當前位置:首頁 » 基礎知識 » 高中數學科普動畫知識
擴展閱讀
什麼歌詞有我要找到你 2024-11-16 09:09:04
什麼歌詞含有愛你的甜 2024-11-16 08:59:42

高中數學科普動畫知識

發布時間: 2022-07-03 11:48:43

A. 動畫效果中有哪些常用的演算法或數學知識

普通應用演算法和機器學習人工智慧演算法。這兩類演算法的區別還是比較明顯的,對於普通應用演算法,主要包含像動態規劃、搜索演算法、數論、計算幾何、圖論演算法、數據結構演算法等等,對於機器學習人工智慧演算法,這是演算法工程師必會的演算法,主要包括自然語言處理,像LDA、張量分解、word2vec等,機器學習演算法,像決策樹、隨機森林、LR模型、SVM等等,還有一些深度學習演算法。

B. 高中數學科普書

感悟數學——讀《從一到無窮大》有感
曾聽一位奧數老師說過這么一句話:學數學,就猶如魚與網;會解一道題,就猶如捕捉到了一條魚,掌握了一種解題方法,就猶如擁有了一張網;所以,「學數學」與「學好數學」的區別就在與你是擁有了一條魚,還是擁有了一張網。
數學,是一門非常講究思考的課程,邏輯性很強,所以,總會讓人產生錯覺。
數學中的幾何圖形是很有趣的,每一個圖形都互相依存,但也各有千秋。例如圓。計算圓的面積的公式是s=πr²,因為半徑不同,所以我們經常會犯一些錯。例如,「一個半徑為9厘米和一個半徑為6厘米的比薩餅等於一個半徑為15厘米的比薩餅」,在命題上,這道題目先迷惑大家,讓人產生錯覺,巧妙地運用了圓的面積公式,讓人產生了一個錯誤的天平。
其實,半徑為9厘米和一個半徑為6厘米的比薩餅並不等於一個半徑為15厘米的比薩餅,因為半徑為9厘米和一個半徑為6厘米的比薩餅的面積是s=πr²=9²π+6²π=117π,而半徑為15厘米的比薩餅的面積是s=πr²=15²π=225π,所以,半徑為9厘米和一個半徑為6厘米的比薩餅是不等於一個半徑為15厘米的比薩餅的。
數學,就像一座高峰,直插雲霄,剛剛開始攀登時,感覺很輕松,但我們爬得越高,山峰就變得越陡,讓人感到恐懼,這時候,只有真正喜愛數學的人才會有勇氣繼續攀登下去,所以,站在數學的高峰上的人,都是發自內心喜歡數學的。
記住,站在峰腳的人是望不到峰頂的。

C. 高中數學所有知識點歸納

高中數學基礎知識梳理(數學小飛俠)

鏈接:

提取碼:9bdp復制這段內容後打開網路網盤手機App,操作更方便哦

若資源有問題,歡迎追問~

D. 高中數學基礎知識匯總[經典版]

鏈接:

提取碼:9bdp

高中數學基礎知識梳理(數學小飛俠)

E. 高中數學知識點總結

《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載

鏈接:

提取碼: i8i2

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

F. 有趣的數學科普小知識有哪些

有趣的數學科普小知識有:莫比烏斯環、克萊因瓶、黃金分割、斐波納契螺旋線、繆勒萊耶錯覺。

莫比烏斯環是一種拓撲學結構,它只有一個面和一個邊界。可以用一根紙條扭轉成180度後,兩頭再粘接起來,就形成了莫比烏斯環。莫比烏斯環沿著中線剪開,第一次,可以得到一個更大的環;

第二次及以後,每次都會得到兩個互相嵌套的環。中間永遠不會斷開,這也是莫比烏斯環的神奇之處。

科普知識涵蓋了科學領域的各個方面,無論是物理、化學、生物各個學科,還是日常生活無不涉及到科普知識。由於其范圍的廣泛性,奠定了科普知識的重要意義和影響。

科普知識的重要意義必然要求我們的科普教育必須與時俱進的與我們所提倡的素質教育同行。同步發展。使科普知識,科普教育真正意義上走進人們的生活。科普知識的意義和影響必將是深遠的、長久的。

G. 如果高中數學有一套教學動畫,主要是形象記憶,增強興趣的。你們會喜歡么

當然會喜歡,畢竟這增加了課堂趣味性,也方便記憶,不然數學會覺得枯燥無味

H. 有趣的數學科普小知識有哪些

有趣的數學科普小知識如下:

一、阿拉伯數字

阿拉伯數字是古代印度人發明的,後來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發明的,就把它們叫做「阿拉伯數字」。因為流傳了許多年,人們叫得順口,所以至今人們仍然將錯就錯,把這些古代印度人發明的數字元號叫做阿拉伯數字。

二、九九歌

九九歌就是我們現在使用的乘法口訣。遠在公元前的春秋戰國時代,九九歌就已經被人們廣泛使用。在當時的許多著作中,都有關於九九歌的記載。最初的九九歌是從「九九八十一」起到「二二如四」止,共36句。因為是從「九九八十一」開始,所以取名九九歌。

大約在公元五至十世紀間,九九歌才擴充到「一一如一」。大約在公元十三、十四世紀,九九歌的順序才變成和現在所用的一樣,從「一一如一」起到「九九八十一」止。現在我國使用的乘法口訣有兩種,一種是45句的,通常稱為「小九九」;還有一種是81句的,通常稱為「大九九」。

三、莫比烏斯環

莫比烏斯環是一種拓撲學結構,它只有一個面和一個邊界。可以用一根紙條扭轉成180度後,兩頭再粘接起來,就形成了莫比烏斯環。

莫比烏斯環沿著中線剪開,第一次,可以得到一個更大的環;第二次及以後,每次都會得到兩個互相嵌套的環。中間永遠不會斷開,這也是莫比烏斯環的神奇之處。

四、克萊因瓶

在1882年,著名數學家菲利克斯·克萊因發現了後來以他的名字命名的著名「瓶子」:克萊因瓶。克萊因瓶就像是一個瓶子,但是它沒有瓶底,它的瓶頸被拉長,然後似乎是穿過了瓶壁,最後瓶頸和瓶底圈連在了一起。有趣的是,如果把克萊因瓶沿著它的對稱線切下去,竟會得到兩個莫比烏斯環。

五、黃金分割

黃金分割提出者是畢達哥拉斯。

有一次,畢達哥拉斯路過鐵匠作坊,被叮叮當當的打鐵聲迷住了。為了揭開這些聲音的秘密,他測量了鐵錘和鐵砧的尺寸,發現它們存在著十分和諧的比例關系。回家後,他取出一根線,分為兩段,反復比較,最後認定1:0.618的比例最為優美。這個比例被公認為是最能引起美感的比例,因此被稱為黃金分割。