當前位置:首頁 » 基礎知識 » 小學數學4年級基礎知識
擴展閱讀
什麼叫群眾性的自我教育 2024-11-16 04:05:39

小學數學4年級基礎知識

發布時間: 2022-07-04 22:55:39

1. 小學四年級數學復習資料

四年級下冊數學背誦或默寫知識點
知識點一
四則運算(背誦)
1、加法、減法、乘法和除法統稱四則運算。
2、在沒有括弧的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計算。
3、在沒有括弧的算式里,有乘、除法和加、減法、要先算乘除法,再算加減法。 4、算式有括弧,要先算括弧裡面的,再算括弧外面的;括弧裡面的算式計算順序遵循以上的計算順序。
知識點二
0的運算(默寫)
1、「0」不能做除數; 字母表示:a÷0錯誤 2、一個數加上0還得原數; 字母表示:a+0= a 3、一個數減去0還得原數; 字母表示:a-0= a 4、被減數等於減數,差是0; 字母表示:a-a = 0 4、一個數和0相乘,仍得0; 字母表示:a×0= 0 5、0除以任何非0的數,還得0; 字母表示:0÷a(a≠0)= 0
知識點三 運算定律(默寫)
1、 加法交換律:a+b=b+a
2、 加法結合律:(a+b) +c=a+(b+c) 3、 乘法交換律:a×b=b×a
4、 乘法結合律:(a×b)×c=a×(b×c)
5、 乘法分配律:(a+b)×c=a×c+b×c 或 a×(b+c) =a×b+a×c
拓展:(a-b)×c=a×c-b×c 或 a×(b-c) =a×b-a×c
6、連減:a—b—c=a—(b+c) 7、連除: a÷b÷c=a÷(b×c)
知識點四
簡便計算一(默寫或自己舉例子)
一、常見乘法計算:
25×4=100 125×8=1000
二、加法交換律簡算例子: 三、加法結合律簡算例子:
50+98+50 488+40+60
=50+50+98 =488+(40+60) =100+98 =488+100 =198 =588
四、乘法交換律簡算例子: 五、乘法結合律簡算例子:
25×56×4 99×125×8 =25×4×56 =99×(125×8) =100×56 =99×1000 =5600 =99000
六、含有加法交換律與結合律的簡便計算: 65+28+35+72
=(65+35)+(28+72) =100+100 =200
七、含有乘法交換律與結合律的簡便計算:
25×125×4×8
=(25×4)×(125×8) =100×1000 =100000
知識點四
簡便計算二(默寫或自己舉例子)
乘法分配律簡算例子:
一、分解式 二、合並式
25×(40+4) 135×12—135×2 =25×40+25×4 =135×(12—2) =1000+100 =135×10 =1100 =1350
三、特殊1 四、特殊2 99×256+256 45×102
=99×256+256×1 =45×(100+2) =256×(99+1) =45×100+45×2 =256×100 =4500+90 =25600 =4590 五、特殊3 六、特殊4
99×26 35×8+35×6—4×35 =(100—1)×26 =35×(8+6—4) =100×26—1×26 =35×10 =2600—26 =350 =2574
知識點四
簡便計算三(默寫或自己舉例子) 一、 連續減法簡便運算例子:
528—65—35 528—89—128 528—(150+128) =528—(65+35) =528—128—89 =528—128—150 =528—100 =400—89 =400—150 =428 =311 =250
二、 連續除法簡便運算例子: 3200÷25÷4 =3200÷(25×4) =3200÷100 =32
三、 其它簡便運算例子:
256—58+44 250÷8×4 =256+44—58 =250×4÷8 =300—58 =1000÷8
=242 =125
知識點五 三角形(第1條到第13條要背誦)
1、由三條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形。
2、從三角形的一個頂點到它的對邊做一條垂線,頂點到垂足之間的線段叫做三角形的高,這條邊叫做三角形的底。三角形只有3條高。
3、三角形具有穩定性。
4、三角形任意兩邊之和大於第三邊。
5、三個角都是銳角的三角形叫做銳角三角形。 6、有一個角是直角的三角形叫做直角三角形。 7、有一個角是鈍角的三角形叫做鈍角三角形。
8、每個三角形都至少有兩個銳角;每個三角形都至多有1個直角;每個三角形都至多有1個鈍角。
9、兩條邊相等的三角形叫做等腰三角形。
10、三條邊都相等的三角形叫等邊三角形,也叫正三角形。 11、等邊三角形是特殊的等腰三角形 12、三角形的內角和是180°。 13、四邊形的內角和是360°
14、用2個相同的三角形可以拼成一個平行四邊形。
15、用2個相同的直角三角形可以拼成一個平行四邊形、一個長方形、一個大三角形。 16、用2個相同的等腰的直角的三角形可以拼成一個平行四邊形、一個正方形。一個大的等腰的直角的三角形。
知識點六
小數的意義和性質(第7、10條默寫,其它要理解)
1、小數的計數單位是十分之一、百分之一、千分之一……分別寫作0.1、 0.01、 0.001…… 2、每相鄰兩個記數單位間的進率是(10)。
3、小數的數位是十分位、百分位、千分位……最高位是十分位。整數部分的最低位是個位。個位和十分位的進率是10。
4、 小數的數位順序表
整數部分
小數點
小數部分
數位

萬位 千位
百位
十位
個位
·
十分位
百分位
千分位
萬分

… 計數
單位
… 萬



一(個)
十分之一
百分之一
千分之一
萬分
之一
… 5、小數的讀法:先讀整數部分(按照原來的讀法),再讀小數點,再讀小數部分。讀小數部分,小數部分要依次讀出每個數字,而且有幾個0就讀幾個0。
6、小數的寫法:先寫整數部分(按照原來的寫法),再寫小數點,再小數部分:寫小數部分,小數部分要依次寫出每個數字,而且有幾個0就寫幾個0。
7、小數的性質:小數的末尾添上「0」或者去掉「0」,小數的大小不變。
8、小數的大小比較:(1) 先比較整數部分;(2)如果整數部分相同,就比較十分位;(3)十分位相同,就比較百分位;(4)以此類推,直到比較出大小。
9、小數點的移動 小數點向右移:
移動一位,小數就擴大到原數的10倍; 移動兩位,小數就擴大到原數的100倍; 移動三位,小數就擴大到原數的10 00倍;
移動四位,小數就擴大到原數的10000倍;…… 小數點向左移:
移動一位,小數就縮小10倍,即小數就縮小到原數的101

移動兩位,小數就縮小100倍,即小數就縮小到原數的1001

移動三位,小數就縮小1000倍,即小數就縮小到原數的1000
1

移動四位,小數就縮小10000倍,即小數就縮小到原數的10000
1
;……
10、生活中常用的單位:
質量: 1噸=1000千克; 1千克=1000克
長度: 1千米=1000米 1分米=10厘米 1厘米=10毫米 1分米=100毫米 1米=10分米=100厘米=1000毫米 面積: 1平方米= 100平方分米 1平方分米=100平方厘米 1平方千米=100公頃 1公頃=10000平方米 人民幣: 1元=10角 1角=10分 1元=100分 11、小數的近似數(用「四捨五入」的方法):
(1)保留整數,表示精確到個位,就是要把小數部分省略,要看十分位,如果十分位的數字大於或等於5則向前一位進一。如果小於五則舍。
(2)保留一位小數,表示精確到十分位,就要把第一位小數以後的部分全部省略, 這時要看小數的第二位,如果第二位的數字比5小則全部舍。反之,要向前一位進一。
(3)保留兩位小數,表示精確到百分位,就要把第二位小數以後的部分全部省略,這時要看小數的第三位,如果第三位的數字比5小則全部舍。反之,要向前一位進一。
(4)為了讀寫的方便,常常把不是整萬或整億的數改寫成用「萬」或「億」作單位的數。改寫成「萬」作單位的數就是小數點向左移4位,即在萬位的右邊點上小數點,在數的後面加上「萬」字。改寫成「億」作單位的數就是小數點往左移8位即在億位的右邊點上小數點,在數的後面加上「億」字。然後再根據小數的性質把小數末尾的零去掉即可。
知識點七
小數的加法和減法(第1條背誦)
1、小數的加、減法要注意:小數點要對齊也就是把數位對齊,得數的末尾有0,一般要把0去掉。
2、整數的運算定律(以及簡便的方法)在小數運算中同樣適用。
知識點八
統計圖(背誦)
1、 條形統計圖優點:直觀地反映數量的多少。
2、 折線統計圖優點:既可以反映數量的多少,又能反映數量的增減變化。 3、 折線統計圖中,變化趨勢指:上升或者下降。 知識點九
數學廣角(默寫)
(一)植樹問題:
1、 兩端要栽:間隔數=總長÷間距; 總長=間距×間隔數; 棵數=間隔數+1; 間隔數=棵數-1
2、 兩端不栽:間隔數=總長÷間距; 總長=間距×間隔數; 棵數=間隔數-1; 間隔數=棵數+1
(二)鋸木問題: 段數=次數+1; 次數=段數-1 總時間=每次時間×次數
(三)方陣問題: 最外層的數目是:邊長×4—4或者是(邊長-1)×4 整個方陣的總數目是:邊長×邊長
(四)封閉的圖形(例如圍成一個圓形、橢圓形): 總長÷間距=間隔數;棵數=間隔數

2. 小學四年級數學

第一單元,億以內數的讀法和寫法。教學重點是讀、寫萬級的數。教學難點是億以內中間和末尾有0的數的讀、寫法。教學關鍵是讓學生熟練掌握數位順序表,掌握數位和名稱、順序、進率關系、四位分級法以及數的組成等知識。並以萬以內數的讀、寫法為基礎,把個級的讀、寫方法推廣到萬級,能正確地讀、寫億以內的數。

億以內數的讀法和寫法學生普遍掌握較好。但是,求近似數,有部分同學仍比較糊塗,常以為要得到整十、整百數。這個知識點有賴於多練習。找到要保留的數位,將其後面緊跟的數進行四捨五入,再在後面加上計數單位。

第二單元,億以內的加法和減法。教學要求是讓學生會正確地口算整百整十數加、減整百整十數,以及整萬數的加、減法;認識電子計算器,會使用電子計算器進行四則運算;掌握加、減法之間的關系,並會應用這種關系求未知數X和列出含有未知數X的等式解答有關的一步應用題。

加、減法各部分間的關系,學生掌握得很好。求未知數X的題,學生基本上都能順利解答。加、減法的簡便演算法,學生通過多次的練習後,簡算能力得到了很大的提高。

第三單元,乘法、除法的知識。這單元的教學重點是理解和掌握乘、除法各部分間的關系,利用它來驗算乘法和除法,並會用求未知數X的方法解答乘、除法的應用題。教學難點是教學乘、除法的一些簡便演算法。教學關鍵是引導學生觀察、思考,主動掌握乘、除法各部分間的關系。

乘、除法各部分間的關系,學生掌握得很好。乘、除法的簡便演算法,學生掌握情況不理想,是歷屆學生學習的難點,這與學生口算能力有關,並要先觀察、分析數與數之間的關系,再拆數或合數。這需要多練,才能達到「熟能生巧」的境界。除法估算學生掌握不好。主要需要學生靈活地利用四捨五入法,除數是兩位數以上的,要先求出除數的近似數,再靈活地求被除數的近似數,易於口算。

應用題,學生解題情況不太理想。要從培養學生多讀題開始,要求學生先讀題3遍,明確已知條件和問題,分析數與數的關系,再解題。告訴學生,養成了這個好習慣,解決應用題就一點兒也不難了。

3. 小學數學四年級上冊第一單元的知識有哪些

第一單元萬以上數的認識:
(一)10個一萬是十萬,10個十萬是一百萬,10個一百萬是一千萬,10個一千萬是一億。(另一種說法:十萬裡面有10個一萬,一百萬裡面有10個十萬,一千萬裡面有10個一百萬,一億裡面有10個一千萬)
(二)數位:個位、十位、百位、千位、……個級
萬位、十萬位、百萬位、千萬位、……萬級
億位、十億位、百億位、千億位……億級
一個數從右邊起,每4個數位是一級。
(三)計數單位:個(一)、十、百、千、萬、十萬、百萬、千萬、億、十億、百億、千億……
(四)每相鄰兩個計數單位間的進率都是10,這種計數方法叫做十進制計數法。
(五)改寫成用「萬」作單位的數:末尾去掉4個0,加一個「萬」;
改寫成用「億」作單位的數:末尾去掉8個0,加一個「億」。
(六)四捨五入法
省略萬位後面的位數求近似數:看千位,千位大於4,進1,後面省去,加一個「萬」;千位小於或等於4,後面直接省去,加一個「萬」。
省略億位後面的位數求近似數:看千萬位,千萬位大於4,進1,後面省去,加一個「億」;千萬位小於或等於4,後面直接省去,加一個「億」

4. 小學數學四年級知識點梳理

小學數學四年級(上冊) 知識點
數數知識點:
1、認識數級、數位、計數單位,並了解它們之間的對應關系。
數級 …… 億級 萬級 個級
數位 …… 千億位 百億位 十億位 億

位 千萬位 百萬位 十萬位 萬

位 千

位 百

位 十

位 個


計數單位 …… 千億 百億 十億 億 千萬 百萬 十萬 萬 千 百 十 個
2、十進制計數法。相鄰兩個計數單位之間的進率是十。
3、數數。能一萬一萬地數,十萬十萬地數,一百萬一百萬地數……

億以內數的讀法、寫法知識點:
1、 億以內數的讀數方法。
含有個級、萬級和億級的數,必須先讀億級,再讀萬級,最後讀個級。(即從高位讀起)億級或萬級的數都按個級讀數的方法,在後面要加上億或萬。在級末尾的零不讀,在級中間的零必須讀。中間不管連續有幾個零,只讀一個零。
2、 億以內數的寫數方法。
從高位寫起,按照數位的順序寫,中間或末尾哪一位上一個單位也沒有,就在那一位上寫0。
3、 比較數大小的方法。
多位數比較大小,如果位數不同,那麼位數多的這個數就大,位數少的這個數就小。如果位數相同,從左起第一位開始比起,哪個數字大,哪個數就大。如果左起第一位上的數相同,就開始比第二位……直到比出大小為止。

北師大版小學數學四年級(下冊)知識點

一 小數的認識和加減法

【知識要點】

小數的意義

1、小數的意義: 用來表示十分之幾、百分之幾、千分之幾……的數,叫小數。

2、體會十進分數與小數的關系,並能互相轉。

3、表示十分之幾的小數是一位小數,百分之幾的小數是兩位小數,千分之幾的小數是三位小數……

4、小數的讀寫法。

5、藉助計數器,介紹小數部分的數位以及數位之間的進率

6、掌握小數的數位和計數單位 。

7、了解小數的組成:整數部分和小數部分

測量活動(小數的單位換算 )

1、1分米=0.1米 1厘米=0.01米 1克=0.001千克……學會低級單位與高級單位之間的互化(長度單位,面積單位,重量單位……)。低級單位轉化為高級單位時,先將這個低級單位的數改寫成分數的形式,再寫成小數的形式。

2、會進行單名數與復名數之間的互化。

比大小(比較小數的大小)

1、會比較兩個小數的大小以及將幾個小數按大小順序排列。

2、比較小數大小的方法:先看整數部分,整數部分大的小數就大。整數部分相同,再看小數部分的十分位,十分位上數字大的小數就大……

購物小票-----小數的加減法(不進位,不退位)

1、不進位加法,不退位減法的計算方法:小數點對齊,也就是相同數位對齊,再按照整數加減法的法則進行計算。

2、能解決簡單的小數加減法的實際問題。

量 體 重----小數的加減法(進位加、退位減)

1、小數進位加法和退位減法的計演算法則(同整數加、減法的法則相同)。

2、小數的性質:小數末尾加上「0」或去掉「0」小數的大小不變。

3、整數減去小數,可以在整數小數點的後面添上「0」,幫助計算。

歌手大賽---小數加、減法的混合運算

1、掌握小數混合運算的順序與整數四則混合運算一樣。

2、整數加、減法的運算定律同樣適用於小數加減法。

3、掌握小數加、減法的估算。

二 認識圖形

【知識框架】

1、圖形分類(按不同標准給已知圖形進行分類)

三角形的分類(認識直角三角形、銳角三角形、鈍角三角形、等腰三角形、等邊三角形)

2、三角形 三角形內角和

三角形三邊之間的關系

3、四邊形的分類(初步認識梯形、進一步認識平行四邊形)

4、圖案欣賞

【知識要點】

圖形分類

1、按照不同的標准給已知圖形進行分類:

(1)按平面圖形和立體圖形分;

(2)按平面圖形時否由線段圍成來分的;

(3)按圖形的邊數來分。通過自己動手分類,對圖形進行再認識,了解圖形的特徵。

2、了解平行四邊形易變形和三角形的穩定性在生活中的應用。

三角形分類

1、把三角形按照不同的標准分類,並說明分類依據。

(1)按角分,分為:直角三角形、銳角三角形、鈍角三角形,並了解其本質特徵:三個角都是銳角的三角形是銳角三角形,有一個角是直角的三角形是直角三角形,有一個角是鈍角的三角形是鈍角三角形。

(2)按邊分,分為:等腰三角形、等邊三角形、任意三角形。有兩條邊相等的三角形是等腰三角形,三條邊都相等的三角形是等邊三角形。

2、通過分類,使學生弄清等腰三角形和等邊三角形的關系:等邊三角形是特殊

的等腰三角形。

三角形內角和

1、任意一個三角形內角和等於180度。

2、 能應用三角形內角和的性質解決一些簡單的問題。

三角形邊的關系

1、 三角形任意兩邊之和大於第三邊。
2、根據上述知識點判斷所給的已知長度的三條線段能否圍成三角形。如果能圍

成三角形,能圍成一個什麼樣的三角形。

四邊形的分類

1、通過觀察、比較、分類等活動,了解由四條線段圍成的圖形是四邊形,四邊形中有兩組對邊分別平行的四邊形是平行四邊形,只由一組對邊平行的四邊形是梯形。

2、知道長方形、正方形是特殊的平行四邊形。

3、了解正方形、長方形、等腰梯形、菱形、等腰三角形、等邊三角形、圓形是軸對稱圖形。

圖 案 欣 賞

1、通過欣賞圖案,體會圖形排列的規律,感受圖案的美。
2、利用對稱、平移和旋轉,設計簡單的圖案。

三 小數乘法

【知識框架】

小數乘法的意義 小數乘法的意義

小數點移動引起小數大小變化的規律

積的小數位數與乘數的小數位數的關系

計算小數乘法 會用豎式計算小數乘法及估算

小數的混合運算(整數運算定律完全適合小數)

【知識要點】

文具店(小數乘法的意義)

通過具體情境教學使學生了解小數與整數相乘就是表示幾個相同加數的和的簡便運算。

1、小數乘法的意義

小數乘法的意義比整數乘法的意義,有了進一步的擴展.小數乘法的意義包括兩種情況:一是同整數乘法的意義相同,即求相同加數的和的簡便運算.二是求一個數的十分之幾,百分之幾……是多少.

2、小數的計演算法則

計算小數乘法,先按照整數乘示的法則算出積,再看因數中一共有幾位小數,就從積的右邊起數出幾位,點上小數點.小數計算乘法,用的是轉化的思想方法.先把小數轉化為整數算出積,再確定小數點的位置,還原成小數乘法的積.如6.2×0.3看作62×3相乘的積是186,因數中一共有兩位小數,就從186的右邊起數出兩位,點上小數點還原成小數乘法的積1.86.因此,小數乘法的關鍵是處理好小數點.在點小數點時注意,乘得的積的小數位數不夠時,要在前面用0補足,如0.04×0.2=0.008,在8的前面補兩個0,點上小數點後,整數部分也寫一個0.

小數點搬家(掌握小數點移動引起小數大小變化的規律)

明白小數點向左移動一位,小數就縮小到原來的十分之一;小數點向左移動兩位,小數就縮小到原來的百分之一……以此類推。小數點向右移動一位,這個數就擴大到原來的10倍;小數點向右移動兩位,這個數就擴大到原來100倍……以此類推。

街心廣場(積的小數位數與乘數的小數位數的關系)

積的小數位數與乘法的小數位數的關系:小數乘法中各個因數中小數的位數和就是這道題中積的小數的位數。

包裝(小數乘法2)

小數乘小數計算方法,即將小數乘法轉化為整數乘法進行計算。根據乘數擴大的倍數,將積縮小相同倍數,進一步體會到兩個乘數共有幾位小數,積就有幾位小數。

爬行最慢的哺乳動物(小數乘法3)

進一步理解小數乘小數的計算方法即兩個因數里共有幾位小數,積就有幾位小數;當其中的一個因數是整十數時,積中如果有一位小數,就在末尾畫掉一個零……

手拉手(小數的混合運算)

小數四則混合運算的運算順序與整數四則混合運算的順序相同。整數的運算定律在小數運算中仍然適用。例如乘法的結合律,交換律,分配律。等等。

四 觀察物體

不同位置觀察物體的范圍不同

不同位置觀察物體的形狀不同

節日禮物(不同位置觀察物體的范圍不同)

1、隨著觀察位置的高低與遠近變化,能判斷出觀察對象的畫面所發生的相應變化。

2、根據觀察到的畫面,判斷出觀察者所在的位置。

天安門廣場(不同位置觀察物體的形狀不同)

1、通過觀察、比較一些照片,能夠識別和判斷拍攝地點與照片的對應關系。

2、通過觀察連續拍攝到的一組照片,能夠判斷照片拍攝的前後順序。

第五單元「小數除法」
《精打細算》―――除數是整數的小數除法

(1)、小數除法的意義:小數除法的意義與整數除法的意義相同,是已知兩個因數的積與其中的一個因數,求另一個因數的運算。

(2)、小數除以整數的計算方法:除數為整數的小數除法和整數除法的計算類似,只要商的小數點和被除數的小數點對齊就可以了。

2、《參觀博物館》―――整數除以整數商是小數的小數除法

整數除以整數,商是小數的小數除法的計算方法:先按照整數除法的法則去做,如果除到被除數的末尾仍有餘數,就在後面填上0繼續除。

3、《誰打電話的時間長》―――除數是小數的除法

(1)、商不變的規律:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。

(2)、除數是小數的小數除法的計算方法:要把被除數和除數擴大相同的倍數,使除數變成整數,再按照小數除以整數的方法進行計算。

4、《人民幣兌換》―――積、商的近似值

求近似值方法:積取近似值是先精確計算,再根據題目要求取近似值;商取近似值是直接根據要求多除一位,然後根據題目要求取近似值。注意:有時會出現四不舍、五不入的情況,應根據題目的特點去求出近似數。

5、《誰爬得快》―――循環小數

(1)、循環現象:生活中很多時候有依次不斷重復出現的現象。如:日出日落、時間……

(2)、循環小數:從小數部分的某一位起,一個數字或幾個數字依次不斷地重復出現,這樣的小數就叫做循環小數。

(3)、 會用四捨五入法對循環小數取近似值,方法與小數取近似值的方法相同,保留幾位小數就看這個小數的下一位。

6、《電視.......》――小數的四則混合運算

(1)、小數連除和乘除混合運算,運算順序和整數是一樣的。

(2)、計算小數四則混合運算和整數四則混合運算的順序完全相同。

激情奧運

(1)通過「奧運」提供的各種信息,綜合應用所學的知識和方法,解決有關的問題。

(2)通過解決奧運賽場上的有關問題,體會到數學和體育這間的聯系,進一步體會數學的價值。

六 游戲公平

【知識框架】

通過游戲活動,體驗事件發生的等可能性。

等可能

通過游戲活動分析,判斷游戲規則的公平

能制定公平的游戲規則。

能通過實驗感受實際生活中的隨機性。

可能性不相等

游戲公平能通過游戲活動,體驗事件發生可能性不相等。

能辨別游戲可能性是否相等。

能通過自己的分析思考修改游戲規則使之公平,且方法多樣。誰 先 走(判斷規則的公平性,設計公平的規則)

【知識要點】

1、體會事件發生的等可能性。體會可能性相同游戲公平,可能性不同游戲不公平。

2、感受規則在游戲中的作用,建立規則意識。並會制定公平的游戲規則。

3、進一步體驗游戲中存在的隨機性的特點。

七 方程

用字母表示數.

方程1.方程的意義2.解簡易方程3.列方程解應用題

【知識要點】

用字母表示數

1、用字母表示運算定律和有關圖形的面積公式。

例如:加法交換律:a+b=b+a

加法結合律:a+b+c=a+(b+c)

減法的特性:a-b-c=a-(b+c)

乘法交換律:a×b=b×a

乘法結合律:a×b×c=a×(b×c)

乘法分配律:a×(b+c)=a×b×a×c

正方形周長:c=4a正方形面積:s=a×a

長方形的周長:C=(a+b)×2長方形面積:s=a×b

此外,還可以拓展到以前曾經學過的

路程=速度×時間總價=單價×數量……

2、字母表示數的時候,字母與數字相乘,字母與字母相乘,中間的乘號可以用小圓點代替或者省略。例如:a×5=5·a=5a 數字一般都寫在字母的前面。

3、區別a的平方和2乘a的區別。

方程(方程的意義)

1、了解方程的意義:含有未知數的等式叫做方程。

2、掌握方程與等式的關系:方程是等式但等式不一定是方程.或者說方程屬於等式,等式包含方程.並能用圖形表示.

3、根據情境圖找出等量關系,會列方程。

天平游戲一(解簡易方程未知數是加數或被減數)

1、等式兩邊都加上或減去同一個數,等式仍然成立。

2、能根據等式的這個性質求出方程中的未知數。

方程的解:使方程左右兩邊相等的未知數的值叫做方程的解。

解方程:求方程的解的過程叫做解方程。

3、學會檢驗方程的解是否正確。

天平游戲二(解簡易方程未知數是因數或被除數)

1、等式兩邊都乘或除以同一個數(零除外),等式仍然成立。

2、能根據一定的情境,列方程解決問題。

猜數游戲(解簡易方程)

1、會利用等式的性質解ax±b=c類型的方程。並能夠把方程的解帶回方程中進行檢驗。

2、會用方程解答簡單的應用題。

郵票的張數(列方程解應用題)

1、學會解形如cx±ax=b這樣的方程,能夠運用方程解應用題。

2、使學生掌握應將一倍數設為未知數.

5. 小學四年級數學如何復習

小學四年級數學復習,我覺得應該從這幾個方面入手
1.基礎知識。主要是口算能力的提高,這樣可以提高計算的正確率和速度。
2.對基本概念的復習。數學中的概念,要理解的透徹,這樣對試卷中的填空題,選擇題和判斷題能准確把握。

6. 小學四年級生活中的數學知識

1、加法:把兩個數合並成一個數的運算.
2、減法:已知兩個數的和與其中一個加數,求另一個加數的運算.
3、乘法:求相同加數和的簡便計算.
4、除法:已知兩個因數的積和其中一個因數,求另一個因數的運算.
小數四則運算的運算順序和整數四則運算順序相同.
分數四則運算的運算順序和整數四則運算順序相同.

7. 小學四年級上數學各單元知識點整理(人教版)

可以去下載一些學習課件或者可以去下載一些試卷,說不定可以幫到你,例如智樂園的資源中心這些素材就挺豐富的,還免費的。

8. 小學四年級數學的知識要點有哪些

一、億以內數的認識
1. 一(個),十,百、千、萬……億都是計數單位。
2. 每相鄰兩個計數單位之間有什麼關系?
每相鄰兩個計數單位的進率都是「10」。
3. 求近似數的方法叫「四捨五入」法。
4. 是「舍」還是「入」要看省略的尾數部分的最高位數是小於5還是大於5。
5. 表示物體個數的1,2,3,4,5,6,7,8,9,10,11,……都是自然數。一個物體也沒有用0表示。0也是自然數。
6. 最小的自然數是0,沒有最大的自然數,自然數的個數是無限的。
7. 每相鄰的兩個計數單位之間的進率都是十,這種計數方法叫做十進制計數法。
二、角的度量
1. 像手電筒簡、汽車燈和太陽等射出來的光線,都可以近似地看成是射線。射線只有一個端點,可以向一端無限延伸。
2. 直線沒有端點、可以向兩端無限延伸。
3. 直線、射錢與線段有什麼聯系和區別?
聯系:射線、線段都是直線的一部分,線段是直線的有限部分。
區別:直線無端點,長度無限,向兩方無限延伸,射線只有一個端點,長度無限,向一方無限延伸,線段有兩個端點,長度有限。
4. 直線和射線都可以無限延伸。線段可以量出長度。
5. 從一點引出兩條直線所組成的圖形叫做角。
6. 角的計量單位是「度」,用符號號「°」表示。把半圓分成180等份,每一份所對的角的大小是1度,記作1°。
7. 銳角、鈍角、直角,平角和周角之間有什麼關系?
直角=90度,鈍角大於直角小於平角,平角=180度,周角=360度,銳角小於90度,銳角<直角<鈍角<平角<周角。
8. 鈍角大於90°,而小於180°。銳角小於90°。平角等於180°,等於兩個直角。
三、三位數乘兩位數
1. 速度x時間=路程
四、平行四邊形和梯形
1. 在同一個平面內不相交的兩條直線叫做平行線,也可以說這兩條直線互相平行。如果兩條直線相交成直角,就說這兩條直線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
2. 從直線外一點到這條直線所畫的垂直線段最短,它的長度叫做這點到直線的距離。
3. 兩組對邊分別平行的四邊形叫做平行四邊形,只有一組對邊平行的四邊形叫做梯形。
4. 長方形和正方形可以看成特殊的平行四邊形嗎?為什麼?
可以,因為長方形和正方形兩組對邊分別平行,而且都是四邊形,所以可以看成特殊的平行四邊形。
5. 從平行四邊形一條邊上的一點到對邊引一條垂線。這點和垂足之間的線段叫做平行四邊形的高,垂足所在的邊叫做平行四邊形的底。
6. 兩腰相等的梯形叫做等腰梯形。
7. 有一種特殊的平行四邊形,它的四條邊都相等,這樣的平行四邊形叫菱形。
五、除數是兩位數的除法
六、統計
七、數學廣角

9. 小學四到六年級數學公式及概念

小學一至六年級的數學公式
基本公式:
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式:
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積=(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 π d=直徑 r=半徑
(1)周長=直徑×π=2×π×半徑
C=πd=2πr
(2)面積=半徑×半徑×n
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
和差問題的公式:
總數÷總份數=平均數
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
棱長總和:
長方體棱長和=(長+寬+高)
正方體棱長和=棱長×12
熟記下列正反比例關系:
正比例關系:
正方形的周長與邊長成正比例關系
長方形的周長與(長+寬)成正比例關系
圓的周長與直徑成正比例關系
圓的周長與半徑成正比例關系
圓的面積與半徑的平方成正比例關系
常用數量關系:
1.路程=速度×時間 速度=路程÷時間 時間=路程÷速度
工作總量=工作效率×工作時間 工作效率=工作總量÷工作時間 工作時間=工作總量÷工作效率
總價=單價×數量 單價=總價÷數量 數量=總價÷單價
總產量=單產量×面積 單產量=總產量÷面積 面積=總產量÷單產量
單位換算:
長度單位:
一公里=1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
面積單位:
1平方千米=100公頃 1公頃=100公畝 1公畝=100平方米
1平方千米=1000000平方米 1公頃=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
體積單位:
1立方千米=1000000000立方米 1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米 1立方分米=1升 1立方厘米=1毫升 1升=1000毫升
重量單位:
1噸=1000千克 1千克=1000克
時間單位:
一世紀=100年 一年=四季度 一年=12月 一年=365天(平年) 一年=366天(閏年)
一季度=3個月 一個月= 3旬(上、中、下) 一個月=30天(小月) 一個月=31天(大月)
一星期=7天 一天=24小時 一小時=60分 一分=60秒
一年中的大月:一月、三月、五月、七月、八月、十月、十二月(七個月)
一年中的小月:四月、六月、九月、十一月(四個月)
特殊分數值:
=0.5=50% = 0.25 = 25% = 0.75 = 75%
= 0.2 = 20% = 0.4 = 40% = 0.6 = 60% = 0.8 = 80%
=0.125=12.5% = 0.375 = 37.5% = 0.625 = 62.5% = 0.875 = 87.5%
算術
1、加法交換律:兩數相加交換加數的位置,和不變。 (2)你最敬重卑微者的哪一點,為什麼?
2、加法結合律:a + b = b + a
3、乘法交換律:a × b = b × a
4、乘法結合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性質:a ÷ b ÷ c = a ÷(b × c)
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。 簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、有餘數的除法: 被除數=商×除數+余數
方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
方程式:含有未知數的等式叫方程式。
一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
代數: 代數就是用字母代替數。
代數式:用字母表示的式子叫做代數式。如:3x =ab+c
分數
分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等於分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等於乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
一個數除以分數,等於這個數乘以分數的倒數。
甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式
單價×數量=總價 2、單產量×數量=總產量
速度×時間=路程 4、工效×時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數

什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
比例的基本性質:在比例里,兩外項之積等於兩內項之積。
解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y

百分數
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
要學會把小數化成分數和把分數化成小數的換算。
倍數與約數
最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。
最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。
互質數: 公約數只有1的兩個數,叫做互質數。相臨的兩個數一定互質。兩個連續奇數一定互質。1和任何數互質。
通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
約分:把一個分數的分子、分母同時除以公約數,分數值不變,這個過程叫約分。
最簡分數:分子、分母是互質數的分數,叫做最簡分數。分數計算到最後,得數必須化成最簡分數。
質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
整除
如果c|a, c|b,那麼c|(a±b)
如果,那麼b|a, c|a
如果b|a, c|a,且(b,c)=1, 那麼bc|a
如果c|b, b|a, 那麼c|a
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
質因數:如果一個質數是某個數的因數,那麼這個質數就是這個數的質因數。
分解質因數:把一個合數用質因數相成的方式表示出來叫做分解質因數。
倍數特徵:
2的倍數的特徵:各位是0,2,4,6,8。
3(或9)的倍數的特徵:各個數位上的數之和是3(或9)的倍數。
5的倍數的特徵:各位是0,5。
4(或25)的倍數的特徵:末2位是4(或25)的倍數。
8(或125)的倍數的特徵:末3位是8(或125)的倍數。
7(11或13)的倍數的特徵:末3位與其餘各位之差(大-小)是7(11或13)的倍數。
17(或59)的倍數的特徵:末3位與其餘各位3倍之差(大-小)是17(或59)的倍數。
19(或53)的倍數的特徵:末3位與其餘各位7倍之差(大-小)是19(或53)的倍數。
23(或29)的倍數的特徵:末4位與其餘各位5倍之差(大-小)是23(或29)的倍數。
倍數關系的兩個數,最大公約數為較小數,最小公倍數為較大數。
互質關系的兩個數,最大公約數為1,最小公倍數為乘積。
兩個數分別除以他們的最大公約數,所得商互質。
兩個數的與最小公倍數的乘積等於這兩個數的乘積。
兩個數的公約數一定是這兩個數最大公約數的約數。
1既不是質數也不是合數。
用6去除大於3的質數,結果一定是1或5。
奇數與偶數
偶數:個位是0,2,4,6,8的數。
奇數:個位不是0,2,4,6,8的數。
偶數±偶數=偶數 奇數±奇數=奇數 奇數±偶數=奇數
偶數個偶數相加是偶數,奇數個奇數相加是奇數。
偶數×偶數=偶數 奇數×奇數=奇數 奇數×偶數=偶數
相臨兩個自然數之和為奇數,相臨自然數之積為偶數。
如果乘式中有一個數為偶數,那麼乘積一定是偶數。
奇數≠偶數
小數
自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
純小數:個位是0的小數。
帶小數:各位大於0的小數。
循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。如3. 141592654
無限循環小數:一個小數,從小數部分到無限位數,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限循環小數。如3. 141414……
無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
利潤
利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
內角和
邊數—2乘180