當前位置:首頁 » 基礎知識 » 高中理科數學知識點
擴展閱讀
兒童德勒斯枕應該怎麼辦 2024-11-15 00:18:44
資料庫語言以什麼為基礎 2024-11-15 00:01:42

高中理科數學知識點

發布時間: 2022-02-25 05:51:54

1. 高中數學知識有哪些

2020蔡德錦數學全年聯報(高清視頻33.5G有水印)網路網盤

鏈接:

提取碼: ebvb 復制這段內容後打開網路網盤手機App,操作更方便哦

若資源有問題歡迎追問~


2. 高中數學知識點總結

《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載

鏈接:

提取碼: i8i2

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

3. 高中數學知識點整理

下面,我分章節講一下數學的主幹內容:那些雖然課本上沒有,但是必須講也必須學會的東西。

目錄(未完待更新):
零,總論與試卷分析(就是上文內容)
一,函數
1.1 集合
1.2 函數的定義域
1.3 函數的值域
1.4 單調性
1.5 奇偶性,對稱性,周期性
1.6 指數函數,對數函數
1.7 復合函數
1.8 含參函數
二,三角函數(僅函數部分,解三角形部分等講完平面向量和平面幾何再說)
2.1 正弦,餘弦,正切
2.2 三角函數線
2.3 三角函數的基本形式與伸縮
2.4 三角變換公式和萬能公式
2.5 三角函數最值問題
三,平面幾何,平面向量,與直線與圓的方程
3.1 平行線和相交線
3.2 三角形
3.3 圓
3.4 基向量,正交基,和坐標系
3.5 平面向量與基本幾何圖形
3.6 向量運算律與推論
3.7 直線方程
3.8 圓的方程
3.9 用向量解決平面幾何問題
四,解三角形
4.1 正弦定理
4.2 餘弦定理
4.3 正弦定理和餘弦定理的應用
4.4 解三角形中的多解問題
4.5 解三角形中的最值問題
五,立體幾何
5.1 基本幾何體:柱,錐,台,球
5.2 三視圖與直觀圖
一,函數
1.1 集合。
集合的元素必須是確定的,並且是唯一的。比如,一個集合里不能有兩個「1」。
1.2 函數的定義域。
除了最常見的幾個:分母不為零,對數函數的真數大於零,偶數次方的被開方數不為負(注意我前面幾個表述,其中暗含了區間的開閉),正切餘切函數不能恰好取定義中分母為零的角度(正切餘切都是用比值定義的) 還一定要注意一個容易被忽略的易錯點: 無定義。
1.3 函數的值域
分離常數法 判別式法 換元法 基本不等式法 等等幾種方法,看起來方法非常繁多,似乎挺難總結,但是,我們如果按題目的形式進行總結,每種只需要掌握一種,或者兩種就可以了

4. 高中數學知識點

去書店買一本《高中數學公式定理大全》,10元左右,要比網路下的好的多,而且還有許多解題指導,解題經驗、方法總結等,非常方便。

5. 高中數學知識點總結(理科,配人教版)

http://wenku..com/view/88d65748852458fb770b560c.html?e_search=true
雖然只有必修一到五,但這個總結的真心不錯,希望對你有幫助。

6. 高中數學所有知識點歸納

高中數學基礎知識梳理(數學小飛俠)

鏈接:

提取碼:9bdp復制這段內容後打開網路網盤手機App,操作更方便哦

若資源有問題,歡迎追問~

7. 江西高中理科數學的重要知識點有哪些

無論是江西還是江東(開玩笑了),所有省份在命題時還是參照全國大綱來的,不過在學習高中數學知識的時候,可以將知識分成幾大模塊:1、函數(包括各類型基本函數、定義域、值域、奇偶性、單調性、導數等);2、幾何(平面解析幾何、立體幾何等);3、統計概率(文科統計概率、理科包括排列組合、二項式、離散變數等);4、輔助載體類的(包括三角函數、三角形、數列、平面向量等);5、其他選修類
幾大塊知識點在高中數學考試中前4項所佔分值相當,後一項專攻一塊即可,在學習過程中相應的知識塊都應該根據自己實際情況規定相應的學習課時

8. 高中的文理科的數學知識點有哪些

必修部分的考察要求是完全一樣的

如果有選修4系列,那麼也是一樣的

理科必選選修2系列 3本

文科必選選修1系列 2本

9. 高中數學知識點詳細總結

請網路:高中數學知識要點
又快又全
OK?

10. 跪求高中數學知識點總結

高考數學基礎知識匯總
第一部分 集合
(1)含n個元素的集合的子集數為2^n,真子集數為2^n-1;非空真子集的數為2^n-2;
(2) 注意:討論的時候不要遺忘了 的情況。
(3)
第二部分 函數與導數
1.映射:注意 ①第一個集合中的元素必須有象;②一對一,或多對一。
2.函數值域的求法:①分析法 ;②配方法 ;③判別式法 ;④利用函數單調性 ;
⑤換元法 ;⑥利用均值不等式 ; ⑦利用數形結合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數有界性( 、 、 等);⑨導數法
3.復合函數的有關問題
(1)復合函數定義域求法:
① 若f(x)的定義域為〔a,b〕,則復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出② 若f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域。
(2)復合函數單調性的判定:
①首先將原函數 分解為基本函數:內函數 與外函數 ;
②分別研究內、外函數在各自定義域內的單調性;
③根據「同性則增,異性則減」來判斷原函數在其定義域內的單調性。
注意:外函數 的定義域是內函數 的值域。
4.分段函數:值域(最值)、單調性、圖象等問題,先分段解決,再下結論。
5.函數的奇偶性
⑴函數的定義域關於原點對稱是函數具有奇偶性的必要條件;
⑵ 是奇函數 ;
⑶ 是偶函數 ;
⑷奇函數 在原點有定義,則 ;
⑸在關於原點對稱的單調區間內:奇函數有相同的單調性,偶函數有相反的單調性;
(6)若所給函數的解析式較為復雜,應先等價變形,再判斷其奇偶性;
6.函數的單調性
⑴單調性的定義:
① 在區間 上是增函數 當 時有 ;
② 在區間 上是減函數 當 時有 ;
⑵單調性的判定
1 定義法:
注意:一般要將式子 化為幾個因式作積或作商的形式,以利於判斷符號;
②導數法(見導數部分);
③復合函數法(見2 (2));
④圖像法。
註:證明單調性主要用定義法和導數法。
7.函數的周期性
(1)周期性的定義:
對定義域內的任意 ,若有 (其中 為非零常數),則稱函數 為周期函數, 為它的一個周期。
所有正周期中最小的稱為函數的最小正周期。如沒有特別說明,遇到的周期都指最小正周期。
(2)三角函數的周期
① ;② ;③ ;
④ ;⑤ ;
⑶函數周期的判定
①定義法(試值) ②圖像法 ③公式法(利用(2)中結論)
⑷與周期有關的結論
① 或 的周期為 ;
② 的圖象關於點 中心對稱 周期為2 ;
③ 的圖象關於直線 軸對稱 周期為2 ;
④ 的圖象關於點 中心對稱,直線 軸對稱 周期為4 ;
8.基本初等函數的圖像與性質
⑴冪函數: ( ;⑵指數函數: ;
⑶對數函數: ;⑷正弦函數: ;
⑸餘弦函數: ;(6)正切函數: ;⑺一元二次函數: ;
⑻其它常用函數:
1 正比例函數: ;②反比例函數: ;特別的
2 函數 ;
9.二次函數:
⑴解析式:
①一般式: ;②頂點式: , 為頂點;
③零點式: 。
⑵二次函數問題解決需考慮的因素:
①開口方向;②對稱軸;③端點值;④與坐標軸交點;⑤判別式;⑥兩根符號。
⑶二次函數問題解決方法:①數形結合;②分類討論。
10.函數圖象:
⑴圖象作法 :①描點法 (特別注意三角函數的五點作圖)②圖象變換法③導數法
⑵圖象變換:
1 平移變換:ⅰ ,2 ———「正左負右」
ⅱ ———「正上負下」;
3 伸縮變換:
ⅰ , ( ———縱坐標不變,橫坐標伸長為原來的 倍;
ⅱ , ( ———橫坐標不變,縱坐標伸長為原來的 倍;
4 對稱變換:ⅰ ;ⅱ ;
ⅲ ; ⅳ ;
5 翻轉變換:
ⅰ ———右不動,右向左翻( 在 左側圖象去掉);
ⅱ ———上不動,下向上翻(| |在 下面無圖象);
11.函數圖象(曲線)對稱性的證明
(1)證明函數 圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明函數 與 圖象的對稱性,即證明 圖象上任意點關於對稱中心(對稱軸)的對稱點在 的圖象上,反之亦然;
註:
①曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
②曲線C1:f(x,y)=0關於直線x=a的對稱曲線C2方程為:f(2a-x, y)=0;
③曲線C1:f(x,y)=0,關於y=x+a(或y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
④f(a+x)=f(b-x) (x∈R) y=f(x)圖像關於直線x= 對稱;
特別地:f(a+x)=f(a-x) (x∈R) y=f(x)圖像關於直線x=a對稱;
⑤函數y=f(x-a)與y=f(b-x)的圖像關於直線x= 對稱;
12.函數零點的求法:
⑴直接法(求 的根);⑵圖象法;⑶二分法.
13.導數
⑴導數定義:f(x)在點x0處的導數記作 ;
⑵常見函數的導數公式: ① ;② ;③ ;
④ ;⑤ ;⑥ ;⑦ ;
⑧ 。
⑶導數的四則運演算法則:
⑷(理科)復合函數的導數:
⑸導數的應用:
①利用導數求切線:注意:ⅰ所給點是切點嗎?ⅱ所求的是「在」還是「過」該點的切線?
②利用導數判斷函數單調性:
ⅰ 是增函數;ⅱ 為減函數;
ⅲ 為常數;
③利用導數求極值:ⅰ求導數 ;ⅱ求方程 的根;ⅲ列表得極值。
④利用導數最大值與最小值:ⅰ求的極值;ⅱ求區間端點值(如果有);ⅲ得最值。
14.(理科)定積分
⑴定積分的定義:
⑵定積分的性質:① ( 常數);
② ;
③ (其中 。
⑶微積分基本定理(牛頓—萊布尼茲公式):
⑷定積分的應用:①求曲邊梯形的面積: ;
3 求變速直線運動的路程: ;③求變力做功: 。
第三部分 三角函數、三角恆等變換與解三角形
1.⑴角度制與弧度制的互化: 弧度 , 弧度, 弧度
⑵弧長公式: ;扇形面積公式: 。
2.三角函數定義:角 中邊上任意一點 為 ,設 則:

3.三角函數符號規律:一全正,二正弦,三兩切,四餘弦;
4.誘導公式記憶規律:「函數名不(改)變,符號看象限」;
5.⑴ 對稱軸: ;對稱中心: ;
⑵ 對稱軸: ;對稱中心: ;
6.同角三角函數的基本關系: ;

7.兩角和與差的正弦、餘弦、正切公式:①

② ③ 。

8.二倍角公式:① ;
② ;③ 。

9.正、餘弦定理:
⑴正弦定理: ( 是 外接圓直徑 )
註:① ;② ;③ 。
⑵餘弦定理: 等三個;註: 等三個。
10。幾個公式:
⑴三角形面積公式: ;
⑵內切圓半徑r= ;外接圓直徑2R=
11.已知 時三角形解的個數的判定:

第四部分 立體幾何
1.三視圖與直觀圖:註:原圖形與直觀圖面積之比為 。
2.表(側)面積與體積公式:
⑴柱體:①表面積:S=S側+2S底;②側面積:S側= ;③體積:V=S底h
⑵錐體:①表面積:S=S側+S底;②側面積:S側= ;③體積:V= S底h:
⑶台體:①表面積:S=S側+S上底S下底;②側面積:S側= ;③體積:V= (S+ )h;
⑷球體:①表面積:S= ;②體積:V= 。
3.位置關系的證明(主要方法):
⑴直線與直線平行:①公理4;②線面平行的性質定理;③面面平行的性質定理。
⑵直線與平面平行:①線面平行的判定定理;②面面平行 線面平行。
⑶平面與平面平行:①面面平行的判定定理及推論;②垂直於同一直線的兩平面平行。
⑷直線與平面垂直:①直線與平面垂直的判定定理;②面面垂直的性質定理。
⑸平面與平面垂直:①定義---兩平面所成二面角為直角;②面面垂直的判定定理。
註:理科還可用向量法。
4.求角:(步驟-------Ⅰ。找或作角;Ⅱ。求角)
⑴異面直線所成角的求法:
1 平移法:平移直線,2 構造三角形;
3 ②補形法:補成正方體、平行六面體、長方體等,4 發現兩條異面直線間的關系。
註:理科還可用向量法,轉化為兩直線方向向量的夾角。
⑵直線與平面所成的角:
①直接法(利用線面角定義);②先求斜線上的點到平面距離h,與斜線段長度作比,得sin 。
註:理科還可用向量法,轉化為直線的方向向量與平面法向量的夾角。
⑶二面角的求法:
①定義法:在二面角的棱上取一點(特殊點),作出平面角,再求解;
②三垂線法:由一個半面內一點作(或找)到另一個半平面的垂線,用三垂線定理或逆定理作出二面角的平面角,再求解;
③射影法:利用面積射影公式: ,其中 為平面角的大小;
註:對於沒有給出棱的二面角,應先作出棱,然後再選用上述方法;
理科還可用向量法,轉化為兩個班平面法向量的夾角。
5.求距離:(步驟-------Ⅰ。找或作垂線段;Ⅱ。求距離)
⑴兩異面直線間的距離:一般先作出公垂線段,再進行計算;
⑵點到直線的距離:一般用三垂線定理作出垂線段,再求解;
⑶點到平面的距離:
①垂面法:藉助面面垂直的性質作垂線段(確定已知面的垂面是關鍵),再求解;
5 等體積法;
理科還可用向量法: 。
⑷球面距離:(步驟)
(Ⅰ)求線段AB的長;(Ⅱ)求球心角∠AOB的弧度數;(Ⅲ)求劣弧AB的長。
6.結論:
⑴從一點O出發的三條射線OA、OB、OC,若∠AOB=∠AOC,則點A在平面∠BOC上的射影在∠BOC的平分線上;
⑵立平斜公式(最小角定理公式):
⑶正棱錐的各側面與底面所成的角相等,記為 ,則S側cos =S底;
⑷長方體的性質
①長方體體對角線與過同一頂點的三條棱所成的角分別為 則:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。
②長方體體對角線與過同一頂點的三側面所成的角分別為 則有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。
⑸正四面體的性質:設棱長為 ,則正四面體的:
1 高: ;②對棱間距離: ;③相鄰兩面所成角餘弦值: ;④內切2 球半徑: ;外接球半徑: ;
第五部分 直線與圓
1.直線方程
⑴點斜式: ;⑵斜截式: ;⑶截距式: ;
⑷兩點式: ;⑸一般式: ,(A,B不全為0)。
(直線的方向向量:( ,法向量(
2.求解線性規劃問題的步驟是:
(1)列約束條件;(2)作可行域,寫目標函數;(3)確定目標函數的最優解。
3.兩條直線的位置關系:

4.直線系

5.幾個公式
⑴設A(x1,y1)、B(x2,y2)、C(x3,y3),⊿ABC的重心G:( );
⑵點P(x0,y0)到直線Ax+By+C=0的距離: ;
⑶兩條平行線Ax+By+C1=0與 Ax+By+C2=0的距離是 ;
6.圓的方程:
⑴標准方程:① ;② 。
⑵一般方程: (
註:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圓 A=C≠0且B=0且D2+E2-4AF>0;
7.圓的方程的求法:⑴待定系數法;⑵幾何法;⑶圓系法。
8.圓系:
⑴ ;
註:當 時表示兩圓交線。
⑵ 。
9.點、直線與圓的位置關系:(主要掌握幾何法)
⑴點與圓的位置關系:( 表示點到圓心的距離)
① 點在圓上;② 點在圓內;③ 點在圓外。
⑵直線與圓的位置關系:( 表示圓心到直線的距離)
① 相切;② 相交;③ 相離。
⑶圓與圓的位置關系:( 表示圓心距, 表示兩圓半徑,且 )
① 相離;② 外切;③ 相交;
④ 內切;⑤ 內含。
10.與圓有關的結論:
⑴過圓x2+y2=r2上的點M(x0,y0)的切線方程為:x0x+y0y=r2;
過圓(x-a)2+(y-b)2=r2上的點M(x0,y0)的切線方程為:(x0-a)(x-a)+(y0-b)(y-b)=r2;
⑵以A(x1,y2)、B(x2,y2)為直徑的圓的方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0。
第六部分 圓錐曲線
1.定義:⑴橢圓: ;
⑵雙曲線: ;⑶拋物線:略
2.結論
⑴焦半徑:①橢圓: (e為離心率); (左「+」右「-」);
②拋物線:
⑵弦長公式:

註:(Ⅰ)焦點弦長:①橢圓: ;②拋物線: =x1+x2+p= ;(Ⅱ)通徑(最短弦):①橢圓、雙曲線: ;②拋物線:2p。
⑶過兩點的橢圓、雙曲線標准方程可設為: ( 同時大於0時表示橢圓, 時表示雙曲線);
⑷橢圓中的結論:
①內接矩形最大面積 :2ab;
②P,Q為橢圓上任意兩點,且OP 0Q,則 ;
③橢圓焦點三角形:<Ⅰ>. ,( );<Ⅱ>.點 是 內心, 交 於點 ,則 ;
④當點 與橢圓短軸頂點重合時 最大;
⑸雙曲線中的結論:
①雙曲線 (a>0,b>0)的漸近線: ;
②共漸進線 的雙曲線標准方程為 為參數, ≠0);
③雙曲線焦點三角形:<Ⅰ>. ,( );<Ⅱ>.P是雙曲線 - =1(a>0,b>0)的左(右)支上一點,F1、F2分別為左、右焦點,則△PF1F2的內切圓的圓心橫坐標為 ;
④雙曲線為等軸雙曲線 漸近線為 漸近線互相垂直;
(6)拋物線中的結論:
①拋物線y2=2px(p>0)的焦點弦AB性質:<Ⅰ>. x1x2= ;y1y2=-p2;
<Ⅱ>. ;<Ⅲ>.以AB為直徑的圓與准線相切;<Ⅳ>.以AF(或BF)為直徑的圓與 軸相切;<Ⅴ>. 。
②拋物線y2=2px(p>0)內結直角三角形OAB的性質:
<Ⅰ>. ; <Ⅱ>. 恆過定點 ;
<Ⅲ>. 中點軌跡方程: ;<Ⅳ>. ,則 軌跡方程為: ;<Ⅴ>. 。
③拋物線y2=2px(p>0),對稱軸上一定點 ,則:
<Ⅰ>.當 時,頂點到點A距離最小,最小值為 ;<Ⅱ>.當 時,拋物線上有關於 軸對稱的兩點到點A距離最小,最小值為 。
3.直線與圓錐曲線問題解法:
⑴直接法(通法):聯立直線與圓錐曲線方程,構造一元二次方程求解。
注意以下問題:
①聯立的關於「 」還是關於「 」的一元二次方程?
②直線斜率不存在時考慮了嗎?
③判別式驗證了嗎?
⑵設而不求(代點相減法):--------處理弦中點問題
步驟如下:①設點A(x1,y1)、B(x2,y2);②作差得 ;③解決問題。
4.求軌跡的常用方法:(1)定義法:利用圓錐曲線的定義; (2)直接法(列等式);(3)代入法(相關點法或轉移法);⑷待定系數法;(5)參數法;(6)交軌法。
第七部分 平面向量
⑴設a=(x1,y1),b=(x2,y2),則: ① a‖b(b≠0) a= b ( x1y2-x2y1=0;
② a⊥b(a、b≠0) a•b=0 x1x2+y1y2=0 .
⑵a•b=|a||b|cos<a,b>=x2+y1y2;
註:①|a|cos<a,b>叫做a在b方向上的投影;|b|cos<a,b>叫做b在a方向上的投影;
6 a•b的幾何意義:a•b等於|a|與|b|在a方向上的投影|b|cos<a,b>的乘積。
⑶cos<a,b>= ;
⑷三點共線的充要條件:P,A,B三點共線 ;
附:(理科)P,A,B,C四點共面 。
第八部分 數列
1.定義:
⑴等差數列 ;
⑵等比數列

2.等差、等比數列性質
等差數列 等比數列
通項公式
前n項和
性質 ①an=am+ (n-m)d, ①an=amqn-m;
②m+n=p+q時am+an=ap+aq ②m+n=p+q時aman=apaq
③ 成AP ③ 成GP
④ 成AP, ④ 成GP,
等差數列特有性質:
1 項數為2n時:S2n=n(an+an+1)=n(a1+a2n); ; ;
2 項數為2n-1時:S2n-1=(2n-1) ; ; ;
3 若 ;若 ;
若 。
3.數列通項的求法:
⑴分析法;⑵定義法(利用AP,GP的定義);⑶公式法:累加法( ;
⑷疊乘法( 型);⑸構造法( 型);(6)迭代法;
⑺間接法(例如: );⑻作商法( 型);⑼待定系數法;⑽(理科)數學歸納法。
註:當遇到 時,要分奇數項偶數項討論,結果是分段形式。
4.前 項和的求法:
⑴拆、並、裂項法;⑵倒序相加法;⑶錯位相減法。
5.等差數列前n項和最值的求法:
⑴ ;⑵利用二次函數的圖象與性質。
第九部分 不等式
1.均值不等式:
注意:①一正二定三相等;②變形, 。
2.絕對值不等式:
3.不等式的性質:
⑴ ;⑵ ;⑶ ;
;⑷ ; ;
;⑸ ;(6)

4.不等式等證明(主要)方法:
⑴比較法:作差或作比;⑵綜合法;⑶分析法。
第十部分 復數
1.概念:
⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;
⑵z=a+bi是虛數 b≠0(a,b∈R);
⑶z=a+bi是純虛數 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2<0;
⑷a+bi=c+di a=c且c=d(a,b,c,d∈R);
2.復數的代數形式及其運算:設z1= a + bi , z2 = c + di (a,b,c,d∈R),則:
(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)•(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ;
3.幾個重要的結論:
;⑶ ;⑷
⑸ 性質:T=4; ;
(6) 以3為周期,且 ; =0;
(7) 。
4.運算律:(1)
5.共軛的性質:⑴ ;⑵ ;⑶ ;⑷ 。
6.模的性質:⑴ ;⑵ ;⑶ ;⑷ ;
第十一部分 概率
1.事件的關系:
⑴事件B包含事件A:事件A發生,事件B一定發生,記作 ;
⑵事件A與事件B相等:若 ,則事件A與B相等,記作A=B;
⑶並(和)事件:某事件發生,當且僅當事件A發生或B發生,記作 (或 );
⑷並(積)事件:某事件發生,當且僅當事件A發生且B發生,記作 (或 ) ;
⑸事件A與事件B互斥:若 為不可能事件( ),則事件A與互斥;
(6)對立事件: 為不可能事件, 為必然事件,則A與B互為對立事件。
2.概率公式:
⑴互斥事件(有一個發生)概率公式:P(A+B)=P(A)+P(B);
⑵古典概型: ;
⑶幾何概型: ;

第十二部分 統計與統計案例
1.抽樣方法
⑴簡單隨機抽樣:一般地,設一個總體的個數為N,通過逐個不放回的方法從中抽取一個容量為n的樣本,且每個個體被抽到的機會相等,就稱這種抽樣為簡單隨機抽樣。
註:①每個個體被抽到的概率為 ;
②常用的簡單隨機抽樣方法有:抽簽法;隨機數法。
⑵系統抽樣:當總體個數較多時,可將總體均衡的分成幾個部分,然後按照預先制定的
規則,從每一個部分抽取一個個體,得到所需樣本,這種抽樣方法叫系統抽樣。
註:步驟:①編號;②分段;③在第一段採用簡單隨機抽樣方法確定其時個體編號 ;
④按預先制定的規則抽取樣本。
⑶分層抽樣:當已知總體有差異比較明顯的幾部分組成時,為使樣本更充分的反映總體的情況,將總體分成幾部分,然後按照各部分佔總體的比例進行抽樣,這種抽樣叫分層抽樣。
註:每個部分所抽取的樣本個體數=該部分個體數
2.總體特徵數的估計:
⑴樣本平均數 ;
⑵樣本方差 ;
⑶樣本標准差 = ;
3.相關系數(判定兩個變數線性相關性):
註:⑴ >0時,變數 正相關; <0時,變數 負相關;
⑵① 越接近於1,兩個變數的線性相關性越強;② 接近於0時,兩個變數之間幾乎不存在線性相關關系。
4.回歸分析中回歸效果的判定:
⑴總偏差平方和: ⑵殘差: ;⑶殘差平方和: ;⑷回歸平方和: - ;⑸相關指數 。
註:① 得知越大,說明殘差平方和越小,則模型擬合效果越好;
② 越接近於1,,則回歸效果越好。
5.獨立性檢驗(分類變數關系):
隨機變數 越大,說明兩個分類變數,關系越強,反之,越弱。
第十四部分 常用邏輯用語與推理證明
1. 四種命題:
⑴原命題:若p則q; ⑵逆命題:若q則p;
⑶否命題:若 p則 q;⑷逆否命題:若 q則 p
註:原命題與逆否命題等價;逆命題與否命題等價。
2.充要條件的判斷:
(1)定義法----正、反方向推理;
(2)利用集合間的包含關系:例如:若 ,則A是B的充分條件或B是A的必要條件;若A=B,則A是B的充要條件;
3.邏輯連接詞:
⑴且(and) :命題形式 p q; p q p q p q p
⑵或(or):命題形式 p q; 真 真 真 真 假
⑶非(not):命題形式 p . 真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
4.全稱量詞與存在量詞
⑴全稱量詞-------「所有的」、「任意一個」等,用 表示;
全稱命題p: ;
全稱命題p的否定 p: 。
⑵存在量詞--------「存在一個」、「至少有一個」等,用 表示;
特稱命題p: ;
特稱命題p的否定 p: ;
第十五部分 推理與證明
1.推理:
⑴合情推理:歸納推理和類比推理都是根據已有事實,經過觀察、分析、比較、聯想,在進行歸納、類比,然後提出猜想的推理,我們把它們稱為合情推理。
①歸納推理:由某類食物的部分對象具有某些特徵,推出該類事物的全部對象都具有這些特徵的推理,或者有個別事實概括出一般結論的推理,稱為歸納推理,簡稱歸納。
註:歸納推理是由部分到整體,由個別到一般的推理。
②類比推理:由兩類對象具有類似和其中一類對象的某些已知特徵,推出另一類對象也具有這些特徵的推理,稱為類比推理,簡稱類比。
註:類比推理是特殊到特殊的推理。
⑵演繹推理:從一般的原理出發,推出某個特殊情況下的結論,這種推理叫演繹推理。
註:演繹推理是由一般到特殊的推理。
「三段論」是演繹推理的一般模式,包括:
⑴大前提---------已知的一般結論;
⑵小前提---------所研究的特殊情況;
⑶結 論---------根據一般原理,對特殊情況得出的判斷。
二.證明
⒈直接證明
⑴綜合法
一般地,利用已知條件和某些數學定義、定理、公理等,經過一系列的推理論證,最後推導出所要證明的結論成立,這種證明方法叫做綜合法。綜合法又叫順推法或由因導果法。
⑵分析法
一般地,從要證明的結論出發,逐步尋求使它成立的充分條件,直至最後,把要證明的結論歸結為判定一個明顯成立的條件(已知條件、定義、定理、公理等),這種證明的方法叫分析法。分析法又叫逆推證法或執果索因法。
2.間接證明------反證法
一般地,假設原命題不成立,經過正確的推理,最後得出矛盾,因此說明假設錯誤,從而證明原命題成立,這種證明方法叫反證法。
附:數學歸納法(僅限理科)
一般的證明一個與正整數 有關的一個命題,可按以下步驟進行:
⑴證明當 取第一個值 是命題成立;
⑵假設當 命題成立,證明當 時命題也成立。
那麼由⑴⑵就可以判定命題對從 開始所有的正整數都成立。
這種證明方法叫數學歸納法。
註:①數學歸納法的兩個步驟缺一不可,用數學歸納法證明問題時必須嚴格按步驟進行;
3 的取值視題目而4 定,5 可能是1,6 也可能是2等。
第十六部分 理科選修部分
1. 排列、組合和二項式定理
⑴排列數公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),當m=n時為全排列 =n(n-1)(n-2)…3.2.1=n!;
⑵組合數公式: (m≤n), ;
⑶組合數性質: ;
⑷二項式定理:
①通項: ②注意二項式系數與系數的區別;
⑸二項式系數的性質:
①與首末兩端等距離的二項式系數相等;②若n為偶數,中間一項(第 +1項)二項式系數最大;若n為奇數,中間兩項(第 和 +1項)二項式系數最大;

(6)求二項展開式各項系數和或奇(偶)數項系數和時,注意運用賦值法。
2. 概率與統計
⑴隨機變數的分布列:
①隨機變數分布列的性質:pi≥0,i=1,2,…; p1+p2+…=1;
②離散型隨機變數:
X x1 X2 … xn …
P P1 P2 … Pn …
期望:EX= x1p1 + x2p2 + … + xnpn + … ;
方差:DX= ;
註: ;
③兩點分布:
X 0 1 期望:EX=p;方差:DX=p(1-p).
P 1-p p

4 超幾何分布:
一般地,在含有M件次品的N件產品中,任取n件,其中恰有X件次品,則 其中, 。
稱分布列

X 0 1 … m
P …
為超幾何分布列, 稱X服從超幾何分布。
⑤二項分布(獨立重復試驗):
若X~B(n,p),則EX=np, DX=np(1- p);註: 。
⑵條件概率:稱 為在事件A發生的條件下,事件B發生的概率。
註:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。
⑶獨立事件同時發生的概率:P(AB)=P(A)P(B)。
⑷正態總體的概率密度函數: 式中 是參數,分別表示總體的平均數(期望值)與標准差;
(6)正態曲線的性質:
①曲線位於x軸上方,與x軸不相交;②曲線是單峰的,關於直線x= 對稱;
③曲線在x= 處達到峰值 ;④曲線與x軸之間的面積為1;
5 當 一定時,6 曲線隨 質的變化沿x軸平移;
7 當 一定時,8 曲線形狀由 確定: 越大,9 曲線越「矮胖」,10 表示總體分布越集中;
越小,曲線越「高瘦」,表示總體分布越分散。
註:P =0.6826;P =0.9544
P =0.9974