當前位置:首頁 » 基礎知識 » 數學的函數知識點

數學的函數知識點

發布時間: 2022-07-05 20:25:43

❶ 初中數學函數相關全部知識點

初中數學知識點歸納(口訣)——函數
正比例函數的鑒別
判斷正比例函數,檢驗當分兩步走。
一量表示另一量,
有沒有。
若有再去看取值,全體實數都需要。
區分正比例函數,衡量可分兩步走。
一量表示另一量,
是與否。
若有還要看取值,全體實數都要有。
正比例函數的圖象與性質
正比函數圖直線,經過
和原點。
k正一三負二四,變化趨勢記心間。
k正左低右邊高,同大同小向爬山。
k負左高右邊低,一大另小下山巒。
一次函數
一次函數圖直線,經過
點。
k正左低右邊高,越走越高向爬山。
k負左高右邊低,越來越低很明顯。

❷ 初二數學一次函數知識點有哪些

初二數學一次函數知識點歸納有:

1、正比例函數和一次函數的概念


基礎知識歸納:一般地,如果y=kx+b(k,b是常數,k≠0),那麼y叫做x的一次函數。特別地,當一次函數y=kx+b中的b為0時,y=kx(k為常數,k≠0)。這時,y叫做x的正比例函數。


基本方法歸納:判斷一個函數是否是一次函數關鍵是看它的k是否不為0和自變數指數是否為1;而要判斷是否為正比例函數還要在一次函數基礎上加上b=0這個條件。





2、一次函數的圖像


基礎知識歸納:所有一次函數的圖像都是一條直線;一次函數y=kx+b的圖像是經過點(0,b)的直線。


正比例函數y=k/x的圖像是經過原點(0,0)的直線。


k>0,b>0時,圖像經過一、二、三象限,y隨x的增大而增大。


k>0,b<0時,圖像經過一、三、四象限,y隨x的增大而增大。


k<0,b>0時,圖像經過一、二、四象限,y隨x的增大而減小。


k<0,b<0時,圖像經過二、三、四象限,y隨x的增大而減小。


當b=0時,一次函數變為正比例函數,正比例函數是一次函數的特例。


基本方法歸納:一次函數y=kx+b是由正比例函數y=kx上下平移得到的,要判斷一次函數經過的象限,再由b的正負得向上平移還是向下平移,從而得出所過象限。而增減性只由k的正負決定,與b的取值無關。

3、正比例函數和一次函數解析式的確定


基礎知識歸納:確定一個正比例函數,就是要確定正比例函數定義式y=kx(k≠0)中的常數k。確定一個一次函數,需要確定一次函數定義式y=kx+b(k≠0)中的常數k和b。解這類問題的一般方法是待定系數法。


4、一次函數圖象與坐標軸圍成的三角形的面積


基礎知識歸納:直線y=kx+b與x軸的交點坐標和與Y軸的交點坐標;能求直線與兩坐標軸圍成的三角形的面積。


5、一次函數的應用


基礎知識歸納:主要涉及到經濟決策、市場經濟等方面的應用.利用一次函數並與方程(組)、不等式(組)聯系在一起決實際生活中的利率、利潤、租金、生產方案的設計問題。


基本方法歸納:利用函數知識解應用題的一般步驟:


(1)設定實際問題中的變數。


(2)建立變數與變數之間的函數關系,如:一次函數,二次函數或其他復合而成的函數式。


(3)確定自變數的取值范圍,保證自變數具有實際意義。


(4)利用函數的性質解決問題。


(5)寫出答案。


注意問題歸納:讀圖時首先要弄清橫縱坐標表示的實際意義,還要會將圖像上點的坐標轉化成表示實際意義的量;自變數取值范圍要准確,要滿足實際意義。

❸ 高一數學的函數知識點

1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域. 注意:
1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。 求函數的定義域時列不等式組的主要依據是: (1)分式的分母不等於零;
(2)偶次方根的被開方數不小於零;
(3)對數式的真數必須大於零;
(4)指數、對數式的底必須大於零且不等於1;
(5)如果函數是由一些基本函數通過四則運算結合而成的。那麼,它的定義域是使各部分都有意義的x的值組成的集合. (6)指數為零底不可以等於零,
(7)實際問題中的函數的定義域還要保證實際問題有意義.。 1.函數的單調性(局部性質) (1)增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數.區間D稱為y=f(x)的單調增區間.。
如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數。區間D稱為y=f(x)的單調減區間。
注意:函數的單調性是函數的局部性質。
圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的。
函數單調區間與單調性的判定方法
(A) 定義法:
1 任取x1,x2∈D,且x1<x2;
2 作差f(x1)-f(x2);
3 變形(通常是因式分解和配方);
4 定號(即判斷差f(x1)-f(x2)的正負);
5 下結論(指出函數f(x)在給定的區間D上的單調性)。
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:「同增異減」 。
注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集。
資料;五年高考三年模擬

❹ 初二數學函數知識點

初二數學《函數》知識點總結
(一)平面直角坐標系
1、定義:平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系
2、已知點的坐標找出該點的方法:
分別以點的橫坐標、縱坐標在數軸上表示的點為垂足,作x軸y軸的的垂線,兩垂線的交點即為要找的點。
3、已知點求出其坐標的方法:
由該點分別向x軸y軸作垂線,垂足在x軸上的坐標是改點的橫坐標,垂足在y軸上的坐標是該點的縱坐標。
4、各個象限內點的特徵:
第一象限:(+,+) 點P(x,y),則x>0,y>0;
第二象限:(-,+) 點P(x,y),則x<0,y>0;
第三象限:(-, -) 點P(x,y),則x<0,y<0;
第四象限:(+,-) 點P(x,y),則x>0,y<0;
5、坐標軸上點的坐標特徵:
x軸上的點,縱坐標為零;y軸上的點,橫坐標為零;原點的坐標為(0 , 0)。兩坐標軸的點不屬於任何象限。
6、點的對稱特徵:已知點P(m,n),
關於x軸的對稱點坐標是(m,-n), 橫坐標相同,縱坐標反號
關於y軸的對稱點坐標是(-m,n) 縱坐標相同,橫坐標反號
關於原點的對稱點坐標是(-m,-n) 橫,縱坐標都反號
7、平行於坐標軸的直線上的點的坐標特徵:
平行於x軸的直線上的任意兩點:縱坐標相等;
平行於y軸的直線上的任意兩點:橫坐標相等。
8、各象限角平分線上的點的坐標特徵:
第一、三象限角平分線上的點橫、縱坐標相等。
點P(a,b)關於第一、三象限坐標軸夾角平分線的對稱點坐標是(b, a)
第二、四象限角平分線上的點橫縱坐標互為相反數。
點P(a,b)關於第二、四象限坐標軸夾角平分線的對稱點坐標是(-b,-a)
9、點P(x,y)的幾何意義:
點P(x,y)到x軸的距離為 |y|,
點P(x,y)到y軸的距離為 |x|。
點P(x,y)到坐標原點的距離為
10、兩點之間的距離:
X軸上兩點為A 、B |AB|
Y軸上兩點為C 、D |CD|
已知A 、B AB|=
11、中點坐標公式:已知A 、B M為AB的中點
則:M=( , )
12、點的平移特徵: 在平面直角坐標系中,
將點(x,y)向右平移a個單位長度,可以得到對應點( x-a,y);
將點(x,y)向左平移a個單位長度,可以得到對應點(x+a ,y);
將點(x,y)向上平移b個單位長度,可以得到對應點(x,y+b);
將點(x,y)向下平移b個單位長度,可以得到對應點(x,y-b)。
注意:對一個圖形進行平移,這個圖形上所有點的坐標都要發生相應的變化;反過來,從圖形上點的坐標的加減變化,我們也可以看出對這個圖形進行了怎樣的平移。
(二)函數的基本知識:

知識網路圖

基本概念
1、變數:在一個變化過程中可以取不同數值的量。
常量:在一個變化過程中只能取同一數值的量。
2、函數:一般的,在一個變化過程中,如果有兩個變數x和y,並且對於x的每一個確定的值,y都有唯一確定的值與其對應,那麼我們就把x稱為自變數,把y稱為因變數,y是x的函數。
*判斷A是否為B的函數,只要看B取值確定的時候,A是否有唯一確定的值與之對應
3、定義域:一般的,一個函數的自變數允許取值的范圍,叫做這個函數的定義域。
4、確定函數定義域的方法:
(1)關系式為整式時,函數定義域為全體實數;
(2)關系式含有分式時,分式的分母不等於零;
(3)關系式含有二次根式時,被開放方數大於等於零;
(4)關系式中含有指數為零的式子時,底數不等於零;
(5)實際問題中,函數定義域還要和實際情況相符合,使之有意義。
5、函數的圖像
一般來說,對於一個函數,如果把自變數與函數的每對對應值分別作為點的橫、縱坐標,那麼坐標平面內由這些點組成的圖形,就是這個函數的圖象.
6、函數解析式:用含有表示自變數的字母的代數式表示因變數的式子叫做解析式。
7、描點法畫函數圖形的一般步驟
第一步:列表(表中給出一些自變數的值及其對應的函數值);
第二步:描點(在直角坐標系中,以自變數的值為橫坐標,相應的函數值為縱坐標,描出表格中數值對應的各點);
第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。
8、函數的表示方法
列表法:一目瞭然,使用起來方便,但列出的對應值是有限的,不易看出自變數與函數之間的對應規律。
解析式法:簡單明了,能夠准確地反映整個變化過程中自變數與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達兩個變數之間的函數關系。

(三)正比例函數和一次函數
1、正比例函數及性質
一般地,形如y=kx(k是常數,k≠0)的函數叫做正比例函數,其中k叫做比例系數.
註:正比例函數一般形式 y=kx (k不為零) ① k不為零 ② x指數為1 ③ b取零
當k>0時,直線y=kx經過三、一象限,從左向右上升,即隨x的增大y也增大;當k<0時,直線y=kx經過二、四象限,從左向右下降,即隨x增大y反而減小.
(1) 解析式:y=kx(k是常數,k≠0)
(2) 必過點:(0,0)、(1,k)
(3) 走向:k>0時,圖像經過一、三象限;k<0時,圖像經過二、四象限
(4) 增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小
(5) 傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸
2、一次函數及性質
一般地,形如y=kx+b(k,b是常數,k≠0),那麼y叫做x的一次函數.當b=0時,y=kx+b即y=kx,所以說正比例函數是一種特殊的一次函數.
註:一次函數一般形式 y=kx+b (k不為零) ① k不為零 ②x指數為1 ③ b取任意實數
一次函數y=kx+b的圖象是經過(0,b)和(- ,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個單位長度得到.(當b>0時,向上平移;當b<0時,向下平移)
(1)解析式:y=kx+b(k、b是常數,k 0)
(2)必過點:(0,b)和(- ,0)
(3)走向: k>0,圖象經過第一、三象限;k<0,圖象經過第二、四象限
b>0,圖象經過第一、二象限;b<0,圖象經過第三、四象限
直線經過第一、二、三象限 直線經過第一、三、四象限
直線經過第一、二、四象限 直線經過第二、三、四象限
註:y=kx+b中的k,b的作用:
1、k決定著直線的變化趨勢
① k>0 直線從左向右是向上的 ② k<0 直線從左向右是向下的
2、b決定著直線與y軸的交點位置
① b>0 直線與y軸的正半軸相交 ② b<0 直線與y軸的負半軸相交
(4)增減性: k>0,y隨x的增大而增大;k<0,y隨x增大而減小.
(5)傾斜度:|k|越大,圖象越接近於y軸;|k|越小,圖象越接近於x軸.
(6)圖像的平移: 當b>0時,將直線y=kx的圖象向上平移b個單位;
當b<0時,將直線y=kx的圖象向下平移b個單位.
3、一次函數y=kx+b的圖象的畫法.
根據幾何知識:經過兩點能畫出一條直線,並且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b), .即橫坐標或縱坐標為0的點.
註:對於y=kx+b 而言,圖象共有以下四種情況:
1、k>0,b>0 2、k>0,b<0 3、k<0,b<0 4、k<0,b>0

b>0 b<0 b=0
k>0 經過第一、二、三象限 經過第一、三、四象限 經過第一、三象限

圖象從左到右上升,y隨x的增大而增大
k<0 經過第一、二、四象限 經過第二、三、四象限 經過第二、四象限

圖象從左到右下降,y隨x的增大而減小
4、直線y=kx+b(k≠0)與坐標軸的交點.
(1)直線y=kx與x軸、y軸的交點都是(0,0);
(2)直線y=kx+b與x軸交點坐標為 與 y軸交點坐標為(0,b).

5、用待定系數法確定函數解析式的一般步驟:
(1)根據已知條件寫出含有待定系數的函數關系式;
(2)將x、y的幾對值或圖象上的幾個點的坐標代入上述函數關系式中得到以待定系數為未知數的方程;
(3)解方程得出未知系數的值;
(4)將求出的待定系數代回所求的函數關系式中得出所求函數的解析式.

6、兩條直線交點坐標的求法:
方法:聯立方程組求x、y
例題:已知兩直線y=x+6 與y=2x-4交於點P,求P點的坐標?
7、直線y=k1x+b1與y=k2x+b2的位置關系
(1)兩直線平行:k1=k2且b1 b2
(2)兩直線相交:k1 k2
(3)兩直線重合:k1=k2且b1=b2

8、正比例函數與一次函數圖象之間的關系
一次函數y=kx+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個單位長度而得到(當b>0時,向上平移;當b<0時,向下平移).

9、一元一次方程與一次函數的關系
任何一元一次方程到可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變數的值. 從圖象上看,相當於已知直線y=ax+b確定它與x軸的交點的橫坐標的值.

10、一次函數與一元一次不等式的關系
任何一個一元一次不等式都可以轉化為ax+b>0或ax+b<0(a,b為常數,a≠0)的形式,所以解一元一次不等式可以看作:當一次函數值大(小)於0時,求自變數的取值范圍.
11、一次函數與二元一次方程組
(1)以二元一次方程ax+by=c的解為坐標的點組成的圖象與一次函數y= 的圖象相同.
(2)二元一次方程組 的解可以看作是兩個一次函數y= 和y= 的圖象交點.
12、函數應用問題 (理論應用 實際應用)
(1)利用圖象解題 通過函數圖象獲取信息,並利用所獲取的信息解決簡單的實際問題.
(2)經營決策問題 函數建模的關鍵是將實際問題數學化,從而解決最佳方案,最佳策略等問題.建立一次函數模型解決實際問題,就是要從實際問題中抽象出兩個變數,再尋求出兩個變數之間的關系,構建函數模型,從而利用數學知識解決實際問題.

❺ 數學函數知識點總結

數學函數知識點總結

1. 對於集合,一定要抓住集合的代表元素,及元素的「確定性、互異性、無序性」。

中元素各表示什麼?
A表示函數y=lgx的定義域,B表示的是值域,而C表示的卻是函數上的點的軌跡

2 進行集合的交、並、補運算時,不要忘記集合本身和空集的特殊情況
注重藉助於數軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。

顯然,這里很容易解出A={-1,3}.而B最多隻有一個元素。故B只能是-1或者3。根據條件,可以得到a=-1,a=1/3. 但是, 這里千萬小心,還有一個B為空集的情況,也就是a=0,不要把它搞忘記了。

3. 注意下列性質:

要知道它的來歷:若B為A的子集,則對於元素a1來說,有2種選擇(在或者不在)。同樣,對於元素a2, a3,……an,都有2種選擇,所以,總共有種選擇, 即集合A有個子集。
當然,我們也要注意到,這種情況之中,包含了這n個元素全部在何全部不在的情況,故真子集個數為,非空真子集個數為

(3)德摩根定律:

有些版本可能是這種寫法,遇到後要能夠看懂
4. 你會用補集思想解決問題嗎?(排除法、間接法)

的取值范圍。

注意,有時候由集合本身就可以得到大量信息,做題時不要錯過; 如告訴你函數f(x)=ax2+bx+c(a>0) 在上單調遞減,在上單調遞增,就應該馬上知道函數對稱軸是x=1.或者,我說在上 ,也應該馬上可以想到m,n實際上就是方程 的2個根
5、熟悉命題的幾種形式、

命題的四種形式及其相互關系是什麼?
(互為逆否關系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
6、熟悉充要條件的性質(高考經常考)
滿足條件,滿足條件,
若 ;則是的充分非必要條件;
若 ;則是的必要非充分條件;
若 ;則是的充要條件;
若 ;則是的既非充分又非必要條件;
7. 對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無原象。)
注意映射個數的求法。如集合A中有m個元素,集合B中有n個元素,則從A到B的映射個數有nm個。
如:若,;問:到的映射有 個,到的映射有 個;到的函數有 個,若,則到的一一映射有 個。
函數的圖象與直線交點的個數為 個。
8. 函數的三要素是什麼?如何比較兩個函數是否相同?
(定義域、對應法則、值域)
相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)
9. 求函數的定義域有哪些常見類型?

函數定義域求法:
分式中的分母不為零;
偶次方根下的數(或式)大於或等於零;
指數式的底數大於零且不等於一;
對數式的底數大於零且不等於一,真數大於零。
正切函數
餘切函數
反三角函數的定義域
函數y=arcsinx的定義域是 [-1, 1] ,值域是,函數y=arccosx的定義域是 [-1, 1] ,值域是 [0, π] ,函數y=arctgx的定義域是 R ,值域是.,函數y=arcctgx的定義域是 R ,值域是 (0, π) .
當以上幾個方面有兩個或兩個以上同時出現時,先分別求出滿足每一個條件的自變數的范圍,再取他們的交集,就得到函數的定義域。
10. 如何求復合函數的定義域?

義域是_____________。
復合函數定義域的求法:已知的定義域為,求的定義域,可由解出x的范圍,即為的定義域。
例 若函數的定義域為,則的定義域為 。
分析:由函數的定義域為可知:;所以中有。
解:依題意知:
解之,得
∴的定義域為
11、函數值域的求法
1、直接觀察法
對於一些比較簡單的函數,其值域可通過觀察得到。
例 求函數y=的值域
2、配方法
配方法是求二次函數值域最基本的方法之一。
例、求函數y=-2x+5,x[-1,2]的值域。
3、判別式法
對二次函數或者分式函數(分子或分母中有一個是二次)都可通用,但這類題型有時也可以用其他方法進行化簡,不必拘泥在判別式上面
下面,我把這一類型的詳細寫出來,希望大家能夠看懂

4、反函數法
直接求函數的值域困難時,可以通過求其原函數的定義域來確定原函數的值域。
例 求函數y=值域。

5、函數有界性法
直接求函數的值域困難時,可以利用已學過函數的有界性,來確定函數的值域。我們所說的單調性,最常用的就是三角函數的單調性。
例 求函數y=,,的值域。

6、函數單調性法
通常和導數結合,是最近高考考的較多的一個內容
例求函數y=(2≤x≤10)的值域

7、換元法
通過簡單的換元把一個函數變為簡單函數,其題型特徵是函數解析式含有根式或三角
函數公式模型。換元法是數學方法中幾種最主要方法之一,在求函數的值域中同樣發
揮作用。
例 求函數y=x+的值域。

8 數形結合法
其題型是函數解析式具有明顯的某種幾何意義,如兩點的距離公式直線斜率等等,這
類題目若運用數形結合法,往往會更加簡單,一目瞭然,賞心悅目。
例:已知點P(x.y)在圓x2+y2=1上,

例求函數y=+的值域。
解:原函數可化簡得:y=∣x-2∣+∣x+8∣
上式可以看成數軸上點P(x)到定點A(2),B(-8)間的距離之和。
由上圖可知:當點P在線段AB上時,
y=∣x-2∣+∣x+8∣=∣AB∣=10
當點P在線段AB的延長線或反向延長線上時,
y=∣x-2∣+∣x+8∣>∣AB∣=10
故所求函數的值域為:[10,+∞)
例求函數y=+ 的值域
解:原函數可變形為:y=+

上式可看成x軸上的點P(x,0)到兩定點A(3,2),B(-2,-1)的距離之和,
由圖可知當點P為線段與x軸的交點時, y=∣AB∣==,
故所求函數的值域為[,+∞)。
註:求兩距離之和時,要將函數
9 、不等式法
利用基本不等式a+b≥2,a+b+c≥3(a,b,c∈),求函數的最值,其題型特徵解析式是和式時要求積為定值,解析式是積時要求和為定值,不過有時須要用到拆項、添項和兩邊平方等技巧。
例:
倒數法
有時,直接看不出函數的值域時,把它倒過來之後,你會發現另一番境況
例 求函數y=的值域

多種方法綜合運用
總之,在具體求某個函數的值域時,首先要仔細、認真觀察其題型特徵,然後再選擇恰當的方法,一般優先考慮直接法,函數單調性法和基本不等式法,然後才考慮用其他各種特殊方法。

12. 求一個函數的解析式或一個函數的反函數時,註明函數的定義域了嗎?
切記:做題,特別是做大題時, 一定要注意附加條件,如定義域、單位等東西要記得協商,不要犯我當年的錯誤,與到手的滿分失之交臂

13. 反函數存在的條件是什麼?
(一一對應函數)
求反函數的步驟掌握了嗎?
(①反解x;②互換x、y;③註明定義域)

在更多時候,反函數的求法只是在選擇題中出現,這就為我們這些喜歡偷懶的人提供了大方便。請看這個例題:
(2004.全國理)函數的反函數是( B )
A.y=x2-2x+2(x<1) B.y=x2-2x+2(x≥1)
C.y=x2-2x (x<1) D.y=x2-2x (x≥1)
當然,心情好的同學,可以自己慢慢的計算,我想, 一番心血之後,如果不出現計算問題的話,答案還是可以做出來的。可惜,這個不合我胃口,因為我一向懶散慣了,不習慣計算。下面請看一下我的思路:
原函數定義域為 x〉=1,那反函數值域也為y>=1. 排除選項C,D.現在看值域。原函數至於為y>=1,則反函數定義域為x>=1, 答案為B.
我題目已經做完了, 好像沒有動筆(除非你拿來寫*書)。思路能不能明白呢?
14. 反函數的性質有哪些?
反函數性質:
反函數的定義域是原函數的值域 (可擴展為反函數中的x對應原函數中的y)
反函數的值域是原函數的定義域(可擴展為反函數中的y對應原函數中的x)
反函數的圖像和原函數關於直線=x對稱(難怪點(x,y)和點(y,x)關於直線y=x對稱
①互為反函數的圖象關於直線y=x對稱;
②保存了原來函數的單調性、奇函數性;

由反函數的性質,可以快速的解出很多比較麻煩的題目,如
(04. 上海春季高考)已知函數,則方程的解__________.
15 . 如何用定義證明函數的單調性?
(取值、作差、判正負)
判斷函數單調性的方法有三種:(1)定義法:
根據定義,設任意得x1,x2,找出f(x1),f(x2)之間的大小關系
可以變形為求的正負號或者與1的關系
(2)參照圖象:①若函數f(x)的圖象關於點(a,b)對稱,函數f(x)在關於點(a,0)的對稱區間具有相同的單調性; (特例:奇函數)②若函數f(x)的圖象關於直線x=a對稱,則函數f(x)在關於點(a,0)的對稱區間里具有相反的單調性。(特例:偶函數)(3)利用單調函數的性質:①函數f(x)與f(x)+c(c是常數)是同向變化的②函數f(x)與cf(x)(c是常數),當c>0時,它們是同向變化的;當c<0時,它們是反向變化的。③如果函數f1(x),f2(x)同向變化,則函數f1(x)+f2(x)和它們同向變化;(函數相加)④如果正值函數f1(x),f2(x)同向變化,則函數f1(x)f2(x)和它們同向變化;如果負值函數f1(2)與f2(x)同向變化,則函數f1(x)f2(x)和它們反向變化;(函數相乘)⑤函數f(x)與在f(x)的同號區間里反向變化。⑥若函數u=φ(x),x[α,β]與函數y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]同向變化,則在[α,β]上復合函數y=F[φ(x)]是遞增的;若函數u=φ(x),x[α,β]與函數y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]反向變化,則在[α,β]上復合函數y=F[φ(x)]是遞減的。(同增異減)⑦若函數y=f(x)是嚴格單調的,則其反函數x=f-1(y)也是嚴格單調的,而且,它們的增減性相同。
f(g) g(x) f[g(x)] f(x)+g(x) f(x)*g(x) 都是正數
增 增 增 增 增
增 減 減 / /
減 增 減 / /
減 減 增 減 減

∴……)

16. 如何利用導數判斷函數的單調性?

值是( )
A. 0 B. 1 C. 2 D. 3

∴a的最大值為3)
17. 函數f(x)具有奇偶性的必要(非充分)條件是什麼?
(f(x)定義域關於原點對稱)

注意如下結論:
(1)在公共定義域內:兩個奇函數的乘積是偶函數;兩個偶函數的乘積是偶函數;一個偶函數與奇函數的乘積是奇函數。

判斷函數奇偶性的方法
定義域法
一個函數是奇(偶)函數,其定義域必關於原點對稱,它是函數為奇(偶)函數的必要條件.若函數的定義域不關於原點對稱,則函數為非奇非偶函數.
奇偶函數定義法
在給定函數的定義域關於原點對稱的前提下,計算,然後根據函數的奇偶性的定義判斷其奇偶性.

復合函數奇偶性

f(g) g(x) f[g(x)] f(x)+g(x) f(x)*g(x)
奇 奇 奇 奇 偶
奇 偶 偶 非奇非偶 奇
偶 奇 偶 非奇非偶 奇
偶 偶 偶 偶 偶

18. 你熟悉周期函數的定義嗎?

函數,T是一個周期。)

我們在做題的時候,經常會遇到這樣的情況:告訴你f(x)+f(x+t)=0,我們要馬上反應過來,這時說這個函數周期2t. 推導:,
同時可能也會遇到這種樣子:f(x)=f(2a-x),或者說f(a-x)=f(a+x).其實這都是說同樣一個意思:函數f(x)關於直線對稱, 對稱軸可以由括弧內的2個數字相加再除以2得到。比如,f(x)=f(2a-x),或者說f(a-x)=f(a+x)就都表示函數關於直線x=a對稱。

如:

19. 你掌握常用的圖象變換了嗎?
聯想點(x,y),(-x,y)
聯想點(x,y),(x,-y)
聯想點(x,y),(-x,-y)
聯想點(x,y),(y,x)
聯想點(x,y),(2a-x,y)
聯想點(x,y),(2a-x,0)

(這是書上的方法,雖然我從來不用, 但可能大家接觸最多,我還是寫出來吧。對於這種題目,其實根本不用這么麻煩。你要判斷函數y-b=f(x+a)怎麼由y=f(x)得到,可以直接令y-b=0,x+a=0,畫出點的坐標。 看點和原點的關系,就可以很直觀的看出函數平移的軌跡了。)
注意如下「翻折」變換:

19. 你熟練掌握常用函數的圖象和性質了嗎?

(k為斜率,b為直線與y軸的交點)

的雙曲線。



應用:①「三個二次」(二次函數、二次方程、二次不等式)的關系——二次方程

②求閉區間[m,n]上的最值。

③求區間定(動),對稱軸動(定)的最值問題。
④一元二次方程根的分布問題。



由圖象記性質! (注意底數的限定!)

利用它的單調性求最值與利用均值不等式求最值的區別是什麼?(均值不等式一定要注意等號成立的條件)

20. 你在基本運算上常出現錯誤嗎?

21. 如何解抽象函數問題?
(賦值法、結構變換法)

(對於這種抽象函數的題目,其實簡單得都可以直接用死記了
代y=x,
令x=0或1來求出f(0)或f(1)
求奇偶性,令y=—x;求單調性:令x+y=x1

幾類常見的抽象函數
正比例函數型的抽象函數
f(x)=kx(k≠0)---------------f(x±y)=f(x)±f(y)
冪函數型的抽象函數
f(x)=xa----------------f(xy)= f(x)f(y);f()=
指數函數型的抽象函數
f(x)=ax------------------- f(x+y)=f(x)f(y);f(x-y)=
對數函數型的抽象函數
f(x)=logax(a>0且a≠1)-----f(x·y)=f(x)+f(y);f()= f(x)-f(y)
三角函數型的抽象函數

f(x)=tgx-------------------------- f(x+y)=
f(x)=cotx------------------------ f(x+y)=

例1已知函數f(x)對任意實數x、y均有f(x+y)=f(x)+f(y),且當x>0時,f(x)>0,f(-1)= -2求f(x)在區間[-2,1]上的值域.
分析:先證明函數f(x)在R上是增函數(注意到f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1));再根據區間求其值域.

例2已知函數f(x)對任意實數x、y均有f(x+y)+2=f(x)+f(y),且當x>0時,f(x)>2,f(3)= 5,求不等式 f(a2-2a-2)<3的解.
分析:先證明函數f(x)在R上是增函數(仿例1);再求出f(1)=3;最後脫去函數符號.

例3已知函數f(x)對任意實數x、y都有f(xy)=f(x)f(y),且f(-1)=1,f(27)=9,當0≤x<1時,f(x)∈[0,1].
判斷f(x)的奇偶性;
判斷f(x)在[0,+∞]上的單調性,並給出證明;
若a≥0且f(a+1)≤,求a的取值范圍.
分析:(1)令y=-1;
(2)利用f(x1)=f(·x2)=f()f(x2);
(3)0≤a≤2.

例4設函數f(x)的定義域是(-∞,+∞),滿足條件:存在x1≠x2,使得f(x1)≠f(x2);對任何x和y,f(x+y)=f(x)f(y)成立.求:
f(0);
對任意值x,判斷f(x)值的符號.
分析:(1)令x= y=0;(2)令y=x≠0.

例5是否存在函數f(x),使下列三個條件:①f(x)>0,x∈N;②f(a+b)= f(a)f(b),a、b∈N;③f(2)=4.同時成立?若存在,求出f(x)的解析式,若不存在,說明理由.
分析:先猜出f(x)=2x;再用數學歸納法證明.

例6設f(x)是定義在(0,+∞)上的單調增函數,滿足f(x·y)=f(x)+f(y),f(3)=1,求:
f(1);
若f(x)+f(x-8)≤2,求x的取值范圍.
分析:(1)利用3=1×3;
(2)利用函數的單調性和已知關系式.

例7設函數y= f(x)的反函數是y=g(x).如果f(ab)=f(a)+f(b),那麼g(a+b)=g(a)·g(b)是否正確,試說明理由.
分析:設f(a)=m,f(b)=n,則g(m)=a,g(n)=b,
進而m+n=f(a)+f(b)= f(ab)=f [g(m)g(n)]….
例8已知函數f(x)的定義域關於原點對稱,且滿足以下三個條件:
x1、x2是定義域中的數時,有f(x1-x2)=;
f(a)= -1(a>0,a是定義域中的一個數);
當0<x<2a時,f(x)<0.
試問:
f(x)的奇偶性如何?說明理由;
在(0,4a)上,f(x)的單調性如何?說明理由.
分析:(1)利用f [-(x1-x2)]= -f [(x1-x2)],判定f(x)是奇函數;
先證明f(x)在(0,2a)上是增函數,再證明其在(2a,4a)上也是增函數.
對於抽象函數的解答題,雖然不可用特殊模型代替求解,但可用特殊模型理解題意.有些抽象函數問題,對應的特殊模型不是我們熟悉的基本初等函數.因此,針對不同的函數要進行適當變通,去尋求特殊模型,從而更好地解決抽象函數問題.
例9已知函數f(x)(x≠0)滿足f(xy)=f(x)+f(y),
求證:f(1)=f(-1)=0;
求證:f(x)為偶函數;
若f(x)在(0,+∞)上是增函數,解不等式f(x)+f(x-)≤0.
分析:函數模型為:f(x)=loga|x|(a>0)
先令x=y=1,再令x=y= -1;
令y= -1;
由f(x)為偶函數,則f(x)=f(|x|).

例10已知函數f(x)對一切實數x、y滿足f(0)≠0,f(x+y)=f(x)·f(y),且當x<0時,f(x)>1,求證:
當x>0時,0<f(x)<1;
f(x)在x∈R上是減函數.
分析:(1)先令x=y=0得f(0)=1,再令y=-x;
受指數函數單調性的啟發:
由f(x+y)=f(x)f(y)可得f(x-y)=,
進而由x1<x2,有=f(x1-x2)>1.
練習題:
1.已知:f(x+y)=f(x)+f(y)對任意實數x、y都成立,則( )
(A)f(0)=0 (B)f(0)=1
(C)f(0)=0或1 (D)以上都不對
2. 若對任意實數x、y總有f(xy)=f(x)+f(y),則下列各式中錯誤的是( )
(A)f(1)=0 (B)f()= f(x)
(C)f()= f(x)-f(y) (D)f(xn)=nf(x)(n∈N)
3.已知函數f(x)對一切實數x、y滿足:f(0)≠0,f(x+y)=f(x)f(y),且當x<0時,f(x)>1,則當x>0時,f(x)的取值范圍是( )
(A)(1,+∞) (B)(-∞,1)
(C)(0,1) (D)(-1,+∞)
4.函數f(x)定義域關於原點對稱,且對定義域內不同的x1、x2都有
f(x1-x2)=,則f(x)為( )
(A)奇函數非偶函數 (B)偶函數非奇函數
(C)既是奇函數又是偶函數 (D)非奇非偶函數
5.已知不恆為零的函數f(x)對任意實數x、y滿足f(x+y)+f(x-y)=2[f(x)+f(y)],則函數f(x)是( )
(A)奇函數非偶函數 (B)偶函數非奇函數
(C)既是奇函數又是偶函數 (D)非奇非偶函數
參考答案:
1.A 2.B 3 .C 4.A 5.B
23. 你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?
(和三角形的面積公式很相似, 可以比較記憶.要知道圓錐展開圖面積的求法)

❻ 初中數學函數知識點

1.常量和變數
在某變化過程中可以取不同數值的量,叫做變數.在某變化過程中保持同一數值的量或數,叫常量或常數.
2.函數
設在一個變化過程中有兩個變數x與y,如果對於x在某一范圍的每一個值,y都有唯一的值與它對應,那麼就說x是自變數,y是x的函數.
3.自變數的取值范圍
(1)整式:自變數取一切實數.
(2)分式:分母不為零.
(3)偶次方根:被開方數為非負數.
(4)零指數與負整數指數冪:底數不為零.
4.函數值
對於自變數在取值范圍內的一個確定的值,如當x=a時,函數有唯一確定的對應值,這個對應值,叫做x=a時的函數值.
5.函數的表示法
(1)解析法;(2)列表法;(3)圖象法.
6.函數的圖象
把自變數x的一個值和函數y的對應值分別作為點的橫坐標和縱坐標,可以在平面直角坐標系內描出一個點,所有這些點的集合,叫做這個函數的圖象.
由函數解析式畫函數圖象的步驟:
(1)寫出函數解析式及自變數的取值范圍;
(2)列表:列表給出自變數與函數的一些對應值;
(3)描點:以表中對應值為坐標,在坐標平面內描出相應的點;
(4)連線:用平滑曲線,按照自變數由小到大的順序,把所描各點連接起來.
7.一次函數
(1)一次函數
如果y=kx+b(k、b是常數,k≠0),那麼y叫做x的一次函數.
特別地,當b=0時,一次函數y=kx+b成為y=kx(k是常數,k≠0),這時,y叫做x的正比例函數.
(2)一次函數的圖象
一次函數y=kx+b的圖象是一條經過(0,b)點和 點的直線.
特別地,正比例函數圖象是一條經過原點的直線.
需要說明的是,在平面直角坐標系中,「直線」並不等價於「一次函數y=kx+b(k≠0)的圖象」,因為還有直線y=m(此時k=0)和直線x=n(此時k不存在),它們不是一次函數圖象.
(3)一次函數的性質
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.
直線y=kx+b與y軸的交點坐標為(0,b),與x軸的交點坐標為 .
(4)用函數觀點看方程(組)與不等式
①任何一元一次方程都可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:一次函數y=kx+b(k,b為常數,k≠0),當y=0時,求相應的自變數的值,從圖象上看,相當於已知直線y=kx+b,確定它與x軸交點的橫坐標.
②二元一次方程組 對應兩個一次函數,於是也對應兩條直線,從「數」的角度看,解方程組相當於考慮自變數為何值時兩個函數值相等,以及這兩個函數值是何值;從「形」的角度看,解方程組相當於確定兩條直線的交點的坐標.
③任何一元一次不等式都可以轉化ax+b>0或ax+b<0(a、b為常數,a≠0)的形式,解一元一次不等式可以看做:當一次函數值大於0或小於0時,求自變數相應的取值范圍.
8.反比例函數
(1)反比例函數
如果 (k是常數,k≠0),那麼y叫做x的反比例函數.
(2)反比例函數的圖象
反比例函數的圖象是雙曲線.
(3)反比例函數的性質
①當k>0時,圖象的兩個分支分別在第一、三象限內,在各自的象限內,y隨x的增大而減小.
②當k<0時,圖象的兩個分支分別在第二、四象限內,在各自的象限內,y隨x的增大而增大.
③反比例函數圖象關於直線y=±x對稱,關於原點對稱.
(4)k的兩種求法
①若點(x0,y0)在雙曲線 上,則k=x0y0.
②k的幾何意義:
若雙曲線 上任一點A(x,y),AB⊥x軸於B,則S△AOB

(5)正比例函數和反比例函數的交點問題
若正比例函數y=k1x(k1≠0),反比例函數 ,則
當k1k2<0時,兩函數圖象無交點;
當k1k2>0時,兩函數圖象有兩個交點,坐標分別為 由此可知,正反比例函數的圖象若有交點,兩交點一定關於原點對稱.

1.二次函數
如果y=ax2+bx+c(a,b,c為常數,a≠0),那麼y叫做x的二次函數.
幾種特殊的二次函數:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).
2.二次函數的圖象
二次函數y=ax2+bx+c的圖象是對稱軸平行於y軸的一條拋物線.
由y=ax2(a≠0)的圖象,通過平移可得到y=a(x-h)2+k(a≠0)的圖象.
3.二次函數的性質
二次函數y=ax2+bx+c的性質對應在它的圖象上,有如下性質:
(1)拋物線y=ax2+bx+c的頂點是 ,對稱軸是直線 ,頂點必在對稱軸上;
(2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對於拋物線上的任意一點(x,y),當x< 時,y隨x的增大而減小;當x> 時,y隨x的增大而增大;當x= ,y有最小值 ;
若a<0,拋物線y=ax2+bx+c的開口向下,因此,對於拋物線上的任意一點(x,y),當x< ,y隨x的增大而增大;當 時,y隨x的增大而減小;當x= 時,y有最大值 ;
(3)拋物線y=ax2+bx+c與y軸的交點為(0,c);
(4)在二次函數y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點的情況:
當=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個不同的公共點,它們的坐標分別是 和 ,這兩點的距離為 ;當=0時,拋物線y=ax2+bx+c與x軸只有一個公共點,即為此拋物線的頂點 ;當<0時,拋物線y=ax2+bx+c與x軸沒有公共點.
4.拋物線的平移
拋物線y=a(x-h)2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h)2+k.平移的方向、距離要根據h、k的值來決定.

初中數學知識點歸納(口訣)——函數
正比例函數的鑒別
判斷正比例函數,檢驗當分兩步走。
一量表示另一量, 有沒有。
若有再去看取值,全體實數都需要。
區分正比例函數,衡量可分兩步走。
一量表示另一量, 是與否。
若有還要看取值,全體實數都要有。
正比例函數的圖象與性質
正比函數圖直線,經過 和原點。
K正一三負二四,變化趨勢記心間。
K正左低右邊高,同大同小向爬山。
K負左高右邊低,一大另小下山巒。
一次函數
一次函數圖直線,經過 點。
K正左低右邊高,越走越高向爬山。
K負左高右邊低,越來越低很明顯。
K稱斜率b截距,截距為零變正函。
反比例函數
反比函數雙曲線,經過 點。
K正一三負二四,兩軸是它漸近線。
K正左高右邊低,一三象限滑下山。
K負左低右邊高,二四象限如爬山。
二次函數
二次方程零換y,二次函數便出現。
全體實數定義域,圖像叫做拋物線。
拋物線有對稱軸,兩邊單調正相反。
A定開口及大小,線軸交點叫頂點。
頂點非高即最低。上低下高很顯眼。
如果要畫拋物線,平移也可去描點,
提取配方定頂點,兩條途徑再挑選。
列表描點後連線,平移規律記心間。
左加右減括弧內,號外上加下要減。
二次方程零換y,就得到二次函數。
圖像叫做拋物線,定義域全體實數。
A定開口及大小,開口向上是正數。
絕對值大開口小,開口向下A負數。
拋物線有對稱軸,增減特性可看圖。
線軸交點叫頂點,頂點縱標最值出。
如果要畫拋物線,描點平移兩條路。
提取配方定頂點,平移描點皆成圖。
列表描點後連線,三點大致定全圖。
若要平移也不難,先畫基礎拋物線,
頂點移到新位置,開口大小隨基礎。
【注】基礎拋物線

❼ 高中數學函數知識點歸納有哪些

高中數學函數知識點如下:

1、如果函數是由實際意義確定的解析式,應依據自變數的實際意義確定其取值范圍。

2、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個區間上也為增(減)函數。

3、若函數f(x)的定義域關於原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數和一個偶函數的和。

4、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)。

5、當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。

❽ 函數的概念與性質知識點

函數(function)在數學中為兩不為空集的集合間的一種對應關系:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。 其定義通常分為傳統定義和近代定義,前者從運動變化的觀點出發,而後者從集合、映射的觀點出發。其近代定義是給定一個數集A,假設其中的元素為x,對A中的元素x施加對應法則f,記作f(x),得到另一數集B,假設B中的元素為y,則y與x之間的等量關系可以用y=f(x)表示。函數概念含有三個要素:定義域A、值域C和對應法則f。

函數的特性
有界性
設函數f(x)在區間X上有定義,如果存在M>0,對於一切屬於區間X上的x,恆有|f(x)|≤M,則稱f(x)在區間X上有界,否則稱f(x)在區間上無界。

單調性
設函數f(x)的定義域為D,區間I包含於D。如果對於區間上任意兩點x1及x2,當x1 f(x2),則稱函數f(x)在區間I上是單調遞減的。單調遞增和單調遞減的函數統稱為單調函數。

奇偶性
設為一個實變數實值函數,若有f(-x)= - f(x),則f(x)為奇函數。

幾何上,一個奇函數關於原點對稱,亦即其圖像在繞原點做180度旋轉後不會改變。

奇函數的例子有x、sin(x)、sinh(x)和erf(x)。

設f(x)為一實變數實值函數,若有,則f(x)為偶函數。

幾何上,一個偶函數關於y軸對稱,亦即其圖在對y軸映射後不會改變。

偶函數的例子有|x|、x2、cos(x)和cosh(x)。

偶函數不可能是個雙射映射。

周期性
設函數f(x)的定義域為D。如果存在一個正數T,使得對於任一有,且f(x+T)=f(x)恆成立,則稱f(x)為周期函數,T稱為f(x)的周期,通常我們說周期函數的周期是指最小正周期。周期函數

的定義域 D 為至少一邊的無界區間,若D為有界的,則該函數不具周期性。並非每個周期函數都有最小正周期,例如狄利克雷函數。

周期函數有以下性質:

(1)若T(T≠0)是f(x)的周期,則-T也是f(x)的周期。

(2)若T(T≠0)是f(x)的周期,則nT(n為任意非零整數)也是f(x)的周期。

(3)若T1與T2都是f(x)的周期,則也是f(x)的周期。

(4)若f(x)有最小正周期T*,那麼f(x)的任何正周期T一定是T*的正整數倍。

(5)T*是f(x)的最小正周期,且T1、T2分別是f(x)的兩個周期,則T1/T2∈Q(Q是有理數集)

(6)若T1、T2是f(x)的兩個周期,且T1/T2是無理數,則f(x)不存在最小正周期。

(7)周期函數f(x)的定義域M必定是雙方無界的集合。

連續性
在數學中,連續是函數的一種屬性。直觀上來說,連續的函數就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數。如果輸入值的某種微小的變化會產生輸出值的一個突然的跳躍甚至無法定義,則這個函數被稱為是不連續的函數(或者說具有不連續性)。

設f是一個從實數集的子集射到 的函數:f在中的某個點c處是連續的當且僅當以下的兩個條件滿足:

f在點c上有定義。c是其中的一個聚點,並且無論自變數x在中以什麼方式接近c,f(x) 的極限都存在且等於f(c)。我們稱函數到處連續或處處連續,或者簡單的連續,如果它在其定義域中的任意點處都連續。更一般地,我們說一個函數在它定義域的子集上是連續的當它在這個子集的每一點處都連續。

不用極限的概念,也可以用下面所謂的方法來定義實值函數的連續性。

仍然考慮函數。假設c是f的定義域中的元素。函數f被稱為是在c點連續當且僅當以下條件成立:

對於任意的正實數,存在一個正實數δ>0 使得對於任意定義域中的δ,只要x滿足c -δ<x<c + δ,就有成立。

凹凸性
設函數在上連續。如果對於上的兩點,恆有



那麼稱第一個不等式中的是區間上的凸函數;稱第二個不等式中的為嚴格凸函數。

同理如果恆有



那麼稱第一個不等式中的是區間上的凹函數;稱第二個不等式中的為嚴格凹函數。

復合函數
設函數的定義域為,函數在D上有定義(D是構成復合函數的定義域,它可以是定義域的一個非空子集),且,則函數稱為由函數和函數構成的復合函數,它的定義域為D,變數稱為中間變數。

並不是任何兩個函數都可以復合成一個復合函數,若D為空集,則和函數不能復合。

反函數
一般地,設函數,值域是W,對於每一個屬於W的y,有唯一的x屬於D,使得f(x)=y,這時變數x也是變數y的函數,稱為y=f(x)的反函數,記作。而習慣上y=f(x)的反函數記為。

習慣上只有一一對應的函數才有反函數。而若函數是定義在其定義域D上的單調增加或單調減少函數,則其反函數在其定義域W上單調增加或減少。原函數與反函數之間關於y=x對稱。

分段函數
在自變數的不同變化范圍內,對應法則用不同解析式子來表示的一個函數,稱為分段函數。分段函數的定義域是各段定義域的並集。

❾ 初二數學一次函數知識點歸納是什麼

1、函數概念。

在一個變化過程中有兩個變數x、y,如果對於x的每一個值,y都有惟一的值與它對應,那麼就說x是自變數,y是x的函數。

2、一次函數和正比例函數的概念。

若兩個變數x,y間的關系式可以表示成y=kx+b(k,b為常數,k≠0)的形式,則稱y是x的一次函數(x為自變數),特別地,當b=0時,稱y是x的正比例函數。

說明:

(1)一次函數的自變數的取值范圍是一切實數,但在實際問題中要根據函數的實際意義來確定。

(2)一次函數y=kx+b(k,b為常數,b≠0)中的「一次」和一元一次方程、一元一次不等式中的「一次」意義相同,即自變數x的次數為1,一次項系數k必須是不為零的常數,b可為任意常數。

(3)當b=0,k≠0時,y=b仍是一次函數。

(4)當b=0,k=0時,它不是一次函數。

❿ 高等數學函數的知識點

主要的高等數學函數知識,涉及極限的主要有以下幾個方面:

  • 可涉及極限計算的知識點有,連續性及間斷點的分類(分段函數分段點的連續問題),可導(導數是由函數極限來定義的),漸近線,二重極限(多元微分學)。其中,二重極限難度較大。

  • 極限以間接考查或與其他知識點綜合出題的比重很大,也可以直接出題,所以考查形式有多種。如已知極限求參數,無窮小的概念與比較,求間斷點類型和個數,求漸近線方程或條數,求某一點處的連續性和可導性,求多元函數在某一點處極限是否存在,求含有極限的函數表達式,已知極限求極限等。

  • 函數極限計算的常規方法主要分四類:等價無窮小替換,洛必達法則,泰勒公式,導數定義。 數列極限涉及的常規方法主要有四類:夾逼定理,定積分的定義(主要是針對部分和求極限),轉化為函數極限(歸結原則),單調有界准則。