當前位置:首頁 » 基礎知識 » 初一數學第一章知識點
擴展閱讀
日本動漫文化如何輸出 2025-01-11 22:29:38
老師如何教育網戀的人 2025-01-11 22:08:07

初一數學第一章知識點

發布時間: 2022-03-14 01:02:28

Ⅰ 人教版初一數學上冊知識點

第一章 有理數
1.1 正數和負數
閱讀與思考 用正負數表示加工允許誤差
1.2 有理數
1.3 有理數的加減法
實驗與探究 填幻方
閱讀與思考 中國人最先使用負數
1.4 有理數的乘除法
觀察與思考 翻牌游戲中的數學道理
1.5 有理數的乘方
數學活動
小結
復習題1
第二章 整式的加減
2.1 整式
閱讀與思考 數字1與字母X的對話
2.2 整式的加減
信息技術應用 電子表格與數據計算
數學活動
小結
復習題2
第三章 一元一次方程
3.1 從算式到方程
閱讀與思考 「方程」史話
3.2 解一元一次方程(一)——合並同類項與移項
實驗與探究 無限循環小數化分數
3.3 解一元一次方程(二)——去括弧與去分母
3.4 實際問題與一元一次方程
數學活動
小結
復習題3
第四章 圖形認識初步
4.1 多姿多彩的圖形
閱讀與思考 幾何學的起源
4.2 直線、射線、線段
閱讀與思考 長度的測量
4.3 角
4.4 課題學習 設計製作長方體形狀的包裝紙盒

Ⅱ 初一上學期數學知識點歸納

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

Ⅲ 初一數學各章的大概知識點 第一章有哪些第二章有哪些.希望給弄清楚些!

年級(上)數學知識點歸納與總結一、 知識梳理 知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3

Ⅳ 初一數學上冊知識點

第一章
1.1 正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。

1.2 有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3 有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。

1.4 有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。 mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。

第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

2.2 從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號後移到另一邊,叫做移項。

第三章 圖形認識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。

3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的餘角相等。

Ⅳ 初一數學第一章復習要點

俊狼獵英團隊為您解答

一個工具:數軸;
兩個符號:負號、絕對值符號;
五個概念:負數、有理數、相反數、絕對值、非負數;(倒數小學就有)
五種運算:加、減、乘、除、乘方;
科學記數法、有效數字。
運算不說, 所有概念中基本都與數軸有關:
⑴有理數都羅列在數軸上,可以用來有理數的一種分類(正數、0、負數),可看出相反數,可看出絕對值的意義,可比較大小(右邊的數比左邊的大)。
⑵倒數是小學的繼續。
⑶運算注意計算的順序。

提供一組練習:(概念辨析方面)
有理數的分類
判斷正誤:
一個有理數非正即負。
一個有理數不是整數就是分數
有理數指整數、分數、正有理數、負有理數和零這五類數
有理數是自然數和負數這兩類數的統稱。
①|2|=__,|-2|=___,|0|=__
②用自然語言說出絕對值的意義
③用字母表示絕對值的意義
④絕對值的幾何意義
如果|x|=2,則x=__,|x|=-2,x=____
一個數的相反數是正數,這個數一定是( )
數軸上有一點到原點距離為5,這點表示數( )
絕對值等於4的數是( ),絕對值小於3的整數是( )
任何有理數的絕對值都是正數,對嗎?
任何有理數的絕對值不都是正數,對嗎?
任何有理數的絕對值都不是正數,對嗎?
例題:
①若a是有理數,則-a是( )
是負數,B)不是負數,C)是a的相反數,D)不等於0.
②如果兩個數的差是正數,那麼這兩個數()
A)都是正數,B)都不是正數,C)不都是正數,D)以上都有可能。
③若ab=0,則()
A)a一定是0,B)b一定是0,C)a是0或b是0,D)a、b中至少一個是0。
④若|a|+|b|=0,那麼
A)a=0,B)b=0,C)a=0或b=0,D)a=0且b=0.
練習:
1、一個數a與原點的距離叫做該數的___________
2、互為相反數的兩個數的絕對值_________
3、一個數的絕對值越小,則該數在數軸上所對應的點,離原點越___________
4、-的絕對值是_________
5、絕對值最小的數是_________
6、絕對值等於5的數是___________,它們互為_____________
7、若b<0且a = | b | ,則 a 與 b的關系是____________
8、如果 | a | = -a ,那麼 a ______0
9、如果 | a | = a ,那麼 a ______0
10,已知 | a-2 | + |b+3 | + | c+5 | = 0,
則 a =_____,b =_______,c = _______
11、_______的倒數是它本身,_______的絕對值是它本身。
12、a+b=0,則a與b_______、
13,絕對值是2的數有_____個,它們是_____。
14、相反數等於它本身的數是________
15、-3.5的倒數是_____, 相反數是______.
17、若|b+1|=3,則b=( )
(A)2 (B)- 4 (C)2 或- 4 (D)以上答案都不對
18、下列說法不正確的是 ( )
(A)0既不是正數,也不是負數 (B) 1是絕對值最小的數
(C)一個有理數不是整數就是分數 (D)0的絕對值是0
19、絕對值小於3的所有整數的和是( )
(A)3 (B)-3 (C)0 (D)6
20、一個有理數的倒數是它本身,這個數是( )
(A)0 (B) 1 (C) (D)1或-1
21、若|x+2|=-a,則a 是 ( )
A.0 B.正數 C.負數 D.負數或0
22.在數軸上表示的兩個數中, _______的數總比________的數大。

Ⅵ 初一下數學第一章的知識點

第一章 整式的運算
一. 整式
※1. 單項式
①由數與字母的積組成的代數式叫做單項式。單獨一個數或字母也是單項式。
②單項式的系數是這個單項式的數字因數,作為單項式的系數,必須連同數字前面的性質符號,如果一個單項式只是字母的積,並非沒有系數.
③一個單項式中,所有字母的指數和叫做這個單項式的次數.
※2.多項式
①幾個單項式的和叫做多項式.在多項式中,每個單項式叫做多項式的項.其中,不含字母的項叫做常數項.一個多項式中,次數最高項的次數,叫做這個多項式的次數.
②單項式和多項式都有次數,含有字母的單項式有系數,多項式沒有系數.多項式的每一項都是單項式,一個多項式的項數就是這個多項式作為加數的單項式的個數.多項式中每一項都有它們各自的次數,但是它們的次數不可能都作是為這個多項式的次數,一個多項式的次數只有一個,它是所含各項的次數中最高的那一項次數.
※3.整式單項式和多項式統稱為整式.

二. 整式的加減
¤1. 整式的加減實質上就是去括弧後,合並同類項,運算結果是一個多項式或是單項式.
¤2. 括弧前面是「-」號,去括弧時,括弧內各項要變號,一個數與多項式相乘時,這個數與括弧內各項都要相乘.
三. 同底數冪的乘法
※同底數冪的乘法法則: (m,n都是正數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
①法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
②指數是1時,不要誤以為沒有指數;
③不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;
④當三個或三個以上同底數冪相乘時,法則可推廣為 (其中m、n、p均為正數);
⑤公式還可以逆用: (m、n均為正整數)
四.冪的乘方與積的乘方
※1. 冪的乘方法則: (m,n都是正數)是冪的乘法法則為基礎推導出來的,但兩者不能混淆.
※2. .
※3. 底數有負號時,運算時要注意,底數是a與(-a)時不是同底,但可以利用乘方法則化成同底,
如將(-a)3化成-a3

※4.底數有時形式不同,但可以化成相同。
※5.要注意區別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※6.積的乘方法則:積的乘方,等於把積每一個因式分別乘方,再把所得的冪相乘,即 (n為正整數)。
※7.冪的乘方與積乘方法則均可逆向運用。
五. 同底數冪的除法
※1. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
※2. 在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,
④運算要注意運算順序.
六. 整式的乘法
※1. 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
①積的系數等於各因式系數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將系數相乘與指數相加混淆;
②相同字母相乘,運用同底數的乘法法則;
③只在一個單項式里含有的字母,要連同它的指數作為積的一個因式;
④單項式乘法法則對於三個以上的單項式相乘同樣適用;
⑤單項式乘以單項式,結果仍是一個單項式。
※2.單項式與多項式相乘
單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
單項式與多項式相乘時要注意以下幾點:
①單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;
②運算時要注意積的符號,多項式的每一項都包括它前面的符號;
③在混合運算時,要注意運算順序。
※3.多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合並同類項之前,積的項數應等於原兩個多項式項數的積;
②多項式相乘的結果應注意合並同類項;
③對含有同一個字母的一次項系數是1的兩個一次二項式相乘 ,其二次項系數為1,一次項系數等於兩個因式中常數項的和,常數項是兩個因式中常數項的積。對於一次項系數不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得到
七.平方差公式
¤1.平方差公式:兩數和與這兩數差的積,等於它們的平方差,
※即 。
¤其結構特徵是:
①公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;
②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
八.完全平方公式
¤1. 完全平方公式:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,
¤即 ;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2.結構特徵:
①公式左邊是二項式的完全平方;
②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
¤3.在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現 這樣的錯誤。
九.整式的除法
¤1.單項式除法單項式
單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
¤2.多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。

第二章 平行線與相交線
一.檯球桌面上的角
※1.互為餘角和互為補角的有關概念與性質
如果兩個角的和為90°(或直角),那麼這兩個角互為餘角;
如果兩個角的和為180°(或平角),那麼這兩個角互為補角;
注意:這兩個概念都是對於兩個角而言的,而且兩個概念強調的是兩個角的數量關系,與兩個角的相互位置沒有關系。
它們的主要性質:同角或等角的餘角相等;
同角或等角的補角相等。
二.探索直線平行的條件
※兩條直線互相平行的條件即兩條直線互相平行的判定定理,共有三條:
①同位角相等,兩直線平行;
②內錯角相等,兩直線平行;
③同旁內角互補,兩直線平行。
三.平行線的特徵
※平行線的特徵即平行線的性質定理,共有三條:
①兩直線平行,同位角相等;
②兩直線平行,內錯角相等;
③兩直線平行,同旁內角互補。
四.用尺規作線段和角
※1.關於尺規作圖
尺規作圖是指只用圓規和沒有刻度的直尺來作圖。
※2.關於尺規的功能
直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。
圓規的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為圓心,任意長度為半徑畫一段弧。
第三章生活中的數據
※1.科學記數法:對任意一個正數可能寫成a×10n的形式,其中1≤a<10,n是整數,這種記數的方法稱為科學記數法。
¤2.利用四捨五入法取一個數的近似數時,四捨五入到哪一位,就說這個近似數精確到哪一位;對於一個近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數字都叫做這個數的有效數字。
¤3.統計工作包括:
①設定目標;②收集數據;③整理數據;④表達與描述數據;⑤分析結果。

第四章 概率
¤1.隨機事件發生與不發生的可能性不總是各佔一半,都為50%。
※2.現實生活中存在著大量的不確定事件,而概率正是研究不確定事件的一門學科。
※3.了解必然事件和不可能事件發生的概率。
必然事件發生的概率為1,即P(必然事件)=1;不可能事件發生的概率為0,即P(不可能事件)=0;如果A為不確定事件,那麼0<P(A)<1

※4.了解幾何概率這類問題的計算方法
事件發生概率=
第五章 三角形
一.認識三角形
1.關於三角形的概念及其按角的分類
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
這里要注意兩點:
①組成三角形的三條線段要「不在同一直線上」;如果在同一直線上,三角形就不存在;
②三條線段「首尾是順次相接」,是指三條線段兩兩之間有一個公共端點,這個公共端點就是三角形的頂點。
三角形按內角的大小可以分為三類:銳角三角形、直角三角形、鈍角三角形。
2.關於三角形三條邊的關系
根據公理「連結兩點的線中,線段最短」可得三角形三邊關系的一個性質定理,即三角形任意兩邊之和大於第三邊。
三角形三邊關系的另一個性質:三角形任意兩邊之差小於第三邊。
對於這兩個性質,要全面理解,掌握其實質,應用時才不會出錯。
設三角形三邊的長分別為a、b、c則:
①一般地,對於三角形的某一條邊a來說,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三條線段才能構成三角形;
②特殊地,如果已知線段a最大,只要滿足b+c>a,那麼a、b、c三條線段就能構成三角形;如果已知線段a最小,只要滿足|b-c|<a,那麼這三條線段就能構成三角形。
3.關於三角形的內角和
三角形三個內角的和為180°
①直角三角形的兩個銳角互余;
②一個三角形中至多有一個直角或一個鈍角;
③一個三角中至少有兩個內角是銳角。
4.關於三角形的中線、高和中線
①三角形的角平分線、中線和高都是線段,不是直線,也不是射線;
②任意一個三角形都有三條角平分線,三條中線和三條高;
③任意一個三角形的三條角平分線、三條中線都在三角形的內部。但三角形的高卻有不同的位置:銳角三角形的三條高都在三角形的內部,如圖1;直角三角形有一條高在三角形的內部,另兩條高恰好是它兩條邊,如圖2;鈍角三角形一條高在三角形的內部,另兩條高在三角形的外部,如圖3。
④一個三角形中,三條中線交於一點,三條角平分線交於一點,三條高所在的直線交於一點。
二.圖形的全等
¤能夠完全重合的圖形稱為全等形。全等圖形的形狀和大小都相同。只是形狀相同而大小不同,或者說只是滿足面積相同但形狀不同的兩個圖形都不是全等的圖形。
四.全等三角形
¤1.關於全等三角形的概念
能夠完全重合的兩個三角形叫做全等三角形。互相重合的頂點叫做對應點,互相重合的邊叫做對應邊,互相重合的角叫做對應角
所謂「完全重合」,就是各條邊對應相等,各個角也對應相等。因此也可以這樣說,各條邊對應相等,各個角也對應相等的兩個三角形叫做全等三角形。
※2.全等三角形的對應邊相等,對應角相等。
¤3.全等三角形的性質經常用來證明兩條線段相等和兩個角相等。
五.探三角形全等的條件
※1.三邊對應相等的兩個三角形全等,簡寫為「邊邊邊」或「SSS」
※2.有兩邊和它們的夾角對應相等的兩個三角形全等,簡寫成「邊角邊」或「SAS」
※3.兩角和它們的夾邊對應相等的兩個三角形全等,簡寫成「角邊角」或「ASA」
※4.兩角和其中一個角的對邊對應相等的兩個三角形全等,簡寫成「角角邊」或「AAS」
六.作三角形
1.已知兩個角及其夾邊,求作三角形,是利用三角形全等條件「角邊角」即(「ASA」)來作圖的。
2.已知兩條邊及其夾角,求作三角形,是利用三角形全等條件「邊角邊」即(「SAS」)來作圖的。
3.已知三條邊,求作三角形,是利用三角形全等條件「邊邊邊」即(「SSS」)來作圖的。
八.探索直三角形全等的條件
※1.斜邊和一條直角邊對應相等的兩個直角三角形全等。簡稱為「斜邊、直角邊」或「HL」。這只對直角三角形成立。
※2.直角三角形是三角形中的一類,它具有一般三角形的性質,因而也可用「SAS」、「ASA」、「AAS」、「SSS」來判定。
直角三角形的其他判定方法可以歸納如下:
①兩條直角邊對應相等的兩個直角三角形全等;
②有一個銳角和一條邊對應相等的兩個直角三角形全等。
③三條邊對應相等的兩個直角三角形全等。

第七章 生活中的軸對稱
※1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
※2.角平分線上的點到角兩邊距離相等。
※3.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
※4.角、線段和等腰三角形是軸對稱圖形。
※5.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
※6.軸對稱圖形上對應點所連的線段被對稱軸垂直平分。
※7.軸對稱圖形上對應線段相等、對應角相等。

(註:※表示重點部分;¤表示了解部分;◎表示僅供參閱部分;)

Ⅶ 初一數學知識點

初一數學概念
實數:
—有理數與無理數統稱為實數。
有理數:
整數和分數統稱為有理數。
無理數:
無理數是指無限不循環小數。
自然數:
表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數。
數軸:
規定了圓點、正方向和單位長度的直線叫做數軸。
相反數:
符號不同的兩個數互為相反數。
倒數:
乘積是1的兩個數互為倒數。
絕對值:
數軸上表示數a的點與圓點的距離稱為a的絕對值。一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0。

數學定理公式
有理數的運演算法則
⑴加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
⑵減法法則:減去一個數,等於加上這個數的相反數。
⑶乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0。
⑷除法法則:除以一個數等於乘上這個數的倒數;兩數相除,同號得正,異號得負,並把絕對值相除;0除以任何一個不等於0的數,都得0。
角的平分線:從角的一個頂點引出一條射線,能把這個角平均分成兩份,這條射線叫做這個角的角平分線。
數學第一章相交線

一、鄰補角:兩條直線相交所成的四個角中,有公共頂點,並且有一條公共邊,這樣的角叫做鄰補角。鄰補角是一種特殊位置關系和數量關系的角,即鄰補角一定是補角,但補角不一定是鄰補角。

二、對頂角:是兩條直線相交形成的。兩個角的兩邊互為反向延長線,因此對頂角也可以說成「把一個角的兩邊反向延長而形成的兩個角叫做對頂角」。

對頂角的性質:對頂角相等。

三、垂直

1、垂直:兩條直線所成的四個角中,有一個是直角時,就說這兩條直線互相垂直。其中一條叫做另一條的垂線,它們的交點叫做垂足。記做a⊥b

垂直是相交的一種特殊情形。

2、垂線的性質:

①過一點有且只有一條直線與已知直線垂直;

②連接直線外一點與直線上各點的所有線段中,垂線段最短。

直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

3、畫法:①一靠(已知直線)②二過(定點)③三畫(垂線)

4、空間的垂直關系

四、平行線

1、 平行線:在同一平面內,不相交的兩條直線叫做平行線。記做a‖b

2、 「三線八角」:兩條直線被第三條直線所截形成的

① 同位角:「同方同位」即在兩條直線的上方或下方,在第三條直線的同一側。

② 內錯角:「之間兩側」即在兩條直線之間,在第三條直線的兩側。

③ 同旁內角「之間同旁」即在兩條直線之間,在第三條直線的同旁。

3、 平行公理:經過直線外一點,有且只有一條直線與這條直線平行

平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

4、 平行線的判定方法

① 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行;

② 兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行;

③ 兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行;

④ 平行於同一條直線的兩條直線平行;

⑤ 垂直於同一條直線的兩條直線平行。

5、 平行線的性質:

①兩條平行線被第三條直線所截,同位角相等;

②兩條平行線被第三條直線所截,內錯角相等;

③兩條平行線被第三條直線所截,同旁內角互補。

6、 兩條平行線的距離:同時垂直於兩條平行線並且夾在這兩條平行線間的線段的長度,叫做這兩條平行線的距離。

7、 命題:判斷一件事情的語句,叫做命題,由題設和結論兩部分組成。

五平移

1、平移:在平面內將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

說明:①、平移不改變圖形的形狀和大小,改變圖形的位置;②「將一個圖形沿某個方向移動一定的距離」意味著「圖形上的每一點都沿著同一方向移動了相同的距離 」這也是判斷一種運動是否為平移的關鍵。③圖形平移的方向,不一定是水平的

2、平移的性質:經過平移,對應線段、對應角分別相等,對應點所連的線段平行且相等。

Ⅷ 初一上學期數學知識點

第一章
1.1
正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative
number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive
number)(根據需要,有時在正數前面也加上「+」)。
1.2
有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational
number)。
通常用一條直線上的點表示數,這條直線叫數軸(number
axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite
number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute
value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3
有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。
1.4
有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。

求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base
number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant
digit)。
第二章
一元一次方程
2.1
從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear
equation
with
one
unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
2.2
從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號後移到另一邊,叫做移項。
第三章
圖形認識初步
3.1
多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。
3.2
直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
3.3
角的度量
1度=60分
1分=60秒
1周角=360度
1平角=180度
3.4
角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary
angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary
angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的餘角相等。

Ⅸ 初一數學各章的大概知識點

我這里沒書 你可以把書上例題搞懂就差不多了