用裝在軸上的外扇或轉子端環上的葉片進行冷卻,若速度降低則冷卻效果下降,因而不能承受與高速運轉相同的發熱,必須降低在低速下的負載轉矩,或採用容量大的變頻器與電機組合,或採用專用電機。 29、使用帶制動器的電機時應注意什麼?
制動器勵磁迴路電源應取自變頻器的輸入側。如果變頻器正在輸出功率時制動器動作,將造成過電流切斷。所以要在變頻器停止輸出後再使制動器動作。
30、想用變頻器傳動帶有改善功率因數用電容器的電機,電機卻不動,請說明原因。
變頻器的電流流入改善功率因數用的電容器,由於其充電電流造成變頻器過電流(OCT),所以不能起動,作為對策,請將電容器拆除後運轉,至於改善功率因數,在變頻器的輸入側接入AC電抗器是有效的。
31、變頻器的壽命有多久?
變頻器雖為靜止裝置,但也有像濾波電容器、冷卻風扇那樣的消耗器件,如果對它們進行定期的維護,可望有10年以上的壽命。
32、變頻器內藏有冷卻風扇,風的方向如何?風扇若是壞了會怎樣?
對於小容量也有無冷卻風扇的機種。有風扇的機種,風的方向是從下向上,所以裝設變頻器的地方,上、下部不要放置妨礙吸、排氣的機械器材。還有,變頻器上方不要放置怕熱的零件等。風扇發生故障時,由電扇停止檢測或冷卻風扇上的過熱檢測進行保護
33、濾波電容器為消耗品,那麼怎樣判斷它的壽命?
作為濾波電容器使用的電容器,其靜電容量隨著時間的推移而緩緩減少,定期地測量靜電容量,以達到產品額定容量的85%時為基準來判斷壽命。
34、裝設變頻器時安裝方向是否有限制。
應基本收藏在盤內,問題是採用全封閉結構的盤外形尺寸大,佔用空間大,成本比較高。其措施有:
(1)盤的設計要針對實際裝置所需要的散熱;
(2)利用鋁散熱片、翼片冷卻劑等增加冷卻面積;
(3)採用熱導管。
35、變頻器直流電抗器的作用是什麼?
減小輸入電流的高次諧波干擾,提高輸入電源的功率因數。
36、變頻器附件正弦濾波器有什麼作用?
正弦濾波器允許變頻器使用較長的電機電纜運行,也適用於在變頻器與電機之間有中間變壓器的迴路。 37、變頻器的給定電位器的電阻值多大?
變頻器的給定電位器的阻值一般為1KΩ至10KΩ。
38、為什麼變頻器不能用作變頻電源?
變頻電源的整個電路由交流一直流一交流一濾波等部分構成,因此它輸出的電壓和電流波形均為純正的正弦波,非常接近理想的交流供電電源。可以輸出世界任何國家的電網電壓和頻率。而變頻器是由交流一直流一交流(調制波)等電路構成的,變頻器標准叫法應為變頻調速器。其輸出電壓的波形為脈沖方波,且諧波成分多,電壓和頻率同時按比例變化,不可分別調整,不符合交流電源的要求。原則上不能做供電電源的使用,一般僅用於三相非同步電機的調速。
39、變頻器有哪些干擾方式及一般如何處理?
A. 傳播方式:
(1)輻射干擾;
(2)傳導干擾
B. 抗干擾措施:對於通過輻射方式傳播的干擾信號,主要通過布線以及對放射源和對被干擾的線路進行屏蔽的方式來削弱。對於通過線路傳播的干擾信號,主要通過在變頻器輸入輸出側加裝濾波器,電抗器或磁環等方式來處理。具體方法及注意事項如下:
(1)信號線與動力線要垂直交叉或分槽布線。
(2)不要採用不同金屬的導線相互連接。
(3)屏蔽管(層)應可靠接地,並保證整個長度上連續可靠接地。
(4)信號電路中要使用雙絞線屏蔽電纜。
(5)屏蔽層接地點盡量遠離變頻器,並與變頻器接地點分開。
(6)磁環可以在變頻器輸入電源線和輸出線上使用,具體方法為:輸入線一起朝同一方向繞4圈,而輸出線朝同一方向繞3圈即可。繞線時需注意,盡量將磁環靠近變頻器。
(7)一般對被干擾設備儀器,均可採取屏蔽及其它抗干擾措施。
40、想提高原有輸送帶的速度,以80Hz運轉,變頻器的容量該怎樣選擇?
輸送帶消耗的功率與轉速成正比,因此若想以80HZ運行,變頻器和電機的功率都要按照比例增加為80HZ/50HZ,即提高60%容量。
㈢ 變頻器維修的基礎知識
直流電動拖動和交流電動機拖動先後生於19世紀,距今已有100多年的歷史,並已成為動力機械的主要驅動裝置。由於當時的技術問題,在很長的一個時間內,需要進行調速控制的拖動系統中則基本上採用的是直流電動機。
直流電動機存在以下缺點是由於結構上的原因:
1、由於直流電動機存在換向火花,難以應用於存在易燃易爆氣體的惡劣環境;
2、需要定期更換電刷和換向器,維護保養困難,壽命較短;
3、結構復雜,難以製造大容量、高轉速和高電壓的直流電動機。
而與直流電動機相比,交流電動機則具有以下優點:
1、不存在換向火花,可以應用於存在易燃易火暴氣體的惡劣環境;
2、容易製造出大容量、高轉速和高電壓的交流電動機;
3、結構堅固,工作可靠,易於維護保養。
就是因為這樣,限制了交流高速系統的推廣應用。經過20世紀70年代中期的第二次石油危機之後和電子技術的發展,交流高速系統的變頻器技術得到了高速的發展。 開關電源電路提供變頻器的整機控制用電,是變頻器正常工作的先決條件。變頻器應用的開關電源電路,為直一交一直型的逆變電路,是一種電壓和功率的變換器,將直流電壓和功率轉換為脈沖電壓,再整流成為另一種直流電壓。輸人、輸出電壓由開關變壓器相隔離,開關變壓器起到功率傳遞、電壓/電流變換的作用。開關變壓器為降壓變壓器。開關電源的特點如下:
1)開關電源的振盪和調壓方式是利用改變脈沖寬度或周期來調整輸出電壓的,稱為時間比例控制,又分為PWM(調寬)和PFM(調頻)兩種控制方式。
2)從電路的能量轉換特性看,可分為正激和反激兩種工作方式。開關管飽和導通時, 二次繞組連接的整流器受反偏壓而截止,開關變壓器的一次繞組流入電流而儲能〈電磁轉換)。開關管截止時,二次繞組經負載電路釋放電能(磁電轉換)。正激方式則與此相反, 實際應用不多。
3)從開關變壓器的一次電路結構來看,有分立元件構成的和集成振盪晶元構成的兩種電路形式。因而從振盪信號的來源看,又分為自激(分立零件)和他激式(IC電路)開關電源。兩種電路結構都有應用。 4)開關管有採用雙極型器件和採用場效應晶體管的。
5)小功率變頻器採用單端正激式電路,大、中功率變頻器常採用雙端正激式電路。一般變頻器的開關電源,常提供以下幾種電壓輸出:CPU及附屬電路、控制電路、操作顯示面板的+5V供電;電流、電壓、溫度等故障檢測電路、控制電路的±15V供電;控制端子、工作繼電器線圈的24V供電。四路相互隔離的約為22V的驅動電路的供電,該四路供電往往又經穩壓電路處理成+15V、 -7.5V的正、負電源供驅動電路,為IGBT逆變輸出電路提供激勵電流。
任何電子設備,電源電路的故障率總是相當高的一因其要提供整機的電源供應,負擔最重。變頻器的開關電源電路,形式上比較單一,結構上也比較簡單。但是簡單電路也可能會產生疑難故障。開關電源的檢修不像線性電源那麼直觀,電路的任一個小環節一振盪、穩壓、保護、負載等出現異常,都會使電路出現各種各樣的故障現象。
上電後無反應,操作顯示面板無顯示,變頻器好像沒通電一樣。測量控制端子的控制電壓和10V頻率調整電壓都為0,測量變頻器主接線端子電阻正常,那麼大致上可以斷定問題是出在開關電源電路了。
㈣ 變頻器使用有需哪些注意哪些求解答
注意事項如下:
1、要注意環境溫度及變頻器散熱,這對變頻器的使用壽命有很大的影響。
2、要根據變頻器使用手冊正確的接線及參數設置。
3、要根據電機正確選用變頻器工作的頻率,避免電機長期工作在低頻區域,而降低電機壽命及影響電網質量。
4、正確選擇變頻器控制方式,V/f控制屬於恆轉矩調整。而矢量控制使電機的輸出轉矩和電壓的平方成正比的增加,從而改善電機在低速時的輸出轉矩。
5、若系統採用工頻/變頻切換方式運行,工頻輸出與變頻輸出的互鎖要可靠。
6、變頻器容量的選擇要根據電機選擇,不能單看功率,要注意電流和電壓。
7、正確設置變頻器的保護,要結合所控制電機的特點設置。
8、要注意變頻器干擾問題,控制系統較好獨立接地,接地電阻小於1Ω。感測器、I/O介面屏蔽層與控制系統的控制地相連。電機接地要與控制系統接地分開。給儀表等輸入電源加裝EMI濾波器、共模電感、高頻磁環等。給變頻器加裝輸入交流和直流電抗器,可以提高功率因數,減少諧波污染,綜合效果好。某些電機與變頻器之間距離超過100m的場合,需要在變頻器側添加交流輸出電抗器。
㈤ 變頻器的知識,原理及操作方法。
1.變頻器工作原理綜述:
變頻器工作原理弄明白之前,不妨先看看變頻器究竟為何方神聖?變頻器就是把工頻電源(50Hz或60Hz)變換成各種頻率的交流電源,以實現電機的變速運行的設備。而這其中控制電路完成對主電路的控制,整流電路將交流電變換成直流電,直流中間電路對整流電路的輸出進行平滑濾波,逆變電路將直流電再逆成交流電(及核心控制電路實現:交-直-交的過程)。而變頻技術是應交流電機無級調速的需要而誕生的。而其工作原理用公式來表達的話便是:n=60 f(1-s)/p (1)式中n———非同步電動機的轉速;f———非同步電動機的頻率;s———電動機轉差率;p———電動機極對數。由式(1)可知,轉速n與頻率f成正比,只要改變頻率f即可改變電動機的轉速,當頻率f在0~50Hz的范圍內變化時,電動機轉速調節范圍非常寬。變頻器就是通過改變電動機電源頻率實現速度調節的,是一種理想的高效率、高性能的調速手段。
2.變頻器工作原理之三大組成部分:
變頻器工作原理就是這樣,但它到底怎麼實現的呢?主要是由其三個組成部分完成的。(1)將工頻電源變換為直流功率的「整流器」:它把工頻電源變換為直流電源。也可用兩組晶體管變流器構成可逆變流器,由於其功率方向可逆,可以進行再生運轉。(2)吸收在變流器和逆變器產生的電壓脈動的「平波迴路」:在整流器整流後的直流電壓中,含有電源6倍頻率的脈動電壓,此外逆變器產生的脈動電流也使直流電壓變動。(3)將直流功率變換為交流功率的「逆變器」:同整流器相反,逆變器是將直流功率變換為所要求頻率的交流功率,以所確定的時間使6個開關器件導通、關斷就可以得到3相交流輸出。
3.變頻器工作原理之基本分類:
變頻器工作原理都一直,那世界上那麼多變頻器為毛不一樣呢?如果你在這樣吶喊的話,我只能說,抱歉是的,而且他們還可以這樣分類(請自行腦補強迫症模式的開啟過程):按照主電路工作方式分類,可以分為電壓型變頻器和電流型變頻器;按照開關方式分類,可以分為PAM控制變頻器、PWM控制變頻器和高載頻PWM控制變頻器;按照工作原理分類,可以分為V/f控制變頻器、轉差頻率控制變頻器和矢量控制變頻器等;按照用途分類,可以分為通用變頻器、高性能專用變頻器、高頻變頻器、單相變頻器和三相變頻器等。
4.變頻器工作原理之歷史進展:
變頻技術是應交流電機無級調速的需要而誕生的。20世紀60年代以後,電力電子器件經歷了SCR(晶閘管)、GTO(門極可關斷晶閘管)、BJT(雙極型功率晶體管)、MOSFET(金屬氧化物場效應管)、SIT(靜電感應晶體管)、SITH(靜電感應晶閘管)、MGT(MOS控制晶體管)、MCT(MOS控制晶閘管)、IGBT(絕緣柵雙極型晶體管)、HVIGBT(耐高壓絕緣柵雙極型晶閘管)的發展過程,器件的更新促進了電力電子變換技術的不斷發展(注意,正因為如此,所以變頻器的產生便是在這個背景下的)。20世紀70年代開始,脈寬調制變壓變頻(PWM-VVVF)調速研究引起了人們的高度重視。20世紀80年代,作為變頻技術核心的PWM模式優化問題吸引著人們的濃厚興趣,並得出諸多優化模式,其中以鞍形波PWM模式效果最佳。20世紀80年代後半期開始,美、日、德、英等發達國家的VVVF變頻器已投入市場並獲得了廣泛應用。至於想了解各類變頻器工作原理的話,不妨由簡至繁的看看變頻器控制方式的四種演變。
5.變頻器控制方式之U/f=C的正弦脈寬調制(SPWM):
變頻器的SPWM控制方式的特點是控制電路結構簡單、成本較低,機械特性硬度也較好,能夠滿足一般傳動的平滑調速要求,已在產業的各個領域得到廣泛應用。但是,這種控制方式在低頻時,由於輸出電壓較低,轉矩受定子電阻壓降的影響比較顯著,使輸出最大轉矩減小。另外,其機械特性終究沒有直流電動機硬,動態轉矩能力和靜態調速性能都還不盡如人意,且系統性能不高、控制曲線會隨負載的變化而變化,轉矩響應慢、電機轉矩利用率不高,低速時因定子電阻和逆變器死區效應的存在而性能下降,穩定性變差等。因此人們又研究出矢量控制變頻調速。
6.變頻器控制方式之電壓空間矢量(SVPWM):
變頻器的SVPWM控制方式是以三相波形整體生成效果為前提,以逼近電機氣隙的理想圓形旋轉磁場軌跡為目的,一次生成三相調制波形,以內切多邊形逼近圓的方式進行控制的。經實踐使用後又有所改進,即引入頻率補償,能消除速度控制的誤差;通過反饋估算磁鏈幅值,消除低速時定子電阻的影響;將輸出電壓、電流閉環,以提高動態的精度和穩定度。但控制電路環節較多,且沒有引入轉矩的調節,所以系統性能沒有得到根本改善。
7.變頻器控制方式之矢量控制(VC)方式:
變頻器的VC控制方式的做法是將非同步電動機在三相坐標系下的定子電流Ia、Ib、Ic、通過三相-二相變換,等效成兩相靜止坐標系下的交流電流Ia1Ib1,再通過按轉子磁場定向旋轉變換,等效成同步旋轉坐標系下的直流電流Im1、It1(Im1相當於直流電動機的勵磁電流;It1相當於與轉矩成正比的電樞電流),然後模仿直流電動機的控制方法,求得直流電動機的控制量,經過相應的坐標反變換,實現對非同步電動機的控制。其實質是將交流電動機等效為直流電動機,分別對速度,磁場兩個分量進行獨立控制。通過控制轉子磁鏈,然後分解定子電流而獲得轉矩和磁場兩個分量,經坐標變換,實現正交或解耦控制。矢量控制方法的提出具有劃時代的意義。然而在實際應用中,由於轉子磁鏈難以准確觀測,系統特性受電動機參數的影響較大,且在等效直流電動機控制過程中所用矢量旋轉變換較復雜,使得實際的控制效果難以達到理想分析的結果。
8.變頻器控制方式之直接轉矩控制(DTC)方式:
變頻器的DTC控制方式源於1985年,德國魯爾大學的DePenbrock教授,他首次提出了直接轉矩控制變頻技術。該技術在很大程度上解決了上述矢量控制的不足,並以新穎的控制思想、簡潔明了的系統結構、優良的動靜態性能得到了迅速發展。目前,該技術已成功地應用在電力機車牽引的大功率交流傳動上。直接轉矩控制直接在定子坐標系下分析交流電動機的數學模型,控制電動機的磁鏈和轉矩。它不需要將交流電動機等效為直流電動機,因而省去了矢量旋轉變換中的許多復雜計算;它不需要模仿直流電動機的控制,也不需要為解耦而簡化交流電動機的數學模型。
9.變頻器控制方式之矩陣式交—交方式:
變頻器的矩陣式交-交方式省去了中間直流環節,從而省去了體積大、價格貴的電解電容。它能實現功率因數為l,輸入電流為正弦且能四象限運行,系統的功率密度大。該技術目前雖尚未成熟,但仍吸引著眾多的學者深入研究。其實質不是間接的控制電流、磁鏈等量,而是把轉矩直接作為被控制量來實現的。具體方法是:
——控制定子磁鏈引入定子磁鏈觀測器,實現無速度感測器方式;
——自動識別(ID)依靠精確的電機數學模型,對電機參數自動識別;
——算出實際值對應定子阻抗、互感、磁飽和因素、慣量等算出實際的轉矩、定子磁鏈、轉子速度進行實時控制;
——實現Band—Band控制按磁鏈和轉矩的Band—Band控制產生PWM信號,對逆變器開關狀態進行控制。
矩陣式交—交變頻具有快速的轉矩響應(2ms),很高的速度精度(±2%,無PG反饋),高轉矩精度(+3%);同時還具有較高的起動轉矩及高轉矩精度,尤其在低速時(包括0速度時),可輸出150%~200%轉矩。
當然,看到這里並不是說變頻器就可以完全弄明白了,更好地理解變頻器工作原理還需要各位在理解上述知識的前提下去分解套用到現實中,再驗證才能算是弄明白了變頻器的工作原理(傳說中的廢話:實踐出真知)。
㈥ 變頻器的知識
PWM是英文Pulse Width Molation(脈沖寬度調制)縮寫,按一定規律改變脈沖列的脈沖寬度,以調節輸出量和波形的一種調值方式。
PAM是英文Pulse Amplitude Molation (脈沖幅度調制) 縮寫,是按一定規律改變脈沖列的脈沖幅度,以調節輸出量值和波形的一種調制方式
SPWM,就是在PWM的基礎上改變了調制脈沖方式,脈沖寬度時間占空比按正弦規率排列,這樣輸出波形經過適當的濾波可以做到正弦波輸出。它廣泛的用於支流交流逆變器等,比如高級一些的UPS就是一個例子。三相SPWM是使用SPWM模擬市電的三相輸出,在變頻器領域被廣泛的採用。
SVPWM是Space Vector Pulse Width Mol的意思,翻譯成空間矢量脈寬調制,它是一種PWM技術的調制方法,他的思想是通過pwm調制形成的pwm波在接入電機三相定子繞組中時,使電機的定子產生圓形旋轉磁場,從而帶動電機旋轉,這里的空間矢量指的是三相定子電壓的合成矢量(具體了解你可以看看交流傳動方面的書我這里就不解釋了),SVPWM說白了是一種逆變方法是正弦脈寬調制(SPWM)的一個特例,而矢量控制是電動機調速的一種控制方法,他的目的是把三相非同步電動機的轉速和轉矩控制分開使控制更精確,形成類似於直流電動機的數學模型,從而達到直流電動機的控制性能,矢量控制最終算出來的就是三相定子電壓的數值,你根據這個數值再運用SVPWM就可以驅動電機達到你的控制要求了。其實這兩種方法就是名字上有點類似,SVPWM是一種逆變方法,而矢量控制是一種控制演算法,是兩個完全不同的東西,回答完畢。 。
㈦ 有關變頻器的所有知識
反用換流器(inverter,也稱變頻器、逆變器、反流器,或稱電壓轉換器)是一個可將直流電變換成交流電的電路。
有些電子裝備必須採用交流電來驅動,但若所提供的卻是直流電源,此時便須使用Inverter,將直流電轉成交流電後方可驅動該電子裝備。
Inverter可變動交流電的頻率,所以用在電機類控制元件上稱為變頻器,可用來控制AC感應馬達的轉速。
反用換流器的應用廣泛,小如個人電腦用的不斷電系統(UPS),大至運輸工具的電流控制器都可以找到它的存在(例如使用直流電供電,但裝備為交流馬達的鐵路系統)。
參考資料
http://zh.wikipedia.org/w/index.php?title=%E8%AE%8A%E9%A0%BB%E5%99%A8&variant=zh-tw
維基網路
㈧ 變頻器的有關知識知道的給說下,作用及其用途
變頻器是利用電力半導體器件的通斷作用將工頻電源變換為另一頻率的電能控制裝置。我們現在使用的變頻器主要採用交—直—交方式(VVVF變頻或矢量控制變頻),先把工頻交流電源通過整流器轉換成直流電源,然後再把直流電源轉換成頻率、電壓均可控制的交流電源以供給電動機。變頻器的電路一般由整流、中間直流環節、逆變和控制4個部分組成。整流部分為三相橋式不可控整流器,逆變部分為IGBT三相橋式逆變器,且輸出為PWM波形,中間直流環節為濾波、直流儲能和緩沖無功功率。
變頻器選型:
變頻器選型時要確定以下幾點:
1) 採用變頻的目的;恆壓控制或恆流控制等。
2) 變頻器的負載類型;如葉片泵或容積泵等,特別注意負載的性能曲線,性能曲線決定了應用時的方式方法。
3) 變頻器與負載的匹配問題;
I.電壓匹配;變頻器的額定電壓與負載的額定電壓相符。
II. 電流匹配;普通的離心泵,變頻器的額定電流與電機的額定電流相符。對於特殊的負載如深水泵等則需要參考電機性能參數,以最大電流確定變頻器電流和過載能力。
III.轉矩匹配;這種情況在恆轉矩負載或有減速裝置時有可能發生。
4) 在使用變頻器驅動高速電機時,由於高速電機的電抗小,高次諧波增加導致輸出電流值增大。因此用於高速電機的變頻器的選型,其容量要稍大於普通電機的選型。
5) 變頻器如果要長電纜運行時,此時要採取措施抑制長電纜對地耦合電容的影響,避免變頻器出力不足,所以在這樣情況下,變頻器容量要放大一檔或者在變頻器的輸出端安裝輸出電抗器。
6) 對於一些特殊的應用場合,如高溫,高海拔,此時會引起變頻器的降容,變頻器容量要放大一擋。
變頻器控制原理圖設計:
1) 首先確認變頻器的安裝環境;
I.工作溫度。變頻器內部是大功率的電子元件,極易受到工作溫度的影響,產品一般要求為0~55℃,但為了保證工作安全、可靠,使用時應考慮留有餘地,最好控制在40℃以下。在控制箱中,變頻器一般應安裝在箱體上部,並嚴格遵守產品說明書中的安裝要求,絕對不允許把發熱元件或易發熱的元件緊靠變頻器的底部安裝。
II. 環境溫度。溫度太高且溫度變化較大時,變頻器內部易出現結露現象,其絕緣性能就會大大降低,甚至可能引發短路事故。必要時,必須在箱中增加乾燥劑和加熱器。在水處理間,一般水汽都比較重,如果溫度變化大的話,這個問題會比較突出。
III.腐蝕性氣體。使用環境如果腐蝕性氣體濃度大,不僅會腐蝕元器件的引線、印刷電路板等,而且還會加速塑料器件的老化,降低絕緣性能。
IV. 振動和沖擊。裝有變頻器的控制櫃受到機械振動和沖擊時,會引起電氣接觸不良。淮安熱電就出現這樣的問題。這時除了提高控制櫃的機械強度、遠離振動源和沖擊源外,還應使用抗震橡皮墊固定控制櫃外和內電磁開關之類產生振動的元器件。設備運行一段時間後,應對其進行檢查和維護。
V. 電磁波干擾。變頻器在工作中由於整流和變頻,周圍產生了很多的干擾電磁波,這些高頻電磁波對附近的儀表、儀器有一定的干擾。因此,櫃內儀表和電子系統,應該選用金屬外殼,屏蔽變頻器對儀表的干擾。所有的元器件均應可靠接地,除此之外,各電氣元件、儀器及儀表之間的連線應選用屏蔽控制電纜,且屏蔽層應接地。如果處理不好電磁干擾,往往會使整個系統無法工作,導致控制單元失靈或損壞。
2) 變頻器和電機的距離確定電纜和布線方法;
I.變頻器和電機的距離應該盡量的短。這樣減小了電纜的對地電容,減少干擾的發射源。
II. 控制電纜選用屏蔽電纜,動力電纜選用屏蔽電纜或者從變頻器到電機全部用穿線管屏蔽。
III.電機電纜應獨立於其它電纜走線,其最小距離為500mm。同時應避免電機電纜與其它電纜長距離平行走線,這樣才能減少變頻器輸出電壓快速變化而產生的電磁干擾。如果控制電纜和電源電纜交叉,應盡可能使它們按90度角交叉。與變頻器有關的模擬量信號線與主迴路線分開走線,即使在控制櫃中也要如此。
IV. 與變頻器有關的模擬信號線最好選用屏蔽雙絞線,動力電纜選用屏蔽的三芯電纜(其規格要比普通電機的電纜大檔)或遵從變頻器的用戶手冊。
3) 變頻器控制原理圖;
I.主迴路:電抗器的作用是防止變頻器產生的高次諧波通過電源的輸入迴路返回到電網從而影響其他的受電設備,需要根據變頻器的容量大小來決定是否需要加電抗器;濾波器是安裝在變頻器的輸出端,減少變頻器輸出的高次諧波,當變頻器到電機的距離較遠時,應該安裝濾波器。雖然變頻器本身有各種保護功能,但缺相保護卻並不完美,斷路器在主迴路中起到過載,缺相等保護,選型時可按照變頻器的容量進行選擇。可以用變頻器本身的過載保護代替熱繼電器。
II. 控制迴路:具有工頻變頻的手動切換,以便在變頻出現故障時可以手動切工頻運行,因輸出端不能加電壓,固工頻和變頻要有互鎖。
4) 變頻器的接地;
變頻器正確接地是提高系統穩定性,抑制雜訊能力的重要手段。變頻器的接地端子的接地電阻越小越好,接地導線的截面不小於4mm,長度不超過5m。變頻器的接地應和動力設備的接地點分開,不能共地。信號線的屏蔽層一端接到變頻器的接地端,另一端浮空。變頻器與控制櫃之間電氣相通。
變頻器控制櫃設計:
變頻器應該安裝在控制櫃內部,控制櫃在設計時要注意以下問題
1) 散熱問題:變頻器的發熱是由內部的損耗產生的。在變頻器中各部分損耗中主要以主電路為主,約佔98%控制電路佔2%。為了保證變頻器正常可靠運行,必須對變頻器進行散熱我們通常採用風扇散熱;變頻器的內裝風扇可將變頻器的箱體內部散熱帶走,若風扇不能正常工作,應立即停止變頻器運行;大功率的變頻器還需要在控制櫃上加風扇,控制櫃的風道要設計合理,所有進風口要設置防塵網,排風通暢,避免在櫃中形成渦流,在固定的位置形成灰塵堆積;根據變頻器說明書的通風量來選擇匹配的風扇,風扇安裝要注意防震問題。
2) 電磁干擾問題:
I.變頻器在工作中由於整流和變頻,周圍產生了很多的干擾電磁波,這些高頻電磁波對附近的儀表、儀器有一定的干擾,而且會產生高次諧波,這種高次諧波會通過供電迴路進入整個供電網路,從而影響其他儀表。如果變頻器的功率很大占整個系統25%以上,需要考慮控制電源的抗干擾措施。
II.當系統中有高頻沖擊負載如電焊機、電鍍電源時,變頻器本身會因為干擾而出現保護,則考慮整個系統的電源質量問題。
3) 防護問題需要注意以下幾點:
I.防水防結露:如果變頻器放在現場,需要注意變頻器櫃上方不的有管道法蘭或其他漏點,在變頻器附近不能有噴濺水流,總之現場櫃體防護等級要在IP43以上。
II. 防塵:所有進風口要設置防塵網阻隔絮狀雜物進入,防塵網應該設計為可拆卸式,以方便清理,維護。防塵網的網格根據現場的具體情況確定,防塵網四周與控制櫃的結合處要處理嚴密。
III.防腐蝕性氣體:在化工行業這種情況比較多見,此時可以將變頻櫃放在控制室中。
變頻器接線規范:
信號線與動力線必須分開走線:使用模擬量信號進行遠程式控制制變頻器時,為了減少模擬量受來自變頻器和其它設備的干擾,請將控制變頻器的信號線與強電迴路(主迴路及順控迴路)分開走線。距離應在30cm以上。即使在控制櫃內,同樣要保持這樣的接線規范。該信號與變頻器之間的控制迴路線最長不得超過50m。
信號線與動力線必須分別放置在不同的金屬管道或者金屬軟管內部:連接PLC和變頻器的信號線如果不放置在金屬管道內,極易受到變頻器和外部設備的干擾;同時由於變頻器無內置的電抗器,所以變頻器的輸入和輸出級動力線對外部會產生極強的干擾,因此放置信號線的金屬管或金屬軟管一直要延伸到變頻器的控制端子處,以保證信號線與動力線的徹底分開。
1) 模擬量控制信號線應使用雙股絞合屏蔽線,電線規格為0.75mm2。在接線時一定要注意,電纜剝線要盡可能的短(5-7mm左右),同時對剝線以後的屏蔽層要用絕緣膠布包起來,以防止屏蔽線與其它設備接觸引入干擾。
2) 為了提高接線的簡易性和可靠性,推薦信號線上使用壓線棒端子。
變頻器的運行和相關參數的設置:
變頻器的設定參數多,每個參數均有一定的選擇范圍,使用中常常遇到因個別參數設置不當,導致變頻器不能正常工作的現象。
控制方式:即速度控制、轉距控制、PID控制或其他方式。採取控制方式後,一般要根據控制精度,需要進行靜態或動態辨識。
最低運行頻率:即電機運行的最小轉速,電機在低轉速下運行時,其散熱性能很差,電機長時間運行在低轉速下,會導致電機燒毀。而且低速時,其電纜中的電流也會增大,也會導致電纜發熱。
最高運行頻率:一般的變頻器最大頻率到60Hz,有的甚至到400 Hz,高頻率將使電機高速運轉,這對普通電機來說,其軸承不能長時間的超額定轉速運行,電機的轉子是否能承受這樣的離心力。
載波頻率:載波頻率設置的越高其高次諧波分量越大,這和電纜的長度,電機發熱,電纜發熱變頻器發熱等因素是密切相關的。
電機參數:變頻器在參數中設定電機的功率、電流、電壓、轉速、最大頻率,這些參數可以從電機銘牌中直接得到。
跳頻:在某個頻率點上,有可能會發生共振現象,特別在整個裝置比較高時;在控制壓縮機時,要避免壓縮機的喘振點。
常見故障分析:
1) 過流故障:過流故障可分為加速、減速、恆速過電流。其可能是由於變頻器的加減速時間太短、負載發生突變、負荷分配不均,輸出短路等原因引起的。這時一般可通過延長加減速時間、減少負荷的突變、外加能耗制動元件、進行負荷分配設計、對線路進行檢查。如果斷開負載變頻器還是過流故障,說明變頻器逆變電路已環,需要更換變頻器。
2) 過載故障:過載故障包括變頻過載和電機過載。其可能是加速時間太短,電網電壓太低、負載過重等原因引起的。一般可通過延長加速時間、延長制動時間、檢查電網電壓等。負載過重,所選的電機和變頻器不能拖動該負載,也可能是由於機械潤滑不好引起。如前者則必須更換大功率的電機和變頻器;如後者則要對生產機械進行檢修。
3) 欠壓:說明變頻器電源輸入部分有問題,需檢查後才可以運行。
小結:
1) 總之,在設計、安裝、使用變頻器時一定要遵從變頻器使用說明書的指導。
2) 各電氣設計人員,現場電氣調試人員可以在此基礎上完善此變頻器參考。
㈨ 什麼是變頻器
變頻器的定義:
變頻器是應用變頻技術與微電子技術,通過改變電機工作電源頻率方式來控制交流電動機的電力控制設備。
頻器靠內部IGBT的開斷來調整輸出電源的電壓和頻率,根據電機的實際需要來提供其所需要的電源電壓,進而達到節能、調速的目的,另外,變頻器還有很多的保護功能,如過流、過壓、過載保護等等。一能所研發的SF-025A變頻器,採用先進的控制演算法,搭配國際主流的DSP晶元,響應快,穩定性強。採用先進的IGBT變頻驅動技術,電機溫升低,噪音小,界面簡潔,操作方便。
變頻器的作用:
變頻節能,主要表現在風機、水泵的應用上,但並不是所有的場合都會適用(注意使用場合和使用條件)。
功率因數補償節能,無功功率不但增加線損和設備的發熱,更主要的是功率因數的降低導致電網有功功率的降低,大量的無功電能消耗在線路當中,設備使用效率低下,浪費嚴重,使用變頻調速裝置後,由於變頻器內部濾波電容的作用,從而減少了無功損耗,增加了電網的有功功率。
軟啟動節能,電機硬啟動對電網造成嚴重的沖擊,而且還會對電網容量要求過高,使用變頻節能裝置後,利用變頻器的軟啟動功能將使啟動電流從零開始,最大值也不超過額定電流,減輕了對電網的沖擊和對供電容量的要求,延長了設備和閥門的使用壽命。