當前位置:首頁 » 基礎知識 » 數學四年級下冊圖形的面積知識
擴展閱讀
什麼歌詞有我要找到你 2024-11-16 09:09:04
什麼歌詞含有愛你的甜 2024-11-16 08:59:42

數學四年級下冊圖形的面積知識

發布時間: 2022-07-03 14:42:36

Ⅰ 四年級圖形面積請幫忙


Ⅱ 在小學數學中,圖形的面積是如何編排的

先是正方形面積(直接教學面積單位)和長方形面積(利用擺一擺,算一算);
然後是平行四邊形面積(利用割補法轉化為長方形),再是三角形和梯形(轉化為平行四邊形);
最後是圓(轉化為長方形或平行四邊形或三角形),在圓面積基礎上還學了圓環等組合圖形面積。 主要體現了轉化思想。

Ⅲ 四年級面積單位的用法

四年級面積單位用法:邊長是1毫米的正方形,面積是1平方毫米;邊長是1厘米的正方形,面積是1平方厘米;邊長是1分米的正方形,面積是1平方分米;邊長是1米的正方形,面積是1平方米;邊長是1千米的正方形,面積是1平方千米。

四年級學習的常用的面積單位按照從小到大的順序是平方厘米,平方分米,平方米。公頃。平方千米。兩個相鄰的面積單位之間的進率是100。但只有公頃和平方米之間的進率是1萬。這是因為公頃和平方米之間,在我國還隔著一個面積單位,是公畝。



物體所佔的平面圖形的大小,叫做它們的面積。面積就是所佔平面圖形的大小,平方米,平方分米,平方厘米,是公認的面積單位,用字母可以表示為(m²,dm²,cm²)。

面積是表示平面中二維圖形或形狀或平面層的程度的數量。表面積是三維物體的二維表面上的模擬物。面積可以理解為具有給定厚度的材料的量,面積是形成形狀的模型所必需的。可以通過將固定尺寸的形狀與正方形進行比較來測量形狀的面積。

在國際單位制中,標准單位面積為平方米(平方米),面積為一米長的正方形面積。面積為三平方米的形狀將與三個這樣的廣場相同。在數學中,單位正方形被定義為具有區域1,任何其他形狀或表面的面積都是無量綱實數。

Ⅳ 平移後的圖形面積與原圖形什麼.四年級下冊數學

平移後的圖像與原圖像全等,面積也相等。

Ⅳ 四年級的數學

第一單元 大數的認識
1、10個一千是一萬,10個一萬是十萬,10個十萬是一百萬,10個一百萬是一千萬。
2、10個一千萬是一億,10個一億是十億,10個十億是一百億,10個一百億是一千億。
3、一(個)、十、百、萬、十萬、百萬、千萬、億、十億……都是計數單位。
4、按照我國的計數習慣,從右邊起,每四個數位是一級。
數 位 順 序 表
數 級 …… 億 級 萬 級 個 級
數 位 …… 千億位 百億位 十億位 億位 千萬位 百萬位 十萬位 萬位 千位 百位 十位 個位
計數單位 …… 千億 百億 十億 億 千萬 百萬 十萬 萬 千 百 十 個
5、每相鄰兩個計數單位之間的進率都是10的計數方法叫做十進制計數法。
6、讀數時,只是在每一級的末尾加上「萬」或「億」字;每級末尾的0都不讀,其它數位有一個0或幾個0,都只讀一個「零」。
7、寫數時,萬級和億級上的數都是按照個級上數的方法來寫,哪一位不夠用0來補足。改寫「萬」或「億」作單位的數,只要將末尾的4個0或8個0去掉或加上「萬」或「億」字就行了。1.把多位數改寫成「萬」、「億」。 中間要用「=」連接
8、通常我們用「四捨五入」的方法省略尾數求一個數的近似數。
方法是:看尾數最高位上的數,如果是4或比4小,就把尾數捨去,並在數的末尾添上一個計數單位「萬」或者「億」;如果是5或比5大,要在前一位加1,再把尾數捨去,添上計數單位「萬」或者「億」。 得出的是近似數,中間要用「≈」連接。
9、表示物體個數的1,2,3,4,5,6,7,8,9,10,11,…都是自然數。一個物體也沒有用0表示, 0也是自然數。最小的自然數是0,沒有最大的自然數,自然數的個數是無限的。
10、我國在十四世紀發明的至今仍在使用的計算工具是算盤。算盤上方一個珠子代表5,下方一個珠子表示1。
11、在計算器上,ON/C鍵是開關及清屏鍵,CE鍵是清除鍵,AC鍵是歸0鍵。+、-、×、÷鍵是運算符號鍵。
第二單元 角的度量
1、直線沒有端點,可以向兩端無限延伸,不能測量它的長度。
2、射線有一個端點,可以向一端無限延伸,不能測量它的長度。
3、線段有兩個端點,可以量出它的長度。
4、把線段的一端無限延長,就得到一條射線。把線段的兩端都無限延長,就得到一條直線。線段和射線都是直線的一部分。
5、過一點可以畫無數條直線和射線。過兩點只能畫一條直線。
6、從一點引出兩條射線所組成的圖形叫做角。這一點是角的(頂點),這兩條射線是角的( 邊 )。 角通常用符號(「∠」)來表示。
7、角的大小與角的兩邊畫出的長短沒有關系,角的大小要看角兩邊叉開的大小,角的兩邊叉開得越大,角就越大。
8、角的計量單位是「度」,用符號「°」表示。
9、量角器是把半圓平均分成180等份,每一份所對的角的大小就是1度,記作「1°」。
10、對頂角相等。
11、三角形三個角的和是180度。四邊形的四個角的和是360度。
12、直角等於90度,平角等於180度,周角等於360度。
13、1平角=2直角。1周角 = 2平角 = 4直角。
14、銳角小於90度。鈍角大於90度而小於180度;
15、銳角 < 直角 < 鈍角 < 平角 < 周角1小時,
16、時針轉一大格,所對的角是30°;分針轉一圈,所對的角是360°

第三單元 三位數乘兩位數
1、在三位數乘兩位數中,先用兩位數的個位上的數去乘這個三位數,然後用兩位數的十位上的數去乘這個三位數。最後將它們的積加起來。
2、因數末尾有0的乘法:寫豎式時把0前面的數對齊,只乘0前面的數;兩個因數末尾一共有幾個0,就在乘得的積的末尾添上幾個0。
3、一個因數不變,另一個因數擴大(或縮小)若干倍,積也擴大(或縮小)相同的倍數。
4、一個因數擴大或縮小若干倍,另一個因數擴大或縮小相同的倍數,積就不變。
如:一個因數擴大了2倍,另一個因數縮小2倍,不變。
5、一個因數擴大若干倍,另一個因數也擴大若干倍,積就擴大若干倍。如:5×3=15,
(5×2)×(3×2)=15×4
6、速度×時間=路程 路程÷時間=速度 路程÷速度=時間
單價×數量=總價 總價÷數量=單價 總價÷單價=數量

第四單元 平行四邊形和梯形
1、在同一平面內不相交的兩條直線叫做平行線,也可以說這兩條直線互相平行。
2、在同一個平面內如果兩條直線相交成直角,就是說這兩條直線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
3、如果兩條直線都和第三條直線平行,那麼這兩條直線也(互相平行)。
4、如果兩條直線都和第三條直線垂直,那麼這兩條直線也(互相平行)。
5、從直線外一點到這條直線所畫的(垂直線段)最短,它的長度叫做這點到直線的(距離)。平行線之間的距離(處處相等)。
6、長方形:對邊相等,四個角都是直角,兩組對邊分別平行。
7、長方形的周長=(長+寬)×2; 長方形的面積=長×寬;
8、正方形:四條邊都相等,四個角都是直角,兩組對邊分別平行。
9、正方形的周長=邊長×4;正方形的面積=邊長×邊長。
10兩組對邊分別平行的四邊形叫做平行四邊形。其特點是:對邊相等,對角相等。兩組對邊分別平行。
11、只有一組對邊平行的四邊形叫做梯形。其特點是:只有一組對邊平行而另一組對邊不平行。平行的兩邊叫做梯形的底,其中長邊叫下底;不平行的兩邊叫腰;兩底間的距離叫梯形 的高。
12、正方形是特殊的長方形;長方形和正方形是特殊的平行四邊形。
13、平行四邊形容易變形,具有不穩定的特性。
14、從平行四邊形一條邊上的一點到對邊引一條垂線,這點和垂足之間的線段叫做平行四邊形的高,垂足所在的邊叫做平行四邊形的底。
15、兩腰相等的梯形叫做等腰梯形。等腰梯形的兩個底角相等。
16、兩個完全一樣的梯形可以拼成一個平行四邊形。
17、兩個完全一樣的三角形可以拼成一個平行四邊形。
18、我們學過的圖形中,長方形、正方形、等腰梯形、菱形是對稱圖形。
19、過直線外一點只能畫一條已知直線的垂線;
20、過直線外一點只能畫一條已知直線的平行線。
21、

第五單元 除數是兩位數的除法
1、除法計演算法則:除數是兩位數的除法,先用除數試除被除數的前兩位,如果前兩位不夠除,就試除被除數的前三位,除到哪一位,商就上到哪一位的上面,每次除得的余數一定要比除數小。
2、除數是兩位數的除法,一般把除數看作和它接近的整十數來試商;試商大了要調小,試商小了要調大。
3、三位數除以兩位數,商可能是一位數,也可能是兩位數
4、商不變性質:在除法里,被除數和除數同時乘幾(或同時除以幾),(0除外)商不變。
5、在除法里,除數不變,被除數乘幾(或除以幾),商也要乘幾(或除以幾)。
6、在除法里,被除數不變,除數乘幾(或除以幾),商反而要除以幾(或乘幾)。
7、有餘除法關系式: 被除數÷除數=商……余數
被除數=商×除數+余數

第六單元 統計
1、條形統計圖的意義:條形統計圖是用一個單位長度表示一定的數量,根據數量的多少畫成長短不同的直條,然後把這些直條按照一定的順序排起來.條形統計圖的優點是可以很容易看出各種數量的多少.
2、條形統計圖的特點:�
(1)能夠使人們一眼看出各個數據的大小。�
(2)易於比較數據之間的差別。
3、我們學過的統計圖有橫向條形統計圖、縱向條形統計圖以及單式統計圖和復試統計圖。
4、復試統計圖一般由圖號、圖形、圖目、圖注等組成。在行政職業能力測驗中常見的有條形統計圖、扇型統計圖、折線統計圖和網狀統計圖。
人教版新課標教材小學數學四年級下冊知識點匯總

(一)四則運算:
1、 運算順序:1、在沒有括弧的算式里,如果只有加減法或只有乘除法,都要從左往右按順序(依次)計算。
2、在沒有括弧的算式里,有加減法又有乘除法,要先算乘除法,後算加減法。
3、算式里有括弧時,要先算括弧裡面的。
2、 加法、減法、乘法和除法統稱為四則運算。
3、 有關0的運算:1、一個數加上0得原數。
2、任何一個數乘0得0。
3、0不能做除數。0除以一個非0的數等於0。
0÷0得不到固定的商;5÷0得不到商.
(二) 位置與方向:
1、根據方向和距離確定或者繪制物體的具體地點。(比例尺、角的畫法和度量)
2、位置間的相對性。會描述兩個物體間的相互位置關系。(觀測點的確定)
3、簡單路線圖的繪制。
(三)運算定律及簡便運算:
1、加法運算定律:1、加法交換律:兩個數相加,交換加數的位置,和不變。
a+b=b+a
2、加法結合律:三個數相加,可以先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再加上第一個數,和不變。(a+b)+c=a+(b+c)
加法的這兩個定律往往結合起來一起使用。
如:165+93+35=93+(165+35)依據是什麼?
2、連減的性質:一個數連續減去兩個數,等於這個數減去那兩個數的和。
a-b-c=a-(b+c)
3、乘法運算定律:1、乘法交換律:兩個數相乘,交換因數的位置,積不變。
a × b = b × a
2、乘法結合律:三個數相乘,可以先把前兩個數相乘,再乘以第三個數,也可以先把後兩個數相乘,再乘以第一個數,積不變。
( a × b )× c = a × ( b × c )
乘法的這兩個定律往往結合起來一起使用。
如:125×78×8的簡算
3、乘法分配律:兩個數的和與一個數相乘,可以先把這兩個數分別與這兩個數相乘,再把積相加。(a+b)×c=a×c+b×c
4、連除的性質:一個數連續除以兩個數,等於除以這兩個數的積。
a ÷ b ÷ c = a ÷ ( b × c)
5、有關簡算的拓展:
102×38-38×2 125×25×32 125×88 3.25+1.98 10.32-1.98 37×96+37×3+37
易錯的情況:0.6+0.4-0.6+0.4 38×99+99
(四) 小數的意義和性質:
1、分母是10、100、1000……的分數可以用小數來表示。
2、小數是十進制分數的另一種表現形式。
3、小數的計數單位是十分之一、百分之一、千分之一……分別寫作0.1、0.01、0.001……
4、每相鄰兩個計數單位間的進率是10。
5、小數的讀寫法:讀法:整數部分按照整數讀法來讀,小數部分要順次讀出每一個數。
寫法:整數部分按照整數的寫法來寫,整數部分是0就寫0,小數部分依次寫出每一個數。
6.小數的性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。注意:小數中間的「0」不能去掉,取近似數時有一些末尾的「0」不能去掉。作用可以化簡小數等。
7.小數大小比較:先比較整數部分,整數部分相同比較十分位,十分位相同比較百分位,……
8.小數點位置移動引起小數大小變化規律:
小數點向右:移動一位,小數就擴大到原數的10倍;
移動兩位,小數就擴大到原數的100倍;
移動三位,小數就擴大到原數的1000倍;
……
小數點向左:移動一位,小數就縮小10倍,(小數就縮小為原數的 );
移動兩位,小數就縮小100倍,(小數就縮小為原數的 );
移動三位,小數就縮小1000倍,(小數就縮小為原數的 );
……
9.名數的改寫:1噸30千克+800克=( )噸
長度單位:千米 ¬¬———— 米 ———— 分米 ———— 厘米
面積單位:平方千米———公頃———平方米————平方分米———平方厘米
質量單位:噸————千克————克
10、求小數的近似數(四捨五入):(保留兩位小數與精確到百分位的提法)
保留整數,表示精確到個位,保留一位小數,表示精確到十分位,保留兩位小數,表示精確到百分位,取近似數時,小數末尾的0不能去掉。
大數的改寫。先改寫,再求近似數。注意:帶上單位。
(五) 三角形:
1、三角形的定義:由三條線段圍成的圖形(每相鄰兩條線段的端點相連或重合),叫三角形。
2、從三角形的一個頂點到它的對邊做一條垂線,頂點和垂足間的線段叫做三角形的高,這條對邊叫做三角形的底。重點:三角形高的畫法。
3、三角形的特性:1、物理特性:穩定性。如:自行車的三角架,電線桿上的三角架。
2、邊的特性:任意兩邊之和大於第三邊。
4、三角形的分類:
按照角大小來分:銳角三角形,直角三角形,鈍角三角形。
按照邊長短來分:三邊不等的△,等腰△(等邊三角形或正三角形是特殊的等腰△)。
等邊△的三邊相等,每個角是60度。(頂角、底角、腰、底的概念)
5、三角形的內角和等於180度。有關度數的計算以及格式。
6、圖形的拼組:兩個完全一樣的三角形一定能拼成一個平行四邊形。
7、密鋪:可以進行密鋪的圖形有長方形、正方形、三角形以及正六邊形等。
(六)小數的加減法:
1、 計演算法則:相同數位對齊(小數點對齊),按照整數計算方法進行計算,得數的小數點要和橫線上的小數的小數點對齊。結果是小數的要依據小數的性質進行化簡。
2、 豎式計算以及驗算。注意橫式上要寫上答案,不要寫成驗算的結果。
3、 整數的四則運算順序和運算定律在小數中同樣適用。(簡算)
(七)統計:
折線統計圖:是用一個單位長度表示一定的數量,根據數量的多少描出各點,再把各點用線段順次連接起來。
優點:不僅可以看出數量的多少,還可以看出數量的增減變化情況,預測今後的趨勢,對今後的生產和生活提供指導和幫助。
(八)數學廣角:植樹問題。
間隔數=總長度 ÷ 間隔長度
情況分類:1、兩端都植:棵數=間隔數+1
2、一端植,一端不植:棵數=間隔數
3、兩端都不植:棵數=間隔數-1
4、封閉:棵數=間隔數

Ⅵ 小學一到四年級學過哪些圖形的面積計算方法

有五種種方式 分別是:正方形面積公式a*a=s ,長方形面積公式a*b=s ,三角形面積公式(a*h)除以2 ,梯形面積公式(a+b)*h除以2,平行四邊形面積公式a*h

Ⅶ 人教版小學四年級數學下冊重點知識哪些

四則運算
1、加法、減法、乘法和除法統稱四則運算。
2、在沒有括弧的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計算。
3、在沒有括弧的算式里,有乘、除法和加、減法、要先算乘除法,再算加減法。
4、算式有括弧,要先算括弧裡面的,再算括弧外面的;括弧裡面的算式計算順序遵循以上的計算順序。
5、加法、減法、乘法和除法統稱為四則運算。
6、先乘除,後加減,有括弧,提前算
關於「0」的運算
1、「0」不能做除數; 字母表示:a÷0錯誤
2、一個數加上0還得原數; 字母表示:a+0= a
3、一個數減去0還得原數; 字母表示:a-0= a
4、被減數等於減數,差是0; 字母表示:a-a = 0
5、一個數和0相乘,仍得0; 字母表示:a×0= 0
6、0除以任何非0的數,還得0; 字母表示:0÷a(a≠0)= 0
7、0÷0得不到固定的商;5÷0得不到商.
位置與方向:
1、根據方向和距離確定或者繪制物體的具體地點。(比例尺、角的畫法和度量)
注意:1、比例尺2、正北方向3、角的畫法
2、位置間的相對性。會描述兩個物體間的相互位置關系。(觀測點的確定)
3、簡單路線圖的繪制。
4.地圖的三要素:圖例、方向、比例尺。
5.確定方向時:A、先確定觀測點
(1)從那裡出發,那裡就是觀測點。
(2)「在」字後面的為觀測點。
B站在觀測點來看方向。
例如:①東偏南25°(標25°的那個角就靠近東)
②西偏北35°(標35°的那個角就靠近西)
6.描述路線和繪路線圖時:只有一條線,所作的線是首尾相連的。
7.常用的八個方位:東、南、西、北、東南、東北、西南、西北。
運算定律及簡便運算:
一、加法運算定律:
1、加法交換律:兩個數相加,交換加數的位置,和不變。a+b=b+a
2、加法結合律:三個數相加,可以先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再加上第一個數,和不變。(a+b)+c=a+(b+c)
加法的這兩個定律往往結合起來一起使用。
如:165+93+35=93+(165+35)依據是什麼?
3、連減的性質:一個數連續減去兩個數,等於這個數減去那兩個數的和。a-b-c=a-(b+c)
二、乘法運算定律:
1、乘法交換律:兩個數相乘,交換因數的位置,積不變。a×b=b×a
2、乘法結合律:三個數相乘,可以先把前兩個數相乘,再乘以第三個數,也可以先把後兩個數相乘,再乘以第一個數,積不變。
( a×b )× c = a× (b×c )
乘法的這兩個定律往往結合起來一起使用。如:125×78×8的簡算
3、乘法分配律:兩個數的和與一個數相乘,可以先把這兩個數分別與這兩個數相乘,再把積相加。(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c
乘法分配律的應用:
①類型一:(a+b)×c (a-b)×c
= a×c+b×c = a×c-b×c
②類型二:a×c+b×c a×c-b×c
=(a+b)×c =(a-b)×c
③類型三:a×99+a a×b-a
= a×(99+1) = a×(b-1)
④類型四:a×99 a×102
= a×(100-1) = a×(100+2)
= a×100-a×1 = a×100+a×2
三、簡便計算
1.連加的簡便計算:
①使用加法結合律(把和是整十、整百、整千、的結合在一起)
②個位:1與9,2與8,3與7,4與6,5與5,結合。
③十位:0與9,1與8,2與7,3與6,4與5,結合。
2.連減的簡便計算:
①連續減去幾個數就等於減去這幾個數的和。如:106-26-74=106-(26+74)
②減去幾個數的和就等於連續減去這幾個數。如: 106-(26+74)=106-26-74
3.加減混合的簡便計算:
第一個數的位置不變,其餘的加數、減數可以交換位置(可以先加,也可以先減)
例如:123+38-23=123-23+38 146-78+54=146+54-78
4.連乘的簡便計算:
使用乘法結合律:把常見的數結合在一起 25與4;125與8 ;125與80 等。看見25就去找4,看見125就去找8;
5.連除的簡便計算:
①連續除以幾個數就等於除以這幾個數的積。
②除以幾個數的積就等於連續除以這幾個數。
6.乘、除混合的簡便計算:
第一個數的位置不變,其餘的因數、除數可以交換位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×13
四、連除的性質:一個數連續除以兩個數,等於除以這兩個數的積。a÷b÷c = a÷(b×c)
1、常見乘法計算:
25×4=100 125×8=1000
2、加法交換律簡算例子: 3、加法結合律簡算例子:
50+98+50 488+40+60
=50+50+98 =488+(40+60)
=100+98 =488+100
=198 =588
4、乘法交換律簡算例子: 5、乘法結合律簡算例子:
25×56×4 99×125×8
=25×4×56 =99×(125×8)
=100×56 =99×1000
=5600 =99000
6、含有加法交換律與結合律的簡便計算:
65+28+35+72
=(65+35)+(28+72)
=100+100
=200
7、含有乘法交換律與結合律的簡便計算:
25×125×4×8
=(25×4)×(125×8)
=100×1000
=100000
乘法分配律簡算例子:
1、分解式 2、合並式
25×(40+4) 135×12—135×2
=25×40+25×4 =135×(12—2)
=1000+100 =135×10
=1100 =1350
3、特殊1 4、特殊2
99×256+256 45×102
=99×256+256×1 =45×(100+2)
=256×(99+1) =45×100+45×2
=256×100 =4500+90
=25600 =4590

5、特殊3 6、特殊4
99×26 35×8+35×6—4×35
=(100—1)×26 =35×(8+6—4)
=100×26—1×26 =35×10
=2600—26 =350
=2574
一、 連續減法簡便運算例子:
528—65—35 528—89—128 528—(150+128)
=528—(65+35) =528—128—89 =528—128—150
=528—100 =400—89 =400—150
=428 =311 =250
二、 連續除法簡便運算例子:
3200÷25÷4
=3200÷(25×4)
=3200÷100
=32
三、 其它簡便運算例子:
256—58+44 250÷8×4
=256+44—58 =250×4÷8
=300—58 =1000÷8
=242 =125
五、有關簡算的拓展:
102×38-38×2125×25×32 125×88
37×96+37×3+37
易錯的情況: 38×99+99
小數的意義和性質:
1.小數的產生:在進行測量和計算時,往往不能正好得到整數的結果,這時常用小數來表示。
2、分母是10、100、1000……的分數可以用小數來表示。
3、小數是十進制分數的另一種表現形式。
4、小數的計數單位是十分之一、百分之一、千分之一……分別寫作0.1、0.01、0.001……
5、每相鄰兩個計數單位間的進率是10。
6、小數的數位是十分位、百分位、千分位……最高位是十分位。整數部分的最低位是個位。個位和十分位的進率是10。
7、 小數的數位順序表
整數部分 小數點 小數部分
數位 … 萬位 千位 百位 十位 個位 • 十分位 百分位 千分位 萬分位 …
計數單位 … 萬 千 百 十 一(個) 十分之一 百分之一 千分之一 萬分之一 …
(1)6.378的計數單位是0.001。(最低位的計數單位是整個數的計數單位)
(2)6.378中有6個一,3個十分之一(0.1),7個百分之一(0.01),
8個千分之一(0.001)。
(3)6.378中有(6378)個千分之一(0.001)。
(4)9.426中的4表示4個十分之一(0.1)[4在十分位]
8、小數的讀法:先讀整數部分(按照原來的讀法),再讀小數點,再讀小數部分。讀小數部分,小數部分要依次讀出每個數字,而且有幾個0就讀幾個0。
9、小數的寫法:先寫整數部分(按照原來的寫法),再寫小數點,再小數部分:寫小數部分,小數部分要依次寫出每個數字,而且有幾個0就寫幾個0。
10、小數的性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。注意:小數中間的「0」不能去掉,取近似數時有一些末尾的「0」不能去掉。作用可以化簡小數等。
11、小數的大小比較:(1) 先比較整數部分;(2)如果整數部分相同,就比較十分位;(3)十分位相同,就比較百分位;(4)以此類推,直到比較出大小。
12、小數點的移動
小數點向右移:
移動一位,小數就擴大到原數的10倍;
移動兩位,小數就擴大到原數的100倍;
移動三位,小數就擴大到原數的10 00倍;……
小數點向左移:
移動一位,小數就縮小10倍,即小數就縮小到原數的 ;
移動兩位,小數就縮小100倍,即小數就縮小到原數的 ;
移動三位,小數就縮小1000倍,即小數就縮小到原數的 ;……
13、生活中常用的單位:
質量: 1噸=1000千克; 1千克=1000克
長度: 1千米=1000米 1分米=10厘米 1厘米=10毫米
1分米=100毫米 1米=10分米=100厘米=1000毫米
面積: 1平方米= 100平方分米 1平方分米=100平方厘米
1平方千米=100公頃 1公頃=10000平方米
人民幣: 1元=10角 1角=10分 1元=100分
長度單位:千米 ¬¬———— 米 ———— 分米 ———— 厘米
面積單位:平方千米———公頃———平方米————平方分米———平方厘米
質量單位:噸————千克————克
單位換算:
(1)高級單位轉化成低級單位=======乘以進率,小數點向右移動。
(2)低級單位轉化成高級單位=======除以進率,小數點向左移動。
14、小數的近似數(用「四捨五入」的方法):
(1)保留整數,表示精確到個位,就是要把小數部分省略,要看十分位,如果十分位的數字大於或等於5則向前一位進一。如果小於五則舍。
(2)保留一位小數,表示精確到十分位,就要把第一位小數以後的部分全部省略, 這時要看小數的第二位,如果第二位的數字比5小則全部舍。反之,要向前一位進一。
(3)保留兩位小數,表示精確到百分位,就要把第二位小數以後的部分全部省略,這時要看小數的第三位,如果第三位的數字比5小則全部舍。反之,要向前一位進一。
(4)為了讀寫的方便,常常把不是整萬或整億的數改寫成用「萬」或「億」作單位的數。改寫成「萬」作單位的數就是小數點向左移4位,即在萬位的右邊點上小數點,在數的後面加上「萬」字。改寫成「億」作單位的數就是小數點往左移8位即在億位的右邊點上小數點,在數的後面加上「億」字。注意:帶上單位。然後再根據小數的性質把小數末尾的零去掉即可。
(5)在表示近似數時,小數末尾的「0」不能去掉。
三角形:
1、三角形的定義:由三條線段圍成的圖形(每相鄰兩條線段的端點相連或重合),叫三角形。
2、從三角形的一個頂點到它的對邊做一條垂線,頂點和垂足間的線段叫做三角形的高,這條對邊叫做三角形的底。三角形只有3條高。重點:三角形高的畫法。
3、三角形的特性:1、物理特性:穩定性。如:自行車的三角架,電線桿上的三角架。
4、邊的特性:任意兩邊之和大於第三邊。
5、為了表達方便,用字母A、B、C分別表示三角形的三個頂點,三角形可表示成三角形ABC。
6、三角形的分類:
按照角大小來分:銳角三角形,直角三角形,鈍角三角形。
按照邊長短來分:三邊不等的△,等腰△(等邊三角形或正三角形是特殊的等腰△)。
等邊△的三邊相等,每個角是60度。(頂角、底角、腰、底的概念)
7、三個角都是銳角的三角形叫做銳角三角形。
8、有一個角是直角的三角形叫做直角三角形。
9、有一個角是鈍角的三角形叫做鈍角三角形。
10、每個三角形都至少有兩個銳角;每個三角形都至多有1個直角;每個三角形都至多有1個鈍角。
11、兩條邊相等的三角形叫做等腰三角形。
12、三條邊都相等的三角形叫等邊三角形,也叫正三角形。
13、等邊三角形是特殊的等腰三角形
14、三角形的內角和等於180度。四邊形的內角和是360°有關度數的計算以及格式。
15、圖形的拼組:兩個完全一樣的三角形一定能拼成一個平行四邊形。
16、用2個相同的三角形可以拼成一個平行四邊形。
17、用2個相同的直角三角形可以拼成一個平行四邊形、一個長方形、一個大三角形。
18、用2個相同的等腰的直角的三角形可以拼成一個平行四邊形、一個正方形。一個大的等腰的直角的三角形。
19、密鋪:可以進行密鋪的圖形有長方形、正方形、三角形以及正六邊形等。
小數的加減法:
1、計演算法則:相同數位對齊(小數點對齊),按照整數計算方法進行計算,得數的小數點要和橫線上的小數的小數點對齊。結果是小數的要依據小數的性質進行化簡。
2、豎式計算以及驗算。注意橫式上要寫上答案,不要寫成驗算的結果。
3、整數的四則運算順序和運算定律在小數中同樣適用。(簡算)
統計:
1、條形統計圖優點:直觀地反映數量的多少。
2、折線統計圖優點:既可以反映數量的多少,又能反映數量的增減變化。
3、折線統計圖中,變化趨勢指:上升或者下降。
4、折線統計圖:是用一個單位長度表示一定的數量,根據數量的多少描出各點,再把各點用線段順次連接起來。
5、優點:不僅可以看出數量的多少,還可以看出數量的增減變化情況,預測今後的趨勢,對今後的生產和生活提供指導和幫助。
數學廣角:植樹問題
(一)植樹問題:
1、 兩端要栽:間隔數=總長÷間距;總長=間距×間隔數;棵數=間隔數+1;間隔數=棵數-1
2、 兩端不栽:間隔數=總長÷間距;總長=間距×間隔數;棵數=間隔數-1;間隔數=棵數+1
間隔數=總長度 ÷ 間隔長度
情況分類:1、兩端都植:棵數=間隔數+1
2、一端植,一端不植:棵數=間隔數
3、兩端都不植:棵數=間隔數-1
4、封閉:棵數=間隔數
(二)鋸木問題: 段數=次數+1; 次數=段數-1
總時間=每次時間×次數
(三)方陣問題: 最外層的數目是:邊長×4—4或者是(邊長-1)×4
整個方陣的總數目是:邊長×邊長
(四)封閉的圖形(例如圍成一個圓形、橢圓形):總長÷間距=間隔數;棵數=間隔數
(五)棋盤棋子數目:
1.棋盤最外層棋子數:每邊棋子數×邊數-邊數
2.棋盤總的棋子數:每行棋子數×每列棋子數
3.方陣最外層人數:每邊人數×4-4
4.多邊形上擺花盆:每邊擺的花盆數×邊數-邊數

Ⅷ 小學數學面積概念

面積:物體表面或平面圖形的大小,叫做它們的面積。例如:黑板的大小,指黑板的面積、三角形的大小,指三角形的面積等等。

Ⅸ 四年級下冊數學階梯面積如何計算,有公式嗎

這個圖畫的有問題,
每個階梯的高不相等,每個階梯的寬不相等,
這樣,面積是不確定的,不能計算。
如果都相當,就能計算了:
(3+3÷4)×3÷2=5.625

Ⅹ 關於所有小學數學圖形面積,體積公式

小學數學圖形計算公式 1 正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a 2 正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a 3 長方形 C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab 4 長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5 三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6 平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7 梯形 s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圓形 S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏ 9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高(4)體積=側面積÷2×半徑 10 圓錐體 v:體積 h:高 s;底面積 r:底面半徑 體積=底面積×高÷3