當前位置:首頁 » 基礎知識 » 初三數學上冊必背重點知識點
擴展閱讀
如何讓前面同學放下傘 2024-11-16 08:44:17
2d3d動漫哪個成本高 2024-11-16 08:36:07

初三數學上冊必背重點知識點

發布時間: 2022-07-04 01:39:26

1. 初中數學知識點總結

初中數學知識點總結
一、基本知識
一、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數 無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)
2、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解。②一個含有未知數的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
一元一次不等式組:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<B*C(C<0)
如果不等式乘以0,那麼不等號改為等號
所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立;
3、函數
變數:因變數,自變數。
在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。
一次函數:①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數。②當B=0時,稱Y是X的正比例函數。
一次函數的圖象:①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經過原點的一條直線。③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上

135、①兩圓外離 d>R+r ②兩圓外切 d=R+r③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)贊同

上課認真聽講,課後多練習。
數學:
課本上講的定理,你可以自己試著自己去推理。這樣不但提高自己的證明能力,也加深對公式的理解。還有就是大量練習題目。基本上每課之後都要做課余練習的題目(不包括老師的作業)。
數學成績的提高,數學方法的掌握都和同學們良好的學習習慣分不開的,因此.良好的數學學習習慣包括:聽講、閱讀、探究、作業.
聽講:應抓住聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好筆記.每堂課結束以後應深思一下進行歸納,做到一課一得.

2. 三年級上冊數學必背知識點有哪些

三年級上冊數學必背知識點有:

1、筆算減法時,先把相同數位的數對齊,在從個位算起,被減數哪一位上的數不夠減時,就從前一位退1作十,與本位上的數加起來再減。

2、驗算加法算式可以交換加數的位置,也可以用和減一個加數,看是否等於另一個加數。

3、一個數乘1,積不一定比這個數乘0大。

4、位數相同的數比較大小;先比較這兩個數的最高位上的數;如果最高位上的數相同;就比較下一位;以此類推。

5、有4條直的邊和4個角的封閉圖形我們叫它四邊形、四邊形的特點是有四條直的邊,有四個角。

3. 三年級上冊數學必背知識點有哪些

三年級上冊數學必背知識點如下:

1、在生活中,量比較短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做單位。

2、在計算長度時,只有相同的長度單位才能相加減;單位不同時,要先轉化成相同的單位再計算。

3、1米=100厘米1分米=100毫米;10分米=1米10厘米=1分米10毫米=1厘米。

4、分針走一圈,時針走一大格,是1小時。秒針走一圈,分針走一小格,是1分。

5、倍是兩個數進行比較的一種關系,一個數裡面有幾個,另一個水就可以說一個數是另一個數的幾倍。再求一個數是另一個數的幾倍也就是求一個數裡面有幾個另一個數。其計算方法是一個數,除以另一個數。

4. 初中數學知識歸納

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

5. 初三中考數學必背公式

初三中考數學公式是必須要記,但不需要背,你在做數學題中,做做練習冊的題就慢慢的記住了,通過做練習題就能記住,沒有必要背,都是通過做題能理解就能記住,必須要通過做練習題,再理解的基礎才能記住,不能死記寧背,死記聽不兩天就會忘掉,要理解背,就能記的牢牢。

6. 中考數學重點知識歸納內容是什麼

一、圓周角定理及其推論

1、圓周角

頂點在圓上,並且兩邊都和圓相交的角叫做圓周角。

2、圓周角定理

一條弧所對的圓周角等於它所對的圓心角的一半。

推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

推論3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。

二、一些基本公式

三倍角的正弦、餘弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

三、二元一次方程組

1、二元一次方程

含有兩個未知數,並且未知項的最高次數是1的整式方程叫做二元一次方程。

2、二元一次方程的解

使二元一次方程左右兩邊的值相等的一對未知數的值,叫做二元一次方程的一個解。

3、二元一次方程組

兩個(或兩個以上)二元一次方程合在一起,就組成了一個二元一次方程組。一般形式:(不全為0)

4、二元一次方程組的解

使二元一次方程組的兩個方程左右兩邊的值都相等的兩個未知數的值,叫做二元一次方程組的解。

5、二元一次方程組的解法

四、基本思想:"消元"

解法:(1)代入法(2)加減法(3)二元一次方程組一元一次方程組.

6、三元一次方程

把含有三個未知數,並且含有未知數的項的次數都是1的整式方程。

五、列方程(組)解應用題

注意:千萬不要死記硬背例題的類型及其解法,要具體問題具體分析,一般來講,應按下面的步驟進行:

1、審題:弄清題意和題目中的已知量、未知量,並能找出能夠表示應用問題的全部含義的等量關系。

2、設未知數:選擇一個或幾個適當的未知量,用字母表示,並根據題目的數量關系,用含未知數的代數式表示相關的未知量。

3、列方程(組):根據等量關系列出方程(組)。

4、解方程(組):其過程可以省略,但要注意技巧和方法。

5、檢驗:首先檢查所列方程(組)是否正確,然後檢驗所得方程的解是否符合題意。

6、寫答:不要忘記單位名稱。

7、分式方程的解法

①一般解法:去分母法,即方程兩邊同乘以最簡公分母。

②特殊解法:換元法。

(2)驗根:由於在去分母過程中,當未知數的取值范圍擴大而有可能產生增根.因此,驗根是解分式方程必不可少的步驟,一般把整式方程的根的值代人最簡公分母,看結果是不是零,使最簡公分母為零的根是原方程的增根,必須捨去。

說明:解分式方程,一般先考慮換元法,再考慮去分母法。

六、相交線中的角

兩條直線相交,可以得到四個角,我們把兩條直線相交所構成的四個角中,有公共頂點但沒有公共邊的兩個角叫做對頂角。我們把兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角叫做臨補角。

臨補角互補,對頂角相等。

直線AB,CD與EF相交(或者說兩條直線AB,CD被第三條直線EF所截),構成八個角。其中∠1與∠5這兩個角分別在AB,CD的上方,並且在EF的同側,像這樣位置相同的一對角叫做同位角;∠3與∠5這兩個角都在AB,CD之間,並且在EF的異側,像這樣位置的兩個角叫做內錯角;∠3與∠6在直線AB,CD之間,並側在EF的同側,像這樣位置的兩個角叫做同旁內角。

七、線段的性質

1、線段公理:所有連接兩點的線中,線段最短。也可簡單說成:兩點之間線段最短。

2、連接兩點的線段的長度,叫做這兩點的距離。

3、線段的中點到兩端點的距離相等。

4、線段的大小關系和它們的長度的大小關系是一致的。

5、線段垂直平分線的性質定理及逆定理

垂直於一條線段並且平分這條線段的直線是這條線段的垂直平分線。線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等。逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

7. 數學初三必背定理大全

初中數學的幾何部分,有很多定理需要記憶理解。但平時我們對知識點的學習都是分散的,不利於記憶!
今天,整理了中考數學必背的幾何定理,這些基本定理對我們解幾何題目而言是關鍵中的關鍵,一定要牢記,平時也可以多看看~
點、線、角
點的定理:過兩點有且只有一條直線
點的定理:兩點之間線段最短
角的定理:對頂角相等
角的定理:同角或等角的補角相等
角的定理:同角或等角的餘角相等
直線定理:在同一平面內,過一點有且只有一條直線和已知直線垂直
直線定理:直線外一點與直線上各點連接的所有線段中,垂線段最短
幾何平行
平行定理:經過直線外一點,有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
證明兩直線平行定理:同位角相等,兩直線平行;內錯角相等,兩直線平行;同旁內角互補,兩直線平行
兩直線平行推論:兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補
三角形的邊和角
定理:三角形兩邊的和大於第三邊
推論:三角形兩邊的差小於第三邊
三角形內角和定理:三角形三個內角的和等於180°
全等三角形判定
定理:全等三角形的對應邊、對應角相等
邊角邊定理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等
角邊角定理(ASA):有兩角和它們的夾邊對應相等的兩個三角形全等
推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等
邊邊邊定理(SSS):有三邊對應相等的兩個三角形全等
斜邊、直角邊定理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等
角的平分線
定理1:在角的平分線上的點到這個角的兩邊的距離相等
定理2:在一個角的內部,且到這個角的兩邊的距離相等的點,在這個角的平分線上
角的平分線是到角的兩邊距離相等的所有點的集合
等腰三角形性質
等腰三角形的性質定理:等腰三角形的兩個底角相等(即等邊對等角)
推論1:等腰三角形頂角的平分線平分底邊並且垂直於底邊
拓展:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
等腰三角形的判定定理:如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
對稱定理
定理:線段垂直平分線上的點到這條線段兩個端點的距離相等
逆定理:到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
線段的垂直平分線可看作到線段兩端點距離相等的所有點的集合
定理1:關於某條直線對稱的兩個圖形是全等形
定理2:如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
定理3:兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
直角三角形定理
定理:在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半
直角三角形斜邊上的中線等於斜邊的一半
勾股定理:直角三角形兩直角邊a、b的平方和等於斜邊c的平方,即a² +b²= c²
勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a² +b²= c² ,那麼這個三角形是直角三角形
多邊形內角和定理
定理:四邊形的內角和等於360°;四邊形的外角和等於360°
多邊形內角和定理:n邊形的內角和等於(n-2)×180°
推論:任意多邊形的外角和等於360°
平行四邊形定理
平行四邊形性質定理:
1.平行四邊形的對角相等
2.平行四邊形的對邊相等
3.平行四邊形的對角線互相平分
推論:夾在兩條平行線間的平行線段相等
平行四邊形判定定理:
1.兩組對角分別相等的四邊形是平行四邊形
2.兩組對邊分別相等的四邊形是平行四邊形
3.對角線互相平分的四邊形是平行四邊形
4.一組對邊平行且相等的四邊形是平行四邊形
矩形定理
矩形性質定理1:矩形的四個角都是直角
矩形性質定理2:矩形的對角線相等
矩形判定定理1:有三個角是直角的四邊形是矩形
矩形判定定理2:對角線相等的平行四邊形是矩形
菱形定理
菱形性質定理1:菱形的四條邊都相等
菱形性質定理2:菱形的對角線互相垂直,並且每一條對角線平分一組對角
菱形面積=對角線乘積的一半,即S=(a×b)÷2
菱形判定定理1:四邊都相等的四邊形是菱形
菱形判定定理2:對角線互相垂直的平行四邊形是菱形
正方形定理
正方形性質定理1:正方形的四個角都是直角,四條邊都相等
正方形性質定理2:正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
中心對稱定理
定理1:關於中心對稱的兩個圖形是全等的
定理2:關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
逆定理:如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
等腰梯形性質定理
等腰梯形性質定理:
1.等腰梯形在同一底上的兩個角相等
2.等腰梯形的兩條對角線相等
等腰梯形判定定理:
1.在同一底上的兩個角相等的梯形是等腰梯形
2.對角線相等的梯形是等腰梯形
平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰
推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
中位線定理
三角形中位線定理:三角形的中位線平行於第三邊,並且等於它的一半
梯形中位線定理:梯形的中位線平行於兩底,並且等於兩底和的一半L=(a+b)÷2,S=L×h
相似三角形定理
相似三角形定理:平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
相似三角形判定定理:
1.兩角對應相等,兩三角形相似
2.兩邊對應成比例且夾角相等,兩三角形相似
直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
判定定理3:三邊對應成比例,兩三角形相似
相似直角三角形定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
性質定理:
1.相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
2.相似三角形周長的比等於相似比
3.相似三角形面積的比等於相似比的平方
三角函數定理
任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
圓的定理
定理:過不共線的三個點,可以作且只可以作一個圓
定理:垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧
推論1:平分弦(不是直徑)的直徑垂直於弦並且平分弦所對的兩條弧
推論2:弦的垂直平分弦經過圓心,並且平分弦所對的兩條弧
推論3:平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
定理:
1.在同圓或等圓中,相等的弧所對的弦相等,所對的弦的弦心距相等
2.經過圓的半徑外端點,並且垂直於這條半徑的直線是這個圓的切線
3.圓的切線垂直於經過切點的半徑
4.三角形的三個內角平分線交於一點,這點是三角形的內心
5.從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
6.圓的外切四邊形的兩組對邊的和相等
比例性質定理
比例的基本性質
如果a:b=c:d,那麼ad=bc;如果ad=bc,那麼a:b=c:d
合比性質
如果a/b=c/d,那麼(a±b)/b=(c±d)/d
等比性質
如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b

8. 關於初三數學的知識

在網上找到一些,希望能幫助你
一、理解二次函數的內涵及本質 .

二次函數 y=ax2 + bx + c ( a ≠ 0 , a 、 b 、 c 是常數)中含有兩個變數 x 、 y ,我們只要先確定其中一個變數,就可利用解析式求出另一個變數,即得到一組解;而一組解就是一個點的坐標,實際上二次函數的圖象就是由無數個這樣的點構成的圖形 .

二、熟悉幾個特殊型二次函數的圖象及性質 .

1 、通過描點,觀察 y=ax2 、 y=ax2 + k 、 y=a ( x + h ) 2 圖象的形狀及位置,熟悉各自圖象的基本特徵,反之根據拋物線的特徵能迅速確定它是哪一種解析式 .

2 、理解圖象的平移口訣「加上減下,加左減右」 .

y=ax2 → y=a ( x + h ) 2 + k 「加上減下」是針對 k 而言的,「加左減右」是針對 h 而言的 .

總之,如果兩個二次函數的二次項系數相同,則它們的拋物線形狀相同,由於頂點坐標不同,所以位置不同,而拋物線的平移實質上是頂點的平移,如果拋物線是一般形式,應先化為頂點式再平移 .

3 、通過描點畫圖、圖象平移,理解並明確解析式的特徵與圖象的特徵是完全相對應的,我們在解題時要做到胸中有圖,看到函數就能在頭腦中反映出它的圖象的基本特徵;

4 、在熟悉函數圖象的基礎上,通過觀察、分析拋物線的特徵,來理解二次函數的增減性、極值等性質;利用圖象來判別二次函數的系數 a 、 b 、 c 、△以及由系數組成的代數式的符號等問題 .

三、要充分利用拋物線「頂點」的作用 .

1 、要能准確靈活地求出「頂點」 . 形如 y=a ( x + h ) 2 + K →頂點(- h,k ),對於其它形式的二次函數,我們可化為頂點式而求出頂點 .

2 、理解頂點、對稱軸、函數最值三者的關系 . 若頂點為(- h , k ),則對稱軸為 x= - h , y 最大(小) =k ;反之,若對稱軸為 x=m , y 最值 =n ,則頂點為( m , n );理解它們之間的關系,在分析、解決問題時,可達到舉一反三的效果 .

3 、利用頂點畫草圖 . 在大多數情況下,我們只需要畫出草圖能幫助我們分析、解決問題就行了,這時可根據拋物線頂點,結合開口方向,畫出拋物線的大致圖象 .

四、理解掌握拋物線與坐標軸交點的求法 .

一般地,點的坐標由橫坐標和縱坐標組成,我們在求拋物線與坐標軸的交點時,可優先確定其中一個坐標,再利用解析式求出另一個坐標 . 如果方程無實數根,則說明拋物線與 x 軸無交點 .

從以上求交點的過程可以看出,求交點的實質就是解方程,而且與方程的根的判別式聯系起來,利用根的判別式判定拋物線與 x 軸的交點個數 .

五、靈活應用待定系數法求二次函數的解析式 .

用待定系數法求二次函數的解析式是我們求解析式時最常規有效的方法,求解析式時往往可選擇多種方法,如能綜合利用二次函數的圖象與性質,靈活應用數形結合的思想,不僅可以簡化計算,而且對進一步理解二次函數的本質及數與形的關系大有裨益 .
二次函數y=ax2
學習要求:

1.知道二次函數的意義.

2.會用描點法畫出函數y=ax2的圖象,知道拋物線的有關概念.

重點難點解析

1.本節重點是二次函數的概念和二次函數y=ax2的圖象與性質;難點是根據圖象概括二次函數y=ax2的性質.

2.形如=ax2+bx+c(其中a、b、c是常數,a≠0)的函數都是二次函數.解析式中只能含有兩

個變數x、y,且x的二次項的系數不能為0,自變數x的取值范圍通常是全體實數,但在實際問題中應使實際量有意義。如圓面積S與圓半徑R的關系式S=πR2中,半徑R只能取非負數。

3.拋物線y=ax2的形狀是由a決定的。a的符號決定拋物線的開口方向,當a>0時,開口向上,拋物線在y軸的上方(頂點在x軸上),並向上無限延伸;當a<0時,開口向下,拋物線在x軸下方(頂點在x軸上),並向下無限延伸。|a|越大,開口越小;|a|越小,開口越大.

4.畫拋物線y=ax2時,應先列表,再描點,最後連線。列表選取自變數x值時常以0為中心,選取便於計算、描點的整數值,描點連線時一定要用光滑曲線連接,並注意變化趨勢。

本節命題主要是考查二次函數的概念,二次函數y=ax2的圖象與性質的應用。

核心知識

規則1

二次函數的概念:

一般地,如果是常數,那麼,y叫做x的二次函數.

規則2

拋物線的有關概念:

圖13-14

如圖13-14,函數y=x2的圖象是一條關於y軸對稱的曲線,這條曲線叫拋物線.實際上,二次函數的圖象都是拋物線.拋物線y=x2是開口向上的,y軸是這條拋物線的對稱軸,對稱軸與拋物線的交點是拋物線的頂點.

規則3

拋物線y=ax2的性質:

一般地,拋物線y=ax2的對稱軸是y軸,頂點是原點,當a>0時,拋物線y=ax2的開口向上,當a<0時,拋物線y=ax2的開口向下.

規則4

1.二次函數的概念

(1)定義:一般地,如果y=ax2+bx+c(a,b,c是常數,a≠0),那麼,y叫做x的的二次函數. (2)二次函數y=ax2+bx+c的結構特徵是:等號左邊是函數y,右邊是自變數x的二次式,x的最高次數是2.其中一次項系數b和常數項c可以是任意實數,而二次項系數a必須是非零實數,即a≠0.

2.二次函數y=ax2的圖像

圖13-1

用描點法畫出二次函數y=x2的圖像,如圖13-1,它是一條關於y軸對稱的曲線,這樣的曲線叫做拋物線.

因為拋物線y=x2關於y軸對稱,所以y軸是這條拋物線的對稱軸,對稱軸與拋物線的交點是拋物線的頂點,從圖上看,拋物線y=x2的頂點是圖象的最低點.因為拋物線y=x2有最低點.所以函數y=x2有最小值,它的最小值就是最低點的縱坐標.

3.二次函數y=ax2的性質

函數
圖像

開口方向
頂點坐標
對稱軸
函數變化
最大(小)值

y=ax2
a>0

向上
(0,0)
Y軸
x>0時,y隨x增大而增大;

x<0時,y隨x增大而減小.
當x=0時,y最小=0.

y=ax2
a<0

向下
(0,0)
Y軸
x>0時,y隨x增大而減小;

x<0時,y隨x增大而增大.
當x=0時,y最大=0.

4.二次函數y=ax2的圖像的畫法

用描點法畫二次函數y=ax2的圖像時,應在頂點的左、右兩側對稱地選取自變數x的值,然後計算出對應的y值,這樣的對應值選取越密集,描出的圖像越准確.
二次函數y=ax2+bx+c
學習要求:

1.會用描點法畫出二次函數的圖象.

2.能利用圖象或通過配方確定拋物線的開口方向及對稱軸、頂點、的位置.

*3.會由已知圖象上三個點的坐標求出二次函數的解析式.

重點難點

1.本節重點是二次函數y=ax2+bx+c的圖象和性質的理解及靈活運用,難點是二次函數y=ax2+bx+c的性質和通過配方把解析式化成y=a(x-h)2+k的形式。

2.學習本小節需要仔細觀察歸納圖象的特點以及不同圖象之間的關系。把不同的圖象聯系起來,找出其共性。

一般地幾個不同的二次函數,如果二次項系數a相同,那麼拋物線的開口方向、開口大小(即形狀)完全相同,只是位置不同.

任意拋物線y=a(x-h)2+k可以由拋物線y=ax2經過適當地平移得到,具體平移方法如下圖所示:

注意:上述平移的規律是:「h值正、負,右、左移;k值正、負,上、下移」實際上有關拋物線的平移問題,不能死記硬背平移規律,只要先將其解析式化為頂點式,然後根據它們的頂點的位置關系,確定平移方向和平移的距離非常簡便.

圖13-11

例如,要研究拋物線L1∶y=x2-2x+3與拋物線L2∶y=x2的位置關系,可將y=x2-2x+3通過配方變成頂點式y=(x-1)2+2,求出其頂點M1(1,2),因為L2的頂點為M2(0,0),根據它們的頂點的位置,容易看出:由L2向右平移1個單位,再向上平移2個單位,即得L1;反之,由L1向左平移1個單位,再向下平移2個單位,即得L2.

二次函數y=ax2+bx+c的圖象與y=ax2的圖象形狀完全一樣,它們的性質也有相似之處。當a>0時,兩條拋物線的開口都向上,並向上無限延伸,拋物線有最低點,y有最小值,當a<0時,開口都向下,並向下無限延伸,拋物線有最高點,y有最大值.

3.畫拋物線時一定要先確定開口方向和對稱軸、頂點位置,再利用函數對稱性列表,這樣描點連線後得到的才是完整的,比較准確的圖象。否則畫出的圖象,往往只是其中一部分。例如畫y=- (x+1)2-1的圖象。

列表:

x
-3
-2
-1
0
1
2
3

y
-3
-1.5
-1
-1.5
-3
-5.5
-9

描點,連線成如圖13-11所示不能反映其全貌的圖象。

正解:由解析式可知,圖象開口向下,對稱軸是x=-1,頂點坐標是(-1,-1)

列表:

x
-4
-3
-2
-1
0
1
2

y
-5.5
-3
-1.5
-1
-1.5
-1.5
-5.5

描點連線:如圖13-12

圖13-12

4.用配方法將二次函數y=ax2+bx+c化成y=a(x-h)2+k的形式,首先要提出二次項系數a。常犯的錯誤只提第一項,後面漏提。如y=- x2+6x-21 寫成y=- (x2+6x-21)或y=- (x2-12x-42)把符號弄錯,主要原因是沒有掌握添括弧的規則。

本節命題主要考查二次函數y=ax2+bx+c的圖象和性質及其在實際生活中的運用。既有填空題、選擇題,又有解答題,與方程、幾何、一次函數的綜合題常作為中考壓軸題。

核心知識

規則1

拋物線 y=a(x-h)2+k 的性質:

一般地,拋物線 y=a(x-h)2+k 與 y=ax2 形狀相同,位置不同.拋物線 y=a(x-h)2+k 有如下特點:

(l) a>0時,開口向上;a<0時,開口向下;

(2) 對稱軸是直線x=h;

(3) 頂點坐標是(h,k).

規則2

二次函數 y=ax2+bx+c 的性質:

y=ax2+bx+c ( a,b,c 是常數,a≠0)是二次函數,圖象是拋物線.利用配方,可以把二次函數表示成 y=a(x-h)2+k 的形式,由此可以確定這條拋物線的對稱軸是直線 ,頂點坐標是 ,當a>0時,開口向上;a<0時,開口向下.

規則3

1.二次函數解析式的幾種形式

(1)一般式:y=ax2+bx+c (a,b,c為常數,a≠0).

(2)頂點式:y=a(x-h)2+k(a,h,k為常數,a≠0).

(3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點的橫坐標,即一元二次方程ax2+bx+c=0的兩個根,a≠0.

說明:(1)任何一個二次函數通過配方都可以化為頂點式y=a(x-h)2+k,拋物線的頂點坐標是(h,k),h=0時,拋物線y=ax2+k的頂點在y軸上;當k=0時,拋物線a(x-h)2的頂點在x軸上;當h=0且k=0時,拋物線y=ax2的頂點在原點.

(2)當拋物線y=ax2+bx+c與x軸有交點時,即對應二次方程ax2+bx+c=0有實數根x1和

x2存在時,根據二次三項式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函數y=ax2+bx+c可轉化為兩根式y=a(x-x1)(x-x2).

2.二次函數解析式的確定

確定二次函數解析式,一般仍用待定系數法.由於二次函數解析式有三個待定系數a、b、c(或a、h、k或a、x1、x2),因而確定二次函數解析式需要已知三個獨立的條件.當已知拋物線上任意三個點的坐標時,選用一般式比較方便;當已知拋物線的頂點坐標時,選用頂點式比較方便;當已知拋物線與x軸兩個點的坐標(或橫坐標x1,x2)時,選用兩根式較為方便.

注意:當選用頂點式或兩根式求二次函數解析式時,最後一般都要化一般式.

3.二次函數y=ax2+bx+c的圖像

二次函數y=ax2+bx+c的圖像是對稱軸平行於(包括重合)y軸的拋物線.

4.二次函數的性質

根據二次函數y=ax2+bx+c的圖像可歸納其性質如下表:

函數
二次函數y=ax2+bx+c(a,b,c是常數,a≠0)




a>0
a<0

(1)拋物線開口向上,並向上無限延伸.

(2)對稱軸是x=- ,頂點坐標是(- , ).

(3)當x<- 時,y隨x的增大而減小;當x>- 時,y隨x的增大而增大.

(4)拋物線有最低點,當x=- 時,y有最小值,y最小值= .
(1) )拋物線開口向下,並向下無限延伸.

(2)對稱軸是x=- ,頂點坐標是(- , ).

(3)當x<- 時,y隨x的增大而增大;當x>- 時,y隨x的增大而減小.

(4)拋物線有最高點,當x=- 時,y有最大值,y最大值= .

5.求拋物線的頂點、對稱軸、最值的方法

①配方法:將解析式化為y=a(x-h)2+k的形式,頂點坐標(h,k),對稱軸為直線x=h,若a>0,y有最小值,當x=h時,y最小值=k,若a<0,y有最大值,當x=h時,y最大值=k.

②公式法:直接利用頂點坐標公式(- , ),求其頂點;對稱軸是直線x=- ,若a>0,y有最小值,當x=- 時,y最小值= ,若a<0,y有最大值,當x=- 時,y最大值= .

6.二次函數y=ax2+bx+c的圖像的畫法

因為二次函數的圖像是拋物線,是軸對稱圖形,所以作圖時常用簡化的描點法和五點法,其步驟是:

(1)先找出頂點坐標,畫出對稱軸;

(2)找出拋物線上關於對稱軸的四個點(如與坐標軸的交點等);

(3)把上述五個點按從左到右的順序用平滑曲線連結起來.

7.二次函數y=ax2+bx+c的圖像的位置與a、b、c及Δ符號有密切的關系(見下表):









字母的符號
圖像的位置

a
a>0

a<0
開口向上 開口向下

b
b=0 ab>0 ab<0
對稱軸為y軸 對稱軸在y軸左側 對稱軸在y軸右側

c
c=0 c>0 c<0
經過原點 與y軸正半軸相交 與y軸負半軸相交

8.二次函數與一元二次方程的關系

二次函數y=ax2+bx+c的圖像(拋物線)與x軸的兩個交點的橫坐標x1、x2,是對應的一元二次方程ax2+bx+c=0的兩個實數根.拋物線與x軸的交點情況可以由對應的一元二次方程的根的判別式判定:

Δ>0 拋物線與x軸有2個交點;

Δ=0 拋物線與x軸有1個交點;

Δ<0 物線與x軸有0個交點(沒有交點).

圓的知識見:http://..com/question/44323418.html?si=1

9. 數學中考必背知識點

一、相似三角形(7個考點)

考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小

考核要求:

(1)理解相似形的概念;

(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。

考點2:平行線分線段成比例定理、三角形一邊的平行線的有關定理

考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算。

注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。

考點3:相似三角形的概念

考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義。

考點4:相似三角形的判定和性質及其應用

考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地應用。

考點5:三角形的重心

考核要求:知道重心的定義並初步應用。

考點6:向量的有關概念

考點7:向量的加法、減法、實數與向量相乘、向量的線性運算

考核要求:掌握實數與向量相乘、向量的線性運算

二、銳角三角比(2個考點)

考點8:銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30度、45度、60度角的三角比值。

考點9:解直角三角形及其應用

考核要求:

(1)理解解直角三角形的意義;

(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。

三、二次函數(4個考點)

考點10:函數以及函數的定義域、函數值等有關概念,函數的表示法,常值函數

考核要求:

(1)通過實例認識變數、自變數、因變數,知道函數以及函數的定義域、函數值等概念;

(2)知道常值函數;

(3)知道函數的表示方法,知道符號的意義。

考點11:用待定系數法求二次函數的解析式

考核要求:

(1)掌握求函數解析式的方法;

(2)在求函數解析式中熟練運用待定系數法。

注意求函數解析式的步驟:一設、二代、三列、四還原。

考點12:畫二次函數的圖像

考核要求:

(1)知道函數圖像的意義,會在平面直角坐標系中用描點法畫函數圖像

(2)理解二次函數的圖像,體會數形結合思想;

(3)會畫二次函數的大致圖像。

考點13:二次函數的圖像及其基本性質

考核要求:

(1)藉助圖像的直觀、認識和掌握一次函數的性質,建立一次函數、二元一次方程、直線之間的聯系;

(2)會用配方法求二次函數的頂點坐標,並說出二次函數的有關性質。

注意:

(1)解題時要數形結合;

(2)二次函數的平移要化成頂點式。

四、圓的相關概念(6個考點)

考點14:圓心角、弦、弦心距的概念

考核要求:清楚地認識圓心角、弦、弦心距的概念,並會用這些概念作出正確的判斷。

考點15:圓心角、弧、弦、弦心距之間的關系

考核要求:認清圓心角、弧、弦、弦心距之間的關系,在理解有關圓心角、弧、弦、弦心距之間的關系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。

考點16:垂徑定理及其推論

垂徑定理及其推論是圓這一板塊中最重要的知識點之一。

考點17:直線與圓、圓與圓的位置關系及其相應的數量關系

直線與圓的位置關系可從與之間的關系和交點的個數這兩個側面來反映。在圓與圓的位置關系中,常需要分類討論求解。

考點18:正多邊形的有關概念和基本性質

考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),並能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。

考點19:畫正三、四、六邊形。

考核要求:能用基本作圖工具,正確作出正三、四、六邊形。

五、數據整理和概率統計(9個考點)

考點20:確定事件和隨機事件

考核要求:

(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;

(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。

考點21:事件發生的可能性大小,事件的概率

考核要求:

(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小並排出大小順序;

(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;

(3)理解隨機事件發生的頻率之間的區別和聯系,會根據大數次試驗所得頻率估計事件的概率。

注意:

(1)在給可能性的大小排序前可先用「一定發生」、「很有可能發生」、「可能發生」、「不太可能發生」、「一定不會發生」等詞語來表述事件發生的可能性的大小;

(2)事件的概率是確定的常數,而概率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。

考點22:等可能試驗中事件的概率問題及概率計算

考核要求

(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;

(2)會用枚舉法或畫「樹形圖」方法求等可能事件的概率,會用區域面積之比解決簡單的概率問題;

(3)形成對概率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單概率問題。

注意:

(1)計算前要先確定是否為可能事件;

(2)用枚舉法或畫「樹形圖」方法求等可能事件的概率過程中要將所有等可能情況考慮完整。

考點23:數據整理與統計圖表

考核要求:

(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;

(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,並能通過圖表獲取有關信息。

考點24:統計的含義

考核要求:

(1)知道統計的意義和一般研究過程;

(2)認識個體、總體和樣本的區別,了解樣本估計總體的思想方法。

考點25:平均數、加權平均數的概念和計算

考核要求:

(1)理解平均數、加權平均數的概念;

(2)掌握平均數、加權平均數的計算公式。注意:在計算平均數、加權平均數時要防止數據漏抄、重抄、錯抄等錯誤現象,提高運算準確率。

考點26:中位數、眾數、方差、標准差的概念和計算

考核要求:

(1)知道中位數、眾數、方差、標准差的概念;

(2)會求一組數據的中位數、眾數、方差、標准差,並能用於解決簡單的統計問題。

注意:

(1)當一組數據中出現極值時,中位數比平均數更能反映這組數據的平均水平;

(2)求中位數之前必須先將數據排序。

考點27:頻數、頻率的意義,畫頻數分布直方圖和頻率分布直方圖

考核要求:

(1)理解頻數、頻率的概念,掌握頻數、頻率和總量三者之間的關系式;

(2)會畫頻數分布直方圖和頻率分布直方圖,並能用於解決有關的實際問題。解題時要注意:頻數、頻率能反映每個對象出現的頻繁程度,但也存在差別:在同一個問題中,頻數反映的是對象出現頻繁程度的絕對數據,所有頻數之和是試驗的總次數;頻率反映的是對象頻繁出現的相對數據,所有的頻率之和是1.

考點28:中位數、眾數、方差、標准差、頻數、頻率的應用

考核要求:

(1)了解基本統計量(平均數、眾數、中位數、方差、標准差、頻數、頻率)的意計算及其應用,並掌握其概念和計算方法;

(2)正確理解樣本數據的特徵和數據的代表,能根據計算結果作出判斷和預測;

(3)能將多個圖表結合起來,綜合處理圖表提供的數據,會利用各種統計量來進行推理和分析,研究解決有關的實際生活中問題,然後作出合理的解決。

10. 初中數學必背知識點

總結的有點多,請耐心看哈!

希望能幫助你,還請及時採納謝謝!


數學,是一門關於如何思維的科學。熟記數學口訣,是解題的一條捷徑,孩子做題思維就會變快。從而更加深刻的記住知識點,減輕孩子的學習負擔,輕松學習。



下面小優老師將初中數學必須掌握的26個知識點口訣總結如下,希望對你有幫助。


圓的證明不算難,常把半徑直徑連;

有弦可作弦心距,它定垂直平分弦;

直徑是圓最大弦,直圓周角立上邊,

它若垂直平分弦,垂徑、射影響耳邊;

還有與圓有關角,勿忘相互有關聯,

圓周、圓心、弦切角,細找關系把線連

同弧圓周角相等,證題用它最多見,

圓中若有弦切角,夾弧找到就好辦;

圓有內接四邊形,對角互補記心間,

外角等於內對角,四邊形定內接圓;

直角相對或共弦,試試加個輔助圓;

若是證題打轉轉,四點共圓可解難;

要想證明圓切線,垂直半徑過外端,

直線與圓有共點,證垂直來半徑連,

直線與圓未給點,需證半徑作垂線;

四邊形有內切圓,對邊和等是條件;

如果遇到圓與圓,弄清位置很關鍵,

兩圓相切作公切,兩圓相交連公弦。