Ⅰ 高中數學高考知識點
數學知識之間都有著千絲萬縷的聯系,僅僅想憑著對章節的理解就能得到高分的時代已經遠去了。所以考生在解答數學試題時要有正確的思路,才能避免錯失分數的機會。以下是高考數學解題五大思路,供大家學習參考。
高考數學解題思想一:函數與方程思想
函數思想是指運用運動變化的觀點,分析和研究數學中的數量關系,通過建立函數關系(或構造函數)運用函數的圖像和性質去分析問題、轉化問題和解決問題;方程思想,是從問題的數量關系入手,運用數學語言將問題轉化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉化思想我們還可進行函數與方程間的相互轉化。
高考數學解題思想二:數形結合思想
中學數學研究的對象可分為兩大部分,一部分是數,一部分是形,但數與形是有聯系的,這個聯系稱之為數形結合或形數結合。它既是尋找問題解決切入點的「法寶」,又是優化解題途徑的「良方」,因此我們在解答數學題時,能畫圖的盡量畫出圖形,以利於正確地理解題意、快速地解決問題。
高考數學解題思想三:特殊與一般的思想
用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據這一點,我們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣精彩。
高考數學解題思想四:極限思想解題步驟
極限思想解決問題的一般步驟為:(1)對於所求的未知量,先設法構思一個與它有關的變數;(2)確認這變數通過無限過程的結果就是所求的未知量;(3)構造函數(數列)並利用極限計演算法則得出結果或利用圖形的極限位置直接計算結果。
高考數學解題思想五:分類討論思想
我們常常會遇到這樣一種情況,解到某一步之後,不能再以統一的方法、統一的式子繼續進行下去,這是因為被研究的對象包含了多種情況,這就需要對各種情況加以分類,並逐類求解,然後綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數學概念本身具有多種情形,數學運演算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。在分類討論解題時,要做到標准統一,不重不漏。
詳細內容看文件,希望採納謝謝
Ⅱ 數學高考一般考什麼知識點
主幹知識,函數,導數,數列,三角函數,數據分析,向量,集合,解析幾何這些是重點。
Ⅲ 高中數學必須背的知識有哪些
要學好高中數學最重要的還是書本上的基本知識和思維能力.你說的這種常識太偏,跟本沒啥用.而且就算記住了也是死記硬背不會應用.建議你不要這樣捨本逐末,多看幾遍書,然後多做點題,鍛煉自己的思維能力才是關鍵!
Ⅳ 成人高考數學必考知識點有哪些
人高考高起專數學一般考的知識點有:
知識點一:集合思想及應用。
知識點二:充要條件的判定。
知識三:運用向量法解題。
知識點四:三個「二次」及關系。
知識點五:求解函數解析式。
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:mathematics或maths),其英語源自於古希臘語的μθημα(máthēma),有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。另外,還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義凡與學習有關的,亦被用來指數學。
其在英語的復數形式,及在法語中的復數形式加-es,成mathématiques,可溯至拉丁文的中性復數(mathematica),由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká)。
在中國古代,數學叫作算術,又稱算學,最後才改為數學。中國古代的算術是六藝之一(六藝中稱為「數」)。
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展。但當時的代數學和幾何學長久以來仍處於獨立的狀態。
Ⅳ 高中必背知識點數學
教版高中數學必背知識點
1.課程內容:
必修課程由5個模塊組成:
必修1:集合、函數概念與基本初等函數(指、對、冪函數)
必修2:立體幾何初步、平面解析幾何初步。
必修3:演算法初步、統計、概率。
必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。
必修5:解三角形、數列、不等式。
以上是每一個高中學生所必須學習的。
上述內容覆蓋了高中階段傳統的數學基礎知識和基本技能的主要部分,其中包括集合、函數、數列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調了這些知識的發生、發展過程和實際應用,而不在技巧與難度上做過高的要求。
此外,基礎內容還增加了向量、演算法、概率、統計等內容。
2.重難點及考點:
重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數
難點:函數、圓錐曲線
高考相關考點:
⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件
⑵函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數與指數函數、對數與對數函數、函數的應用
⑶數列:數列的有關概念、等差數列、等比數列、數列求和、數列的應用
⑷三角函數:有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數的圖象與性質、三角函數的應用
⑸平面向量:有關概念與初等運算、坐標運算、數量積及其應用
⑹不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用
⑺直線和圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系
⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用
⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、棱錐、球、空間向量
⑽排列、組合和概率:排列、組合應用題、二項式定理及其應用
⑾概率與統計:概率、分布列、期望、方差、抽樣、正態分布
⑿導數:導數的概念、求導、導數的應用
⒀復數:復數的概念與運算
Ⅵ 高考數學都有哪些知識點
第一,函數與導數。主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數
第二,平面向量與三角函數、三角變換及其應用。這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題
第三,數列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題
第四,不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小是高考的重點和難點
第五,概率和統計。這部分和我們的生活聯系比較大,屬應用題
第六,空間位置關系的定性與定量分析,主要是證明平行或垂直,求角和距離
第七,解析幾何是高考的難點,運算量大,一般含參數
高考對數學基礎知識的考查,既全面又突出重點,扎實的數學基礎是成功解題的關鍵。針對數學高考強調對基礎知識與基本技能的考查我們一定要全面、系統地復習高中數學的基礎知識,正確理解基本概念,正確掌握定理、原理、法則、公式、並形成記憶,形成技能。以不變應萬變
Ⅶ 高考數學知識點有哪些
高考數學知識點主要有集合與邏輯,函數,導數,三角函數,平面向量,數列,不等式,立體幾何,解析幾何,圓錐曲線,等
Ⅷ 關於高考!!數學需要掌握那些重點知識(文科)
高中數學重點有什麼?該怎樣攻克?
高中數學重點內容還有很多.這些重點都是保持多年來的經驗,他們分析過高考數學的題型,高中數學重點分為以下幾個部分.
向量講解
其實高中數學重點就是在必修的裡面.必修是每個高中生都必須學習的,不管是分不分文理科,他們都是會學習的.很多重點都是在必修裡面,然而在選秀當中就是講一些統計之類的問題,這都是我們在生活當中就會學到的,所以這些都不是重點,重中之重就是在必修的課本當中.
Ⅸ 高考數學必背公式整理
可以在做題的過程中進行歸納總結,形成答題的套路和模板。
以下是必背公式:
公式一:設α為任意角,終邊相同的角的同一三角函數的值相等、sin(2kπ+α)=sinα(k∈Z)、cos(2kπ+α)=cosα(k∈Z)、tan(2kπ+α)=tanα(k∈Z)、cot(2kπ+α)=cotα(k∈Z)。
公式二:設α為任意角,π+α的三角函數值與α的三角函數值之間的關系sin(π+α)=-sinα、cos(π+α)=-cosα、tan(π+α)=tanα、cot(π+α)=cotα。
公式三:任意角α與-α的三角函數值之間的關系:sin(-α)=-sinα、cos(-α)=cosα、tan(-α)=-tanα、cot(-α)=-cotα。
公式四:利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:sin(π-α)=sinα、cos(π-α)=-cosα、tan(π-α)=-tanα、cot(π-α)=-cotα。
公式五:利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:sin(2π-α)=-sinα、cos(2π-α)=cosα、tan(2π-α)=-tanα、cot(2π-α)=-cotα。
公式六:π/2±α及3π/2±α與α的三角函數值之間的關系:sin(π/2+α)=cosα、cos(π/2+α)=-sinα、tan(π/2+α)=-cotα、cot(π/2+α)=-tanα、sin(π/2-α)=cosα、cos(π/2-α)=sinα、tan(π/2-α)=cotα、cot(π/2-α)=tanα、sin(3π/2+α)=-cosα、cos(3π/2+α)=sinα、tan(3π/2+α)=-cotα、cot(3π/2+α)=-tanα、sin(3π/2-α)=-cosα、cos(3π/2-α)=-sinα、tan(3π/2-α)=cotα、cot(3π/2-α)=tanα。專業老師在線權威答疑 zy.offercoming.com