當前位置:首頁 » 基礎知識 » 數學知識模
擴展閱讀
8歲兒童氣短怎麼辦 2024-09-21 04:27:09

數學知識模

發布時間: 2022-03-14 05:14:25

Ⅰ 高一數學都有哪些知識模塊

高中數學知識體系一覽表
知 識 模 塊
主要知識點,高考考點,熱點
一.集合,函數,數列,不等式
1.常見函數的圖像,性質及其綜合應用 2.等差,等比數列的通項,求和
3.重要不等式和函數,數列的計算,應用
二.三角函數,向量,復數
1.角的推廣,誘導公式,重要三角函數的圖像,性質及其應用
2.三角函數圖像變換,應用
3.兩角和與差的綜合應用,三角恆等變形 4.向量的計算,數量積,平行,垂直,坐標表示,幾何應用
5.復數的計算,幾何意義
6.三角函數,向量,復數的綜合考察
三.平面解析幾何,直線和圓,圓錐曲線 1.直線與圓的方程和應用
2.橢圓,雙曲線,拋物線的方程,圖像,性質及其應用
3.直線,圓與圓錐曲線的綜合考察 4.動點軌跡問題
5.存在性問題,開放性問題
四.立體幾何,空間直角坐標系,空間向量, 法向量,空間的角和距離 1.點,線,面的位置關系,平行,垂直,空間想像能力考察
2.空間向量,空間直角坐標系,法向量的計算,證明
3.空間的角和距離的計算,證明綜合考察

五. 排列、組合、二項式定理、概率、
統計
1.排列,組合,二項式定理的計算,應用 2.概率,統計問題的討論,計算 3.回歸直線方程的求解 4.各種概率模型的簡單應用
六.極限與導數,微積分
1.極限與導數的計算,應用
2.利用導數求曲線的斜率,函數的單調性,極值,最值及其他綜合應用

七.參數方程,極坐標,不等式選講,幾何證明選講 1. 參數方程,極坐標的計算,轉化,應用 2.柯西不等式,排序不等式等簡單應用
3.簡單幾何證明的應用

八.常用數學思想方法
1. 分類討論的思想方法 2. 數形結合的思想方法 3. 函數與方程的思想方法 4. 轉化與化歸的思想方法

Ⅱ 常見的數學模型有哪些

首先,常用的數學模型有優化模型(主要是統計回歸,包括對數據的處理,用到擬合,差值等等),微分方程模型(常微較多,偏微不常用),差分方程型(就是離散型,這類不能求導微分等等),概率論模型,還有什麼圖論啊 一些亂七八糟的 (以上我說的都是一些很基礎的模型,復雜的模型差不多都是基於簡單模型) 數學建模主要有三步,1.把實際問題轉化成數學問題(這一般是競賽前兩天的工作);2.用數學知識和計算機知識(主要是MATLAB)解決數學問題;3.整理和完善,論文寫作 我認為數學建模最重要的一步就是把實際問題轉化成數學問題這一步,因為後面兩步往往是不難的。 關鍵點有 1頭腦要靈活一點,要大膽的想,考慮的因素要全面一點,但是呢,不能想出一個模型就馬上建模,因為要考慮很多問題,比如是否可行(主要是實際的問題,比如合作模型中,合作中每個人得到的利益要大於等於沒有合作時原來每個人的利益),比如建立的數學模型是否容易解決(比如你建立了一個常微分方程組,這個問題一般情況下好像數學家都還沒給出解決,所以可想而知你和計算機能不能解決了,這個時候你應該考慮把問題巧妙地轉換一下或者簡化一下) 關鍵點之2,要找到實際問題之中和核心問題,然後由這個或者這幾個核心(最好不要太多核心)來拓展。比如火箭三級助推這個問題,它的核心問題是對火箭質量改變規律的探究。然後呢,做完了核心問題的研究以後,想想實際的問題。比如,還是火箭助推這個問題,發現了助推器越多越好這個規律後,是不是就要用無窮級助推呢?顯然不是,這就是後續的最優化問題。 你可以找個班去聽聽,或者借本書看看。(主要推薦姜啟源的《數學建模》),然後自己試著建模,慢慢來。然後學一些知識,數學當然不能少(主要你要學運籌學,最優化等等,如果你想在建模中脫穎而出的話),還有要早點組隊磨合,做好分工與合作。 論文一般沒什麼,主要就把你的思路清晰簡潔的表達出來,結合圖形,表格等等,然後語言要嚴謹,用詞准確,能生動就更好了。(當然美國的數模競賽還要你英語水平比較高才行)你可以去研讀一些優秀論文,對你幫助很大的。 希望我能幫到你~

Ⅲ 學做模要用到數學上哪些知識

立體幾何,平面圖單位換算,會用游標卡尺、平衡儀等,懂得公制和英制的換算(一般都用公制)……
其實做模不是靠理論的主要靠實際操作的經驗累加,和見識各儀器和機台的運用。
相信以你的能力掌握理論是沒問題的,實際操作就好好努力咯!(我以前是做模具的,加油!)

Ⅳ 學習模具製造數學知識才行

用到的不多,,只是初中水平的,,三角形求各條邊,三角函數,那塊的,那些一定要會算,,如果你是去小廠,只有幾個人的那種,一般的情況下,小廠都是做小模具的,,斜導柱這些都要師付自己算的,,如果你是去比較有規模的模具企業,這些事情也許就不用你動手了,,因為有專門的設計人員,已經算好了.

Ⅳ 如何構建整個高中的數學知識模型

這個嘛
你也高二了哦
其實 數學這個東西
是要跟著走的
你不跟著
現在才來看的話
就有點需要時間哦

要基礎好
就不會擔心這些
慢慢補吧
做題看到不懂的東西就要趕緊查資料
加油吧

Ⅵ 學工模要用到的數學知識

第一要有理論知識:熟練識機械制圖、平面與立體幾何和三角函數、懂金屬材料和塑料等;
第二要有實踐經驗:至少當三年徒弟。
只要具備上述條件,又能堅持做下去,一定能成為大師。

Ⅶ 數學鍵模是什麼東西

數學建模是使用數學模型解決實際問題。
對數學的要求其實不高。
我上大一的時候,連高等數學都沒學就去參賽,就能得獎。
可見數學是必需的,但最重要的是文字表達能力
回答者:抉擇415 - 童生 一級 3-13 14:48

數學模型
數學模型是對於現實世界的一個特定對象,一個特定目的,根據特有的內在規律,做出一些必要的假設,運用適當的數學工具,得到一個數學結構。

簡單地說:就是系統的某種特徵的本質的數學表達式(或是用數學術語對部分現實世界的描述),即用數學式子(如函數、圖形、代數方程、微分方程、積分方程、差分方程等)來描述(表述、模擬)所研究的客觀對象或系統在某一方面的存在規律。

數學建模
數學建模是利用數學方法解決實際問題的一種實踐。即通過抽象、簡化、假設、引進變數等處理過程後,將實際問題用數學方式表達,建立起數學模型,然後運用先進的數學方法及計算機技術進行求解。

數學建模將各種知識綜合應用於解決實際問題中,是培養和提高學生應用所學知識分析問題、解決問題的能力的必備手段之一。

數學建模的一般方法和步驟
建立數學模型的方法和步驟並沒有一定的模式,但一個理想的模型應能反映系統的全部重要特徵:模型的可靠性和模型的使用性。建模的一般方法:
機理分析:根據對現實對象特性的認識,分析其因果關系,找出反映內部機理的規律,所建立的模型常有明確的物理或現實意義。
測試分析方法:將研究對象視為一個「黑箱」系統,內部機理無法直接尋求,通過測量系統的輸入輸出數據,並以此為基礎運用統計分析方法,按照事先確定的准則在某一類模型中選出一個數據擬合得最好的模型。 測試分析方法也叫做系統辯識。
將這兩種方法結合起來使用,即用機理分析方法建立模型的結構,用系統測試方法來確定模型的參數,也是常用的建模方法。
在實際過程中用那一種方法建模主要是根據我們對研究對象的了解程度和建模目的來決定。機理分析法建模的具體步驟大致如下:
1、 實際問題通過抽象、簡化、假設,確定變數、參數;
2、 建立數學模型並數學、數值地求解、確定參數;
3、 用實際問題的實測數據等來檢驗該數學模型;
4、 符合實際,交付使用,從而可產生經濟、社會效益;不符合實際,重新建模。

數學模型的分類:
1、 按研究方法和對象的數學特徵分:初等模型、幾何模型、優化模型、微分方程模型、圖論模型、邏輯模型、穩定性模型、統計模型等。
2、 按研究對象的實際領域(或所屬學科)分:人口模型、交通模型、環境模型、生態模型、生理模型、城鎮規劃模型、水資源模型、污染模型、經濟模型、社會模型等。

數學建模需要豐富的數學知識,涉及到高等數學,離散數學,線性代數,概率統計,復變函數等等 基本的數學知識
同時,還要有廣泛的興趣,較強的邏輯思維能力,以及語言表達能力等等

一般大學進行數學建模式從大二下學期開始,一般在九月份開始競賽,一般三天時間,三到四人一組,合作完成!!!

Ⅷ 參加數學建模需要哪些必備的數學知識

首先是數學建模方面的知識,大師級的一些優秀書籍必須是要看幾本的:
(1) 數學模型 姜啟源、謝金星、 葉俊 高等教育出版社
(2) 數學建模案例選集 姜啟源、 謝金星 高等教育出版社
(3) 實用運籌學:模型、方法與計算 韓中庚 主編/2007年12月/清華大學出版社

模型的求解方面,需要用到Matlab、lingo等數學軟體, 現在Matlab書籍很多,適合數學建模的,下面幾本還不錯:

(1) MATLAB 7.0從入門到精通(修訂版) 劉保柱,蘇彥華,張宏林 編著/2010年05月/人民郵電出版社
(2) 優化建模LINDO/LINGO軟體 謝金星,薛毅 編著/2005年07月/清華大學出版社

還有一本新書,覺得對參加數學建模競賽還是很給力的:

matlab在數學建模中的應用 卓金武,魏永生,秦健,李必文編著 北航出版社出版

這幾位作者都是參加過建模競賽的,書中有經驗介紹,有很多實際建模競賽中開發的Matlab源程序,還有原版的獲獎論文,覺得對參加數學建模競賽的應該還是很有啟發的。

Ⅸ 簡述數學知識的特點

數學知識的特點
1.數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」自古以來,多數人把數學看成是一種知識體系,是經過嚴密的邏輯推理而形成的系統化的理論知識總和,它既反映了人們對「現實世界的空間形式和數量關系」的認識,又反映了人們對「可能的量的關系和形式」的認識。數學既可以來自現實世界的直接抽象,也可以來自人類思維的能動創造。

2.從人類社會的發展史看,人們對數學本質特徵的認識在不斷變化和深化。「數學的根源在於普通的常識,最顯著的例子是非負整數。"歐幾里德的算術來源於普通常識中的非負整數,而且直到19世紀中葉,對於數的科學探索還停留在普通的常識,」另一個例子是幾何中的相似性,「在個體發展中幾何學甚至先於算術」,其「最早的徵兆之一是相似性的知識,」相似性知識被發現得如此之早,「就象是大生的。」因此,19世紀以前,人們普遍認為數學是一門自然科學、經驗科學,因為那時的數學與現實之間的聯系非常密切,隨著數學研究的不斷深入,從19世紀中葉以後,數學是一門演繹科學的觀點逐漸占據主導地位,這種觀點在布爾巴基學派的研究中得到發展,他們認為數學是研究結構的科學,一切數學都建立在代數結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數學是研究模式的學問,數學家懷特海(A. N. Whiiehead,186----1947)在《數學與善》中說,「數學的本質特徵就是:在從模式化的個體作抽象的過程中對模式進行研究,」數學對於理解模式和分析模式之間的關系,是最強有力的技術。」1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統中存在的缺憾,這樣,人們又想到了數學是經驗科學的觀點,著名數學家馮·諾伊曼就認為,數學兼有演繹科學和經驗科學兩種特性。

3.對於上述關於數學本質特徵的看法,我們應當以歷史的眼光來分析,實際上,對數本質特徵的認識是隨數學的發展而發展的。由於數學源於分配物品、計算時間、丈量土地和容積等實踐,因而這時的數學對象(作為抽象思維的產物)與客觀實在是非常接近的,人們能夠很容易地找到數學概念的現實原型,這樣,人們自然地認為數學是一種經驗科學;隨著數學研究的深入,非歐幾何、抽象代數和集合論等的產生,特別是現代數學向抽象、多元、高維發展,人們的注意力集中在這些抽象對象上,數學與現實之間的距離越來越遠,而且數學證明(作為一種演繹推理)在數學研究中占據了重要地位,因此,出現了認為數學是人類思維的自由創造物,是研究量的關系的科學,是研究抽象結構的理論,是關於模式的學問,等等觀點。這些認識,既反映了人們對數學理解的深化,也是人們從不同側面對數學進行認識的結果。正如有人所說的,「恩格斯的關於數學是研究現實世界的數量關系和空間形式的提法與布爾巴基的結構觀點是不矛盾的,前者反映了數學的來源,後者反映了現代數學的水平,現代數學是一座由一系列抽象結構建成的大廈。」而關於數學是研究模式的學問的說法,則是從數學的抽象過程和抽象水平的角度對數學本質特徵的闡釋,另外,從思想根源上來看,人們之所以把數學看成是演繹科學、研究結構的科學,是基於人類對數學推理的必然性、准確性的那種與生俱來的信念,是對人類自身理性的能力、根源和力量的信心的集中體現,因此人們認為,發展數學理論的這套方法,即從不證自明的公理出發進行演繹推理,是絕對可靠的,也即如果公理是真的,那麼由它演繹出來的結論也一定是真的,通過應用這些看起來清晰、正確、完美的邏輯,數學家們得出的結論顯然是毋庸置疑的、無可辯駁的。

4.事實上,上述對數學本質特徵的認識是從數學的來源、存在方式、抽象水平等方面進行的,並且主要是從數學研究的結果來看數學的本質特徵的。顯然,結果(作為一種理論的演繹體系)並不能反映數學的全貌,組成數學整體的另一個非常重要的方面是數學研究的過程,而且從總體上來說,數學是一個動態的過程,是一個「思維的實驗過程」,是數學真理的抽象概括過程。邏輯演繹體系則是這個過程的一種自然結果。在數學研究的過程中,數學對象的豐富、生動且富於變化的一面才得以充分展示。波利亞(G. Poliva,1888一1985)認為,「數學有兩個側面,它是歐幾里德式的嚴謹科學,但也是別的什麼東西。由歐幾里德方法提出來的數學看來象是一門系統的演繹科學,但在創造過程中的數學看來卻像是一門實驗性的歸納科學。」弗賴登塔爾說,「數學是一種相當特殊的活動,這種觀點「是區別於數學作為印在書上和銘,記在腦子里的東西。」他認為,數學家或者數學教科書喜歡把數學表示成「一種組織得很好的狀態,」也即「數學的形式」是數學家將數學(活動)內容經過自己的組織(活動)而形成的;但對大多數人來說,他們是把數學當成一種工具,他們不能沒有數學是因為他們需要應用數學,這就是,對於大眾來說,是要通過數學的形式來學習數學的內容,從而學會相應的(應用數學的)活動。這大概就是弗賴登塔爾所說的「數學是在內容和形式的互相影響之中的一種發現和組織的活動」的含義。菲茨拜因(Efraim Fischbein)說,「數學家的理想是要獲得嚴謹的、條理清楚的、具有邏輯結構的知識實體,這一事實並不排除必須將數學看成是個創造性過程:數學本質上是人類活動,數學是由人類發明的,」數學活動由形式的、演算法的與直覺的等三個基本成分之間的相互作用構成。庫朗和羅賓遜(Courani Robbins)也說,「數學是人類意志的表達,反映積極的意願、深思熟慮的推理,以及精美而完善的願望,它的基本要素是邏輯與直覺、分析與構造、一般性與個別性。雖然不同的傳統可能強調不同的側面,但只有這些對立勢力的相互作用,以及為它們的綜合所作的奮斗,才構成數學科學的生命、效用與高度的價值。」

5.另外,對數學還有一些更加廣義的理解。如,有人認為,「數學是一種文化體系」,「數學是一種語言」,數學活動是社會性的,它是在人類文明發展的歷史進程中,人類認識自然、適應和改造自然、完善自我與社會的一種高度智慧的結晶。數學對人類的思維方式產生了關鍵性的影響.也有人認為,數學是一門藝術,「和把數學看作一門學科相比,我幾乎更喜歡把它看作一門藝術,因為數學家在理性世界指導下(雖然不是控制下)所表現出的經久的創造性活動,具有和藝術家的,例如畫家的活動相似之處,這是真實的而並非臆造的。數學家的嚴格的演繹推理在這里可以比作專門注技巧。就像一個人若不具備一定量的技能就不能成為畫家一樣,不具備一定水平的精確推理能力就不能成為數學家,這些品質是最基本的,……,它與其它一些要微妙得多的品質共同構成一個優秀的藝術家或優秀的數學家的素質,其中最主要的一條在兩種情況下都是想像力。」「數學是推理的音樂,」而「音樂是形象的數學」.這是從數學研究的過程和數學家應具備的品質來論述數學的本質,還有人把數學看成是一種對待事物的基本態度和方法,一種精神和觀念,即數學精神、數學觀念和態度。尼斯(Mogens Niss)等在《社會中的數學》一文中認為,數學是一門學科,「在認識論的意義上它是一門科學,目標是要建立、描述和理解某些領域中的對象、現象、關系和機制等。如果這個領域是由我們通常認為的數學實體所構成的,數學就扮演著純粹科學的角色。在這種情況下,數學以內在的自我發展和自我理解為目標,獨立於外部世界,…,另一方面,如果所考慮的領域存在於數學之外,…,數學就起著用科學的作用…·,數學的這兩個側面之間的差異並非數學內容本身的問題,而是人們所關注的焦點不同。無論是純粹的還是應用的,作為科學的數學有助於產生知識和洞察力。數學也是一個工具、產品以及過程構成的系統,它有助於我們作出與掌握數學以外的實踐領域有關的決定和行動…·,數學是美學的一個領域,能為許多醉心其中的人們提供對美感、愉悅和激動的體驗…·,作為一門學科,數學的傳播和發展都要求它能被新一代的人們所掌握。數學的學習不會同時而自動地進行,需要靠人來傳授,所以,數學也是我們社會的教育體系中的一個教學科目.」

從上所述可以看出,人們是從數學內部(又從數學的內容、表現形式及研究過程等幾個角度)。數學與社會的關系、數學與其它學科的關系、數學與人的發展的關系等幾個方面來討論數學的性質的。它們都從一個側面反映了數學的本質特徵,為我們全面認識數學的性質提供了一個視角。

6.基於對數學本質特徵的上述認識,人們也從不同側面討論了數學的具體特點。比較普遍的觀點是,數學有抽象性、精確性和應用的廣泛性等特點,其中最本質的特點是抽象性。A,。亞歷山大洛夫說,「甚至對數學只有很膚淺的知識就能容易地覺察到數學的這些特點:第一是它的抽象性,第二是精確性,或者更好他說是邏輯的嚴格性以及它的結論的確定性,最後是它的應用的極端廣泛、性,」「5」王粹坤說,「數學的特點是:內容的抽象性、應用的廣泛性、推理的嚴謹性和結論的明確必」這種看法主要從數學的內容、表現形式和數學的作用等方面來理解數學的特點,是數學特點的一個方面。另外,從數學研究的過程方面、數學與其它學科之間的關系方面來看,數學還有形象性、似真性、擬經驗性。「可證偽性」的特點。對數學特點的認識也是有時代特徵的,例如,關於數學的嚴謹性,在各個數學歷史發展時期有不同的標准,從歐氏幾何到羅巴切夫斯基幾何再到希爾伯特公理體系,關於嚴謹性的評價標准有很大差異,尤其是哥德爾提出並證明了「不完備性定理…以後,人們發現即使是公理化這一曾經被極度推崇的嚴謹的科學方法也是有缺陷的。因此,數學的嚴謹性是在數學發展歷史中表現出來的,具有相對性。關於數學的似真性,波利亞在他的《數學與猜想》中指出,「數學被人看作是一門論證科學。然而這僅僅是它的一個方面,以最後確定的形式出現的定型的數學,好像是僅含證明的純論證性的材料,然而,數學的創造過程是與任何其它知識的創造過程一樣的,在證明一個數學定理之前,你先得猜測這個定理的內容,在你完全作出詳細證明之前,你先得推測證明的思路,你先得把觀察到的結果加以綜合然後加以類比.你得一次又一次地進行嘗試。數學家的創造性工作成果是論證推理,即證明;但是這個證明是通過合情推理,通過猜想而發現的。只要數學的學習過程稍能反映出數學的發明過程的話,那麼就應當讓猜測、合情推理佔有適當的位置。」正是從這個角度,我們說數學的確定性是相對的,有條件的,對數學的形象性、似真性、擬經驗性。「可證偽性」特點的強調,實際上是突出了數學研究中觀察、實驗、分析。比較、類比、歸納、聯想等思維過程的重要性。

綜上所述,對數學本質特徵的認識是發展的。變化的,用歷史的、發展的觀點來看待數學的本質特徵,恩格斯的「純數學的對象是現實世界的空間形式和數量關系」的論斷並不過時,對初等數學來說就更是如此,當然,對「空間形式和數量關系」的內涵,我們應當作適當的拓展和深化。順便指出,對數學本質特徵的討論中,採取現象與本質並重、過程與結果並重、形式與內容並重的觀點:,對數學教學具有重要的指導意義。

關於數學所具有的特點,可以把數學和其他學科相比較,這種特點就十分明顯了。

同其他學科相比,數學是比較抽象的。數學的抽象性表現在哪裡呢?那就是暫時撇開事物的具體內容,僅僅從抽象的數方面去進行研究。比如在簡單的計算中,2+3既可以理解成兩棵樹加三棵樹,也可以理解成兩部機床加三台機床。在數學里,我們撇開樹、機床的具體內容,而只是研究2+3的運算規律,掌握了這個規律,那就不論是樹、機床,還是汽車或者別的什麼事物都可以按加法的運算規律進行計算。乘法、除法等運算也都是研究抽象的數,而撇開了具體的內容。

數學中的許多概念都是從現實世界抽象出來的。比如幾何學中的「直線」這一概念,並不是指現實世界中的拉緊的線,而是把現實的線的質量、彈性、粗細等性質都撇開了,只留下了「向兩方無限伸長」這一屬性,但是現實世界中是沒有向兩方無限伸長的線的。幾何圖形的概念、函數概念都是比較抽象的。但是,抽象並不是數學獨有的屬性,它是任何一門科學乃至全部人類思維都具有的特性。只是數學的抽象性有它不同於其他學科抽象的特徵罷了。

數學的抽象性具有下列三個特徵:第一,它保留了數量關系或者空間形式。第二,數學的抽象是經過一系列的階段形成的,它達到的抽象程度大大超過了自然科學中的一般抽象。從最原始的概念一直到像函數、復數、微分、積分、泛函、n維甚至無限維空間等抽象的概念都是從簡單到復雜、從具體到抽象這樣不斷深化的過程。當然,形式是抽象的,但是內容卻是非常現實的。正如列寧所說的那樣:「一切科學的(正確的、鄭重的、不是荒唐的)抽象,都更深刻、更正確、更完全地反映著自然。」(《黑格爾〈邏輯學〉一書摘要》,《列寧全集》第38卷第181頁)第三,不僅數學的概念是抽象的,而數學方法本身也是抽象的。物理或化學家為了證明自己的理論,總是通過實驗的方法;而數學家證明一個定理卻不能用實驗的方法,必須用推理和計算。比如雖然我們千百次地精確測量等腰三角形的兩底角都是相等的,但是還不能說已經證明了等腰三角形的底角相等,而必須用邏輯推理的方法嚴格地給予證明。在數學里證明一個定理,必須利用已經學過或者已經證過的概念、定理用推理的方法導出這個新定理來。我們都知道數學歸納法,它就是一種比較抽象的數學證明方法。它的原理是把研究的元素排成一個序列,某種性質對於這個序列的首項是成立的,假設當第k項成立,如果能證明第k+1項也能成立,那麼這一性質對這序列的任何一項都是成立的,即使這一序列是無窮序列。

數學的第二個特點是准確性,或者說邏輯的嚴密性,結論的確定性。

數學的推理和它的結論是無可爭辯、毋容置疑的。數學證明的精確性、確定性從中學課本中就充分顯示出來了。

歐幾里得的幾何經典著作《幾何原本》可以作為邏輯的嚴密性的一個很好的例子。它從少數定義、公理出發,利用邏輯推理的方法,推演出整個幾何體系,把豐富而零散的幾何材料整理成了系統嚴明的整體,成為人類歷史上的科學傑作之一,一直被後世推崇。兩千多年來,所有初等幾何教科書以及19世紀以前一切有關初等幾何的論著都以《幾何原本》作為根據。「歐幾里得」成為幾何學的代名詞,人們並且把這種體系的幾何學叫做歐幾里得幾何學。

但是數學的嚴密性不是絕對的,數學的原則也不是一成不變的,它也在發展著。比如,前面已經講過《幾何原本》也有不完美的地方,某些概念定義得不明確,採用了本身應該定義的概念,基本命題中還缺乏嚴密的邏輯根據。因此,後來又逐步建立了更嚴密的希爾伯特公理體系。

第三個特點是應用的廣泛性。

我們幾乎每時每刻都要在生產和日常生活中用到數學,丈量土地、計算產量、制訂計劃、設計建築都離不開數學。沒有數學,現代科學技術的進步也是不可能的,從簡單的技術革新到復雜的人造衛星的發射都離不開數學。

而且,幾乎所有的精密科學、力學、天文學、物理學甚至化學通常都是以一些數學公式來表達自己的定律的,並且在發展自己的理論的時候,廣泛地應用數學這一工具。當然,力學、天文學和物理學對數學的需要也促進了數學本身的發展,比如力學的研究就促使了微積分的建立和發展。

數學的抽象性往往和應用的廣泛性緊密相連,某一個數量關系,往往代表一切具有這樣數量關系的實際問題。比如,一個力學系統的振動和一個電路的振盪等用同一個微分方程來描述。撇開具體的物理現象中的意義來研究這一公式,所得的結果又可用於類似的物理現象中,這樣,我們掌握了一種方法就能解決許多類似的問題。對於不同性質的現象具有相同的數學形式,就是相同的數量關系,是反映了物質世界的統一性,因為量的關系不只是存在於某一種特定的物質形態或者它的特定的運動形式中,而是普遍存在於各種物質形態和各種運動形式中,所以數學的應用是很廣泛的。

正因為數學來自現實世界,正確地反映了客觀世界聯系形式的一部分,所以它才能被應用,才能指導實踐,才表現出數學的預見性。比如,在火箭、導彈發射之前,可以通過精密的計算,預測它的飛行軌道和著陸地點;在天體中的未知行星未被直接觀察到以前,就從天文計算上預測它的存在。同樣的道理也才使得數學成為工程技術中的重要工具。

下面舉幾個應用數學的光輝例子。

第一,海王星的發現。太陽系中的行星之一的海王星是在1846年在數學計算的基礎上發現的。1781年發現了天王星以後,觀察它的運行軌道總是和預測的結果有相當程度的差異,是萬有引力定律不正確呢,還是有其他的原因?有人懷疑在它周圍有另一顆行星存在,影響了它的運行軌道。1844年英國的亞當斯(1819—1892)利用引力定律和對天王星的觀察資料,推算這顆未知行星的軌道,花了很長的時間計算出這顆未知行星的位置,以及它出現在天空中的方位。亞當斯於1845年9~10月把結果分別寄給了劍橋大學天文台台長查理士和英國格林尼治天文台台長艾里,但是查理士和艾里迷信權威,把它束之高閣,不予理睬。

1845年,法國一個年輕的天文學家、數學家勒維烈(1811—1877)經過一年多的計算,於1846年9月寫了一封信給德國柏林天文台助理員加勒(1812—1910),信中說:「請你把望遠鏡對准黃道上的寶瓶星座,就是經度326°的地方,那時你將在那個地方1°之內,見到一顆九等亮度的星。」加勒按勒維烈所指出的方位進行觀察,果然在離所指出的位置相差不到1°的地方找到了一顆在星圖上沒有的星——海王星。海王星的發現不僅是力學和天文學特別是哥白尼日心學說的偉大勝利,而且也是數學計算的偉大勝利。

第二,穀神星的發現。1801年元旦,義大利天文學家皮亞齊(1746—1826)發現了一顆新的小行星——穀神星。不過它很快又躲藏起來,皮亞齊只記下了這顆小行星是沿著9°的弧運動的,對於它的整個軌道,皮亞齊和其他天文學家都沒有辦法求得。德國的24歲的高斯根據觀察的結果進行了計算,求得了這顆小行星的軌道。天文學家們在這一年的12月7日在高斯預先指出的方位又重新發現了穀神星。

第三,電磁波的發現。英國物理學家麥克斯韋(1831—1879)概括了由實驗建立起來的電磁現象,呈現為二階微分方程的形式。他用純數學的觀點,從這些方程推導出存在著電磁波,這種波以光速傳播著。根據這一點,他提出了光的電磁理論,這理論後來被全面發展和論證了。麥克斯韋的結論還推動了人們去尋找純電起源的電磁波,比如由振動放電所發射的電磁波。這樣的電磁波後來果然被德國物理學家赫茲(1857—1894)發現了。這就是現代無線電技術的起源。

第四,1930年,英國理論物理學家狄拉克(1902—1984)利用數學演繹法和計算預言了正電子的存在。1932年,美國物理學家安德遜在宇宙射線實驗中發現了正電子。類似的例子不勝枚舉。總之,在天體力學中,在聲學中,在流體力學中,在材料力學中,在光學中,在電磁學中,在工程科學中,數學都作出了異常准確的預言。

Ⅹ 數學模型及應用涉及哪些數學知識

數學模型是針對參照某種事物系統的特徵或數量依存關系,採用數學語言,概括地或近似地表述出的一種數學結構,這種數學結構是藉助於數學符號刻劃出來的某種系統的純關系結構。用字母、數字和其他數學符號構成的等式或不等式,或用圖表、圖像、框圖、數理邏輯等來描述系統的特徵及其內部聯系或與外界聯系的模型