❶ 初一數學需要掌握的知識點
在初中的時候,我們的數學算是真正進入了更深層次的學習階段,雖說初中學的數學大部分還是以基礎為主,但也能看到其難度正在逐漸上升。數學這門學科非常的靈活,常常一個知識點可以出現各種各樣的題型,非常考驗學生們的發散思維,同時也能鍛煉學生們的刻苦鑽研能力。因為數學的多樣性,一個稍微難點的題目就可能就會讓人思考一下午,因此,如果能夠將數學給學進去學好了的話,不僅僅是邏輯思維能力會得到提升,其他各個方面都會得到較大的提升。
不過,也正是因為數學的多變性,導致很多同學都覺得數學太難了,明明上課老師講的東西都聽得懂,可一到做題的時候都提不動筆,這主要還是知識點的運用不太熟練。其實,初中階段的數學還是比較簡單的,只要掌握了基本的公式、概念,加上好的解題方法,數學拿到高分,甚至滿分是完全沒有問題的。因此,這里也為大家整理了一下初一的數學知識點,數學老師整理:初一數學知識點歸納,初一上下兩冊都有用!
❷ 初一上學期數學知識點歸納有哪些
正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。
有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)。
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
圖形認識初步
幾何體也簡稱體(solid)。包圍著體的是面(surface)。
直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度 。
角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的餘角相等。
❸ 初一數學上冊知識點
一:有理數
知識網路:
概念、定義:
1、大於0的數叫做正數(positive number)。
2、在正數前面加上負號「-」的數叫做負數(negative number)。
3、整數和分數統稱為有理數(rational number)。
4、人們通常用一條直線上的點表示數,這條直線叫做數軸(number axis)。
5、在直線上任取一個點表示數0,這個點叫做原點(origin)。
6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value)。
7、 由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。
8、正數大於0,0大於負數,正數大於負數。
9、兩個負數,絕對值大的反而小。
10、有理數加法法則
(1)同號兩數相加,取相同的符號,並把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
13、有理數減法法則
減去一個數,等於加上這個數的相反數。
14、有理數乘法法則
兩數相乘,同號得正,異號得負,並把絕對值向乘。
任何數同0相乘,都得0。
15、有理數中仍然有:乘積是1的兩個數互為倒數。
16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。
17、 三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。
18、 一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。
19、有理數除法法則
除以一個不等於0的數,等於乘這個數的倒數。
20、兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。
21、 求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an 中,a叫做底數(basenumber),n叫做指數(exponeht)
22、根據有理數的乘法法則可以得出
負數的奇次冪是負數,負數的偶次冪是正數。
顯然,正數的任何次冪都是正數,0的任何次冪都是0。
23、做有理數混合運算時,應注意以下運算順序:
(1)先乘方,再乘除,最後加減;
(2) 同級運算,從左到右進行;
(3) 如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
24、把一個大於10數表示成a×10n 的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。
25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximate number)。
26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significant digit)
註:黑體字為重要部分
二:整式的加減
知識網路:
概念、定義:
1、都是數或字母的積的式子叫做單項式(monomial),單獨的一個數或一個字母也是單項式。
2、單項式中的數字因數叫做這個單項式的系數(coefficient)。
3、 一個單項式中,所有字母的指數的和叫做這個單項式的次數(degree of a monomial)。
4、幾個單項的和叫做多項式(polynomial),其中,每個單項式叫做多項式的項(term),不含字母的項叫做常數項(constantly
term)。
5、多項式里次數最高項的次數,叫做這個多項式的次數(degree of a polynomial)。
6、把多項式中的同類項合並成一項,叫做合並同類項。
合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變。
7、如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同;
8、如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
9、一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。
三:一元一次方程
知識網路:
概念、定義:
1、列方程時,要先設字母表示未知數,然後根據問題中的相等關系,寫出還有未知數的等式——方程(equation)。
2、含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程(linear equation withone unknown)。
3、分析實際問題中的數量關系,利用其中的等量關系列出方程,是用數學解決實際問題的一種方法。
4、等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。
5、等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。
6、把等式一邊的某項變號後移到另一邊,叫做移項。
7、應用:行程問題:s=v×t 工程問題:工作總量=工作效率×時間
盈虧問題:利潤=售價-成本 利率=利潤÷成本×100%
售價=標價×折扣數×10% 儲蓄利潤問題:利息=本金×利率×時間
本息和=本金+利息
三:圖形初步認識
知識網路:
概念、定義:
1、 我們把實物中抽象的各種圖形統稱為幾何圖形(geometric figure)。
2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內,它們是立體圖形(solidfigure)。
3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形(planefigure)。
4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖(net)。
5、幾何體簡稱為體(solid)。
6、包圍著體的是面(surface),面有平的面和曲的面兩種。
7、面與面相交的地方形成線(line),線和線相交的地方是點(point)。
8、點動成面,面動成線,線動成體。
9、經過探究可以得到一個基本事實:經過兩點有一條直線,並且只有一條直線。
簡述為:兩點確定一條直線(公理)。
10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointof intersection)。
11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center)。
12、經過比較,我們可以得到一個關於線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)
13、連接兩點間的線段的長度,叫做這兩點的距離(distance)。
14、角∠(angle)也是一種基本的幾何圖形。
15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。
16、從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線(angular bisector)。
17、如果兩個角的和等於90°(直角),就是說這兩個叫互為餘角(complementary
angle),即其中的每一個角是另一個角的餘角。
18、如果兩個角的和等於180°(平角),就說這兩個角互為補角(supplementary
angle),即其中一個角是另一個角的補角
19、等角的補角相等,等角的餘角相等
❹ 初一上冊數學知識總結
初一數學(上)的知識點
有理數
1.有理數:
(1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類: ① ②
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
(4)自然數Û:0和正整數;a>0 , a是正數;a<0 , a是負數;
a≥0 , a是正數或0 , a是非負數;a≤ 0 , a是負數或0 , a是非正數. 2.數軸:數軸是規定了原點、正方向、單位長度的一條直線. 3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0; (2)注意: a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b; (3)相反數的和為0 , a+b=0 , a、b互為相反數. 4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2) 絕對值可表示為: 或 ;絕對值的問題經常分類討論; (3) |a|是重要的非負數,即|a|≥0;注意:|a|·|b|=|a·b|, .
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數< 0. 6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼 的倒數是 ;倒數是本身的數是±1;若ab=1Û a、b互為倒數;若ab=-1, a、b互為負倒數. 7. 有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數. 8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c). 9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b). 10 有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘; (2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11 有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac .
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, . 13.有理數乘方的法則: (1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n . 14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪; (3)a2是重要的非負數,即a2≥0;若a2+|b|=0 , a=0,b=0; (4)據規律 底數的小數點移動一位,平方數的小數點移動二位.
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位. 17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運演算法則:先乘方,後乘除,最後加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則.
19.特殊值法:是用符合題目要求的數代入,並驗證題設成立而進行猜想的一種方法,但不能用於證明.
整式的加減
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.
2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數. 3.多項式:幾個單項式的和叫多項式.
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.
5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式. 整式分類為: .
6.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項. 7.合並同類項法則:系數相加,字母與字母的指數不變.
8.去(添)括弧法則:去(添)括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號.
9.整式的加減:整式的加減,實際上是在去括弧的基礎上,把多項式的同類項合並. 10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最後結果一般應該進行升冪(或降冪)排列.
一元一次方程
1.等式與等量:用「=」號連接而成的式子叫等式.注意:「等量就能代入」! 2.等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式; 等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式. 3.方程:含未知數的等式,叫方程.
4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:「方程的解就能代入」! 5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1. 6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.
7.一元一次方程的標准形式: ax+b=0(x是未知數,a、b是已知數,且a≠0). 8.一元一次方程的最簡形式: ax=b(x是未知數,a、b是已知數,且a≠0).
9.一元一次方程解法的一般步驟: 整理方程 „„ 去分母 „„ 去括弧 „„ 移項 „„ 合並同類項 „„ 系數化為1 „„ (檢驗方程的解). 10.列一元一次方程解應用題:
(1)讀題分析法:„„„„ 多用於「和,差,倍,分問題」
仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套-----」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程. (2)畫圖分析法: „„„„ 多用於「行程問題」
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
11.列方程解應用題的常用公式:
(1)行程問題: 距離=速度·時間 (2)工程問題: 工作量=工效·工時 (3)比率問題: 部分=全體·比率
(4)順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度; (5)商品價格問題: 售價=定價·折· ,利潤=售價-成本, ;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,
S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐= πR2h.
❺ 初一上學期數學知識點歸納
七年級(上)數學知識點歸納與總結
一、
知識梳理
知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、
-0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。
知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:
註:有限小數和無限循環小數都可看作分數。
知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。
知識點4:絕對值的概念:
(1)
幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;
(2)
代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。
註:任何一個數的絕對值均大於或等於0(即非負數).
知識點5:相反數的概念:
(1)
幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;
(2)
代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。
知識點6:有理數大小的比較:
有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。
數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。
用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。
知識點7:有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
知識點8:有理數加法運算律:
加法交換律:兩個數相加,交換加數的位置,和不變。
加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
知識點9:有理數減法法則:減去一個數,等於加上這個數的相反數。
知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然後省略括弧和加號,並運用加法法則、加法運算律進行計算。
❻ 七上數學知識點歸納有哪些
(1)點、線、面、體。
點:點是最簡單的形,是幾何圖形最基本的組成部分。點是空間中只有位置,沒有大小的圖形。
線:線是由無數個點集合成的圖形。
面在空間中,到兩點距離相同的點的軌跡。
體:多面體是指四個或四個以上多邊形所圍成的立體。
(2)直線、射線、線段。
直線:直線由無數個點構成。沒有端點,向兩端無限延長,長度無法度量。直線是軸對稱圖形。
射線:是指由線段的一端無限延長所形成的直的線,射線有且僅有一個端點,無法測量長度。
線段:是指直線上兩點間的有限部分(包括兩個端點),有別於直線、射線。
(3)角:在幾何學中,角是由兩條有公共端點的射線組成的幾何對象。這兩條射線叫做角的
邊,它們的公共端點叫做角的頂點。
(4)餘角兩角之和為90°則兩角互為餘角,等角的餘角相等。
(5)補角:兩角之和為180°則兩角互為補角,等角的補角相等。
❼ 七年級數學上冊知識點歸納
七年級(上)數學知識點歸納與總結
一、 知識梳理
知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、 -0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。
知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:
註:有限小數和無限循環小數都可看作分數。
知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。
知識點4:絕對值的概念:
(1) 幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;
(2) 代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。
註:任何一個數的絕對值均大於或等於0(即非負數).
知識點5:相反數的概念:
(1) 幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;
(2) 代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。
知識點6:有理數大小的比較:
有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。
數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。
用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。
知識點7:有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
知識點8:有理數加法運算律:
加法交換律:兩個數相加,交換加數的位置,和不變。
加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
知識點9:有理數減法法則:減去一個數,等於加上這個數的相反數。
知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然後省略括弧和加號,並運用加法法則、加法運算律進行計算。
知識點11: 乘法與除法
1.乘法法則
2.除法法則
3.多個非零的數相乘除最後結果符號如何確定
知識點12:倒數
1. 倒數概念
2. 如何求一個數的倒數?(注意與相反數的區別)
知識點13:乘方
1. 乘方的概念,乘方的結果叫什麼?
2. 認識底數,指數
3. 正數的任何次冪是_________,零的任何次冪________
負數的偶次冪是_________奇次冪是________
知識點14:混合計算
注意:運算順序是關鍵,計算時要嚴格按照順序運算.考試經常考帶乘方的計算.
知識點15:科學記數法
科學記數法的概念? 注意a的范圍
(人教)
❽ 初一數學知識點有哪些
初一數學知識點有:
(1)數軸的概念:規定了原點、正方向、單位長度的直線叫做數軸。
數軸的三要素:原點,單位長度,正方向。
(2)數軸上的點:所有的有理數都可以用數軸上的點表示,但數軸上的點不都表示有理數。(一般取右方向為正方向,數軸上的點對應任意實數,包括無理數.)
(3)用數軸比較大小:一般來說,當數軸方向朝右時,右邊的數總比左邊的數大。
2相反數知識點
(1)相反數的概念:只有符號不同的兩個數叫做互為相反數。
(2)相反數的意義:掌握相反數是成對出現的,不能單獨存在,從數軸上看,除0外,互為相反數的兩個數,它們分別在原點兩旁且到原點距離相等。
(3)多重符號的化簡:與「+」個數無關,有奇數個「﹣」號結果為負,有偶數個「﹣」號,結果為正。
(4)規律方法總結:求一個數的相反數的方法就是在這個數的前邊添加「﹣」,如a的相反數是﹣a,m+n的相反數是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括弧。
三角形中位線定理的作用:
位置關系:可以證明兩條直線平行。
數量關系:可以證明線段的倍分關系。
常用結論:任一個三角形都有三條中位線,由此有:
結論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。
結論2:三條中位線將原三角形分割成四個全等的三角形。
結論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。
結論4:三角形一條中線和與它相交的中位線互相平分。
結論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。
注意:重要輔助線:⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線。
等腰三角形的性質:
(1)等腰三角形的性質定理及推論:
定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)
推論1:等腰三角形頂角平分線平分底邊並且垂直於底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。
推論2:等邊三角形的各個角都相等,並且每個角都等於60°。
(2)等腰三角形的其他性質:
①等腰直角三角形的兩個底角相等且等於45°。
②等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。
③等腰三角形的三邊關系:設腰長為a,底邊長為b,則<a。
④等腰三角形的三角關系:設頂角為頂角為∠A,底角為∠B、∠C,則∠A=180°-2∠B,∠B=∠C。
❾ 關於初一數學的所有知識點歸納,
初一數學概念
實數:
—有理數與無理數統稱為實數.
有理數:
整數和分數統稱為有理數.
無理數:
無理數是指無限不循環小數.
自然數:
表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數.
數軸:
規定了圓點、正方向和單位長度的直線叫做數軸.
相反數:
符號不同的兩個數互為相反數.
倒數:
乘積是1的兩個數互為倒數.
絕對值:
數軸上表示數a的點與圓點的距離稱為a的絕對值.一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0.
數學定理公式
有理數的運演算法則
⑴加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0.
⑵減法法則:減去一個數,等於加上這個數的相反數.
⑶乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0.
⑷除法法則:除以一個數等於乘上這個數的倒數;兩數相除,同號得正,異號得負,並把絕對值相除;0除以任何一個不等於0的數,都得0.
文體知識
1 記敘文文體知識要點
(1) 以記敘文為主要表達方式的文章叫記敘文.語言特點,生動,形象.
(2) 作品中所反映的生活和作者對生活的看法,就是記敘文的中心,也叫中心思想.中心思想是依靠人,事,景,物這些材料來表的.因而記敘文的材料必須為中心思想服務,做到中心明確,集中.
(3) 記敘文的順序主要有幾種:順敘,倒敘,插敘.
順敘:按事件的發生,發展結局的過程記敘. 倒敘:把事件的結局或某個最突出的片斷提到文章的開頭寫,然後再按時間順序寫事件的經過. 插敘:在記敘過程中,有時需要插入另一些有關的情節,然後再按著記敘原來的事情.
(4) 記敘文中的詳略安排應該是能突出中心的材料應該詳寫;與中心有關系,但是不很重要的材料,應該略寫;與中心無關的材料應該舍棄.這樣,才能使記敘的中心集中,鮮明,突出.
(5) 記敘文的樣式常見有:對現實生活中典型人物和事跡作具體報道的通訊.用文字語言和文學手法描述真人真事的特寫.記敘山川景物,旅途見聞為主的游記. 追憶本人或生活經歷和社會活動的回憶錄,傳記,訪問記等.它們共同特點是:所寫內容必須真實,不容許隨意誇大或縮小事實,更不能編造虛構,即要有真實性;對所寫的內容又要求作必要的加工.力求文章中心突出,形象鮮明,構思精巧
(6) 特寫是報告文學的一種樣式,它截取人物或事件的某個片斷,細致地加以描述.
(7) 傳記一般分兩類:一類記敘自己的生平;一類記敘他人的生平.傳記的主要特點是實錄,要求實事求是,不允許虛構誇張.傳記在表達上以記敘為主,也可以適當插入議論,描寫.傳記記敘的順序一般以時間為序.人物和人物故事的區別在於人物故事只要具體寫出人物的某個事件或某幾件事就行了.小傳則要求寫出人物的出生地,出生年月,主要經歷等.人物自傳的繁簡區別在於自傳可以根據需要採用不同寫法,可以寫自己全部經歷,也可以寫自己某個時期的經歷.
2 說明文文體知識要點
(1)以說明為主要表達方式,按一定的要求解說事物或事理的文章稱為說明文.說明文的語言特點:准確,平實,簡潔.
(2)說明事物的前提是抓住事物的特徵.所謂特徵就是事物間相互區別的標志.
(3)說明文的說明順序有:空間順序,時間順序,邏輯順序,(有總說後分說,先主要後次要,先原因後結果,由現象到本質,由性能到功用等)
(4)常用的說明方法有:分類別,作解釋,舉例子,打比方,作比較,用數字,列圖表.
(5)說明文按說明對象和內容分有:說明實體事物和說明抽象事理兩大類.說明文按寫作方法和表達方式分有:平實性說明文和文藝性說明文.
(6)平實性說明文和文藝性說明文的區別在於:平實性說明文純用說明的表達方式,語言朴實簡明,內容具體,切實使人讀了就能明白.如自然科學的各類教科書.科技信息資料,實驗報告,說明書等.文藝性說明文以說明為主,輔以敘述,描寫,抒情等多種表達方式,並常用藉助一些修辭方法,形象化地介紹事物或闡述事理,使讀者在獲得知識的同時,還能得到藝術的享受,這類說明文通常稱知識小品或科學小品.
(7)說明文的描寫和記敘文中的描寫區別:a 目的不同:記敘文中的描寫是為了「使人有所感,」;說明文的描寫是為了「使人有所知」.b 記敘文可以根據中心思想的需要,使用各種描寫方法起到多方面的作用.說明文的描寫則只能在說明事物的過程中,藉助某鍾形象化的手法,對事物的特徵作一些必要的描繪,主要是起到使說明的事物特徵更具體,更形象.c 記敘文中的描寫可以發揮藝術想像,可以誇張,渲染,而說明文中的描寫在務真求實的前提下進行語言加工,做到既形象生動,又真實可信.
3 議論文文體的知識要點
(1)生活中少不了議論,講道理,發表意見就是議論.以議論為主要表達方式的文章就是議論文.
(2)議論總要提出看法或主張,這種看法或主張就是論點,用來證明論點的材料就為論據,用論據來證明論點的過程即為論證過程.
(3)用以證明論點的材料有兩大類:事實材料(事實論據)即確鑿的事例;史實;統計數字等.理論材料(道理論據)即名人名言;警句;格言;科學原理;自然定律;馬列毛澤東思想.
(4)議論文的基本結構:提出問題;分析問題;解決問題.議論文的基本論證方法:擺事實,講道理.論證方式:立論,駁論.所謂立論就是正面闡述自己的觀點.駁論就是批駁錯誤的觀點.
(5)一事一議議論文的寫作特點:借事發表議論,就事說明道理.而從「事」到議.又必須理出並把握兩者的聯系點,才可順理成章地展開議論,這事「一事一議」的關鍵.
(6)議論文常見的有幾種樣式:社論,評論,學術論文,專題討論,雜感,隨筆以及側重1於議論性的講演詞,書信等.在以上樣式中,有理論性較強的,有文藝性較強的.