當前位置:首頁 » 基礎知識 » 數學物理知識點圖片
擴展閱讀
ug軟體怎麼取消掉經典 2024-11-16 10:21:44

數學物理知識點圖片

發布時間: 2022-07-03 01:55:56

㈠ 誰有初中人教版數學物理化學全部知識點,,多謝,急用

初中數學合集網路網盤下載

鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234 提取碼:1234

簡介:初中數學優質資料下載,包括:試題試卷、課件、教材、視頻、各大名師網校合集。

㈡ 初中化學,物理,數學,知識點總結大全

書店有一本初中數理化知識大全,包括重點知識和公式,也不貴,買一本比較合適。

㈢ 語文、數學、外語、物理、化學全科知識點講解及知識總結的電子書,初中、高中內容

初中全科知識清單資料(貝殼課堂)

https://pan..com/s/153G9pWT8FnIzxKvH3NR4cw

?pwd=y6h3 提取碼: y6h3

初中全科知識清單資料(貝殼課堂)|初中政治:中考政治高頻考點知識大匯總!(貝殼初中課堂).pdf|初中語文:四大名著文學常識經典100題,年年都在考2(貝殼初中課堂).pdf|初中英語最重要的530個高頻詞(貝殼初中課堂).pdf|初中英語語法歸納(貝殼初中課堂).pdf|初中物理:57個容易被理解錯誤的常考知識點,收藏!(貝殼初中課堂).pdf|初中物理(貝殼初中課堂).pdf|初中數學:初中三年知識點口訣匯總,查漏補缺必備!(貝殼初中課堂).pdf|初中生物:初中生物實踐總結,史上最全(貝殼初中課堂).pdf|初中歷史:10張圖表幫你快速歸納整理初中歷史知識點(貝殼初中課堂).pdf|初中化學:初中化學知識點最全總結!(貝殼初中課堂).pdf|20張初中地理知識思維導圖(貝殼初中課堂).pdf

㈣ 符號 數學物理中的特殊符號

①Αα:阿爾法 Alpha

角加速度描述剛體角速度的大小和方向對時間變化率的物理量,在國際單位制中,單位是「弧度/秒平方」,通常是用希臘字母α來表示。

② β:貝塔 Beta

磁通量感應系數通常稱為自感和電感與線圈的長度,橫截面積,匝數的多少和密疏,有無鐵芯或電磁鐵的插入都有關 。長度越長,面積越大,匝數多且密,有鐵芯插入時,自感系數L都會增加

③ γ:伽瑪 Gamma

γ射線,又稱γ粒子流,是原子核能級躍遷退激時釋放出的射線,是波長短於0.01埃的電磁波。γ射線有很強的穿透力,工業中可用來探傷或流水線的自動控制。γ射線對細胞有殺傷力,醫療上用來治療腫瘤。

④Δ δ:德爾塔 Delte

在物理學中,表示物理量的變化,如Q=cmΔt(式中Q代表熱量,c代表物質的比熱容,m代表物質的質量,Δt代表溫度的變化量)。

⑤Ε ε:艾普西龍 Epsilon

一個導體的介電常數;也是德國物理學家普朗克能量量子化假說中的最小能量值ε(叫能量子)。

(4)數學物理知識點圖片擴展閱讀

能量(energy)是物質的時空分布可能變化程度的度量,用來表徵物理系統做功的本領。現代物理學已明確了質量與能量之間的數量關系,即愛因斯坦的質能關系式:E=MC²。

能量的單位與功的單位相同,在國際單位制中是焦耳(J)。在原子物理學、原子核物理學、粒子物理學等領域中常用電子伏(eV)作為單位,1電子伏=1.602,18×10-19焦。物理領域,也用爾格(erg)作為能量單位,1爾格=10-7焦。

能量以多種不同的形式存在;按照物質的不同運動形式分類,能量可分為機械能、化學能、熱能、電能、輻射能、核能、光能、潮汐能等。這些不同形式的能量之間可以通過物理效應或化學反應而相互轉化 。各種場也具有能量。

能量的英文「energy」一字源於希臘語:ἐνέργεια,該字首次出現在公元前4世紀亞里士多德的作品中。伽利略時代已出現了「能量」的思想,但還沒有「能」這一術語。

能量概念出自於17世紀萊布尼茨的「活力」想法,定義於一個物體質量和其速度的平方的乘積,相當於今天的動能的兩倍。為了解釋因摩擦而令速度減緩的現象,萊布尼茨的理論認為熱能是由物體內的組成物質隨機運動所構成,而這種想法和牛頓一致,雖然這種觀念過了一個世紀後才被普遍接受。

能量(Energy)這個詞是托馬斯·楊於1807年在倫敦國王學院講自然哲學時引入的,針對當時的「活力」或「上升力」的觀點,提出用「能量」這個詞表述,並和物體所作的功相聯系,但未引起重視,人們仍認為不同的運動中蘊藏著不同的力。

1831年法國學者科里奧利又引進了力做功的概念,並且在「活力」前加了1/2系數,稱為動能,通過積分給出了功與動能的聯系。1853年出現了「勢能」,1856年出現了「動能」這些術語。直到能量守恆定律被確認後 ,人們才認識到能量概念的重要意義和實用價值。

參考資料

能量(物理學名詞)_網路

㈤ 高中理科 數學 物理 化學 生物 各科總復習知識點總結

上課認真聽講,課後多練習。
數學:
課本上講的定理,你可以自己試著自己去推理。這樣不但提高自己的證明能力,也加深對公式的理解。還有就是大量練習題目。基本上每課之後都要做課余練習的題目(不包括老師的作業)。數學成績的提高,數學方法的掌握都和同學們良好的學習習慣分不開的,因此.良好的數學學習習慣包括:聽講、閱讀、探究、作業.聽講:應抓住聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好筆記.每堂課結束以後應深思一下進行歸納,做到一課一得.閱讀:閱讀時應仔細推敲,弄懂弄通每一個概念、定理和法則,對於例題應與同類參考書聯系起來一同學習,博採眾長,增長知識,發展思維.探究:要學會思考,在問題解決之後再探求一些新的方法,學會從不同角度去思考問題,甚至改變條件或結論去發現新問題,經過一段學習,應當將自己的思路整理一下,以形成自己的思維規律.作業:要先復習後作業,先思考再動筆,做會一類題領會一大片,作業要認真、書寫要規范,只有這樣腳踏實地,一步一個腳印,才能學好數學.總之,在學習數學的過程中,要認識到數學的重要性,充分發揮自己的主觀能動性,從小的細節注意起,養成良好的數學學習習慣,進而培養思考問題、分析問題和解決問題的能力,最終把數學學好.
化學:
主要是記一些性質, 寫方程式類的。文字性的東西,看一看記一記可以。理論的東西,關鍵就是理解,理解了,你就會了,就能做到舉一反三。例如化學方程式,要寫出一個正確的化學方程式,首先你必須要寫得出每一種反應物和生成物的化學式,要想寫出正確的化學式,就必須要搞清楚化合價。如果光靠死記硬背,到考試的時候,還是容易忘記,理解才是最重要的。所以你就要去記,多練習題,如選擇題,老師給出一些特殊的性質讓你來選,所以多練習可以無形幫助你記憶。光記的效果是不好的。對於那些特殊物質的性質,你練習的多了,自然就記住了。大題是推理,寫方程式,有了好的基礎你就不怕了。
物理:
主要是對概念和公式的理解。對於概念,一定要好好把握,多做選擇題對你對概念的理解把握有好處。但你做題時一定要認真對待每一題,弄懂每個選項。計算題就是准確的運用公式了。所以要對公式的意義特別了解。多練習,其中的題其實雷同很多。
生物:
對生物課的學習不能按照數理化的學習方法來學習,學習方法上應該和地理有點類似。數理化一節課上講解的知識點不多,對一個重點知識會反復的在課堂上做題訓練。而生物一節課上的知識點很多,可以不誇張的說,老師說得每一句話都有可能是一個考點。而且課時緊張,不能在課堂上鞏固練習。所以課後的練習一定要認真做,有不懂的要馬上問。 生物的題目從一開始就比較具有綜合性,一個題目會涉及到許多知識點。這種知識點的聯系就是老師在課堂上強調的或者是補充的,很多學生不聽課,自己看書,結果書看了,題不會做。也有學生上課只聽課本上有的內容,課本上沒的以為是不重要的,就沒聽。這些都應該避免。
學習生物課的要求和方法:
1.學習生物學知識要重在理解,勤於思考。
2.要重視理解科學研究的過程和方法,認真進行觀察和實驗 。
3.要重視理論聯系實際 。
總之,是個積累的過程,你了解的越多,學習就越好,所以多記憶,選擇自己的方法。祝學習成功!

㈥ 求中考數學物理英語和語文的中考知識點總匯

數學

初中代數是使學生在小學數學的基礎上,把數的范圍從非負有理數擴充到有理數、實數;通過用字母表示數,學習代數式、方程和不等式、函數等,學習一些常用的數據處理方法算表或計算器的使用方法;發展對於數量關系的認識和抽象概括的思維,提高運算能力。

初中代數的教學要求①是:

1.使學生了解有理數、實數的有關概念,熟練掌握有理數的運演算法則,靈活運用運算律簡化運算;會查平方表、立方表、平方根表、立方根表或用計算器代替算表。

2.使學生了解有關代數式、整式、分式和二次根式的概念,掌握它們的性質和運演算法則,能夠熟練地進行整式、分式和二次根式的運算以及多項式的因式分解。

3.使學生了解有關方程、方程組的概念;靈活運用一元一次方程、二元一次方程組和一元二次方程的解法解方程和方程組,掌握分式方程和簡單的二元二次方程組的解法,理解一元二次方程的根的判別式。能夠分析等量關系列出方程或方程組解應用題。

使學生了解一元一次不等式、一元一次不等式組的概念,會解一元一次不等式和一元一次不等式組,並把它們的解集在數軸上表示出來。

4.使學生理解平面直角坐標系的概念,了解函數的意義,理解正比例函數、反比例函數、一次函數的概念和性質,理解二次函數的概念,會根據性質畫出正比例函數、一次函數的圖象,會用描點法畫出反比例函數、二次函數的圖象。

5.使學生了解統計的思想,掌握一些常用的數據處理方法,能夠用統計的初步知識解決一些簡單的實際問題。

6.使學生掌握消元、降次、配方、換元等常用的數學方法,解決某些數學問題,理解「特殊——一般——特殊」、「未知——已知」、用字母表示數、數形結合和把復雜問題轉化成簡單問題等基本的思想方法。

7.使學生通過各種運算和對代數式、方程、不等式的變形以及重要公式的推導,通過用概念、法則、性質進行簡單的推理,發展邏輯思維能力。

8.使學生了解已知與未知、特殊與一般、正與負、等與不等、常量與變數等辯證關系,以及反映在函數概念中的運動變化觀點。了解反映在數與式的運算和求方程解的過程中的矛盾轉化的觀點。同時,利用有關的代數史料和社會主義建設成就,對學生進

行思想教育。

教學內容①和具體要求如下。

(一)有理數

l·有理數的概念

有理數。數軸。相反數。數的絕對值。有理數大小的比較。

具體要求:

(1)了解有理數的意義,會用正數與負數表示相反意義的量,以及按要求把給出的有理數歸類。

(2)了解數軸、相反數、絕對值等概念和數軸的畫法,會用數軸上的點表示整數或分數(以刻度尺為工具),會求有理數的相反數與絕對值(絕對值符號內不含字母)。

(3)掌握有理數大小比較的法則,會用不等號連接兩個或兩個以上不同的有理數。

2。有理數的運算

有理數的加法與減法。代數和。加法運算律。有理數的乘法與除法。倒數。乘法運算律。有理數的乘方。有理數的混合運算。

科學記數法。近似數與有效數字。平方表與立方表。

具體要求:

(1)理解有理數的加、減、乘、除、乘方的意義,熟練掌握有理數的運演算法則、運算律、運算順序以及有理數的混合運算,靈活運用運算律簡化運算。

(2)了解倒數概念,會求有理數的倒數。

(3)掌握大於10的有理數的科學記數法。

(4)了解近似數與有效數字的概念,會根據指定的精確度或有效數字的個數,用四舍五人法求有理數的近似數;會查平方表與立方表。

(5)了解有理數的加法與減法、乘法與除法可以相互轉化。

(二)整式的加減

代數式。代數式的值。整式。

單項式。多項式。合並同類項。

去括弧與添括弧。數與整式相乘。整式的加減法。

具體要求:

(1)掌握用字母表示有理數,了解用字母表示數是數學的一

大進步。

(2)了解代數式、代數式的值的概念,會列出代數式表示簡單的數量關系,會求代數式的值。

(3)了解整式、單項式及其系數與次數、多項式次數、項與項數的概念,會把一個多項式接某個字母降冪排列或升冪排列。

(4)掌握合並同類項的方法,去括弧、添括弧的法則,熟練掌握數與整式相乘的運算以及整式的加減運算。

(5)通過用字母表示數、列代數式和求代數式的值、整式的加減,了解抽象概括的思維方法和特殊與一般的辯證關系。

(三)一元一次方程

等式。等式的基本性質。方程和方程的解。解方程。

一元一次方程及其解法。

一元一次方程的應用。

具體要求:

(1)了解等式和方程的有關概念,掌握等式的基本性質,會檢驗一個數是不是某個一元方程的解。

(2)了解一元一次方程的概念,靈活運用等式的基本性質和移項法則解一元一次方程,會對方程的解進行檢驗。

(3)能夠找出簡單應用題中的未知量和已知量,分析各量之間的關系,並能夠尋找等量關系列出一元一次方程解簡單的應用題,會根據應用題的實際意義,檢查求得的結果是否合理。

(4)通過解方程的教學,了解「未知」可以轉化為「已知」的思想方法。

(四)二元一次方程組

二元一次方程及其解集。方程組和它的解。解方程組。

用代人(消元)法、加減(消元)法解二元一次方程組。三元一次方程組及其解法舉例。

一次方程組的應用。

具體要求:

(1)了解二元一次方程的概念,會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式,會檢查一對數值是不是某個二元一次方程的一個解。

(2)了解方程組和它的解、解方程組等概念;會檢驗一對數值是不是某個二元一次方程組的一個解。

(3)靈活運用代人法、加減法解二元一次方程組,並會解簡單的三元一次方程組。

(4)能夠列出二元、三元一次方程組解簡單的應用題。

(5)通過解方程組,了解把「三元」轉化為「二元」,把「二元」轉化為「一元」的消元的思想方法,從而初步理解把「未知」轉化為「已知」和把復雜問題轉化為簡單問題的思想方法。

(五)一元一次不等式和一元一次不等式組

I·一元一次不等式

不等式。不等式的基本性質。不等式的解集。一元一次不等式及其解法。

具體要求:

(l)了解不等式和一元一次不等式的概念,掌握不等式的基本性質,理解它們與等式基本性質的異同。

(2)了解不等式的解和解集概念,理解它們與方程的解的區別,會在數軸上表示不等式的解集。

(3)會用不等式的基本性質和移項法則解一元一次不等式。

2·一元一次不等式組

一元一次不等式組及其解法。

具體要求:

(1)了解一元一次不等式組及其解集的概念,理解一元一次不等式組與一元一次不等式的區別和聯系。

(2)掌握一元一次不等式組的解法,會用數軸確定一元一次不等式組的解集。

(六)整式的乘除

l·整式的乘法

同底數冪的乘法。單項式的乘法。冪的乘方。積的乘方。單項式與多項式相乘。多項式的乘法。乘法公式:

(a十b)(a一b)=a2-b2

(a±b)2=a2±2ab+b2

(a±b)(a2±ab+ b2)=a3±b3

具體要求:

(1)掌握正整數冪的運算性質(同底數冪的乘法,冪的乘方,積的乘方),會用它們熟練地進行運算。

(2)掌握單項式與單項式、單項式與多項式、多項式與多項式相乘的法則,會用它們進行運算。

(3)靈活運用五個乘法公式進行運算(直接用公式不超過三次)。

(4)通過從冪運算到多項式的乘法,再到乘法公式的教學,初步理解「特殊———一般——一特殊」的認識規律。

2·整式的除法

同底數冪的除法。單項式除以單項式。多項式除以單項式。

具體要求:

(1)掌握同底數冪的除法運算性質,會用它熟練地進行運算。

(2)掌握單項式除以單項式、多項式除以單項式的法則,會用它們進行運算。

(3)會進行整式的加、減、乘、除、乘方的較簡單的混合運算,靈活運用運算律與乘法公式使運算簡便。

(七)因式分解

因式分解。提公因式法。運用(乘法)公式法。分組分解法。十字相乘法。多項式因式分解的一般步驟。

具體要求:

(1)了解因式分解的意義及其與整式乘法的區別和聯系,了

解因式分解的一般步驟。

(2)掌握提公因式法(字母的指數是數字)、運用公式法(直接用公式不超過兩次)、分組分解法(分組後能直接提公因式或運用公式的多項式,無需拆項或添項)和十字相乘法(二次項系數與常數項的積為絕對值不大於60的整系數二次三項式)這四種分解因式的基本方法,會用這些方法進行團式分解。

(八)分式

1.分式

分式。分式的基本性質。約分。最簡分式。

分式的乘除法。分式的乘方。

同分母的分式加減法。通分。異分母的分式加減法。

具體要求:

(l)了解分式、有理式、最簡分式、最簡公分母的概念,掌握分式的基本性質,會熟練地進行約分和通分。

(2)掌握分式的加、減與乘、除、乘方的運演算法則,會進行簡單的分式運算。

2.零指數與負整數指數

零指數。負整數指數。整數指數冪的運算。

具體要求:

(l)了解零指數和負整數指數冪的意義;了解正整數指數冪的運算性質可以推廣到整數指數冪,掌握整數指數冪的運算。

(2)會用科學記數法表示數。

(九)可他為一元一次方程的公式方程

含有字母系數的一元一次方程。公式變形。

分式方程。增根。可化為一元一次方程的分式方程的解法與

應用。

具體要求:

(1)掌握含有字母系數的一元一次方程的解法和簡單的公式變形。

(2)了解分式方程的概念,掌握用兩邊同乘最簡公分母的方法解可化為一元一次方程的分式方程(方程中的分式不超過三個);了解增根的概念,會檢驗一個數是不是分式方程的增根。

(3)能夠列出可化為一元一次方程的分式方程解簡單的應用題。

(十)數的開方

1.平方根與立方根

平方根。算術平方根。平方根表。

立方根。立方根表。

具體要求:

(1)了解平方根、算術平方根、立方根的概念,以及用根號表示數的平方根、算術平方根和立方根。

(2)了解開方與乘方互為逆運算,會用平方運算求某些非負數的平方根和算術平方根,用立方運算求某些數的立方根。

(3)會查表求平方根和立方根(有條件的學校可使用計算器)。

2.實數

無理數。實數。

具體要求:

( 1)了解無理數與實數的概念,會把給出的實數按要求進行歸類;了解實數的相反數、絕對值的意義,以及實數與數軸上的點—一對應。

(2)了解有理數的運算律在實數運算中同樣適用;會按結果所要求的精確度用近似的有限小數代替無理數進行實數的四則運算。

(3)結合我國古代數學家對。的研究,激勵學生科學探求的精神和愛國主義的精神。

(十一)二次根式

二次根式。積與商的方根的運算性質。

二次根式的性質。

最簡二次根式。同類二次根式。二次根式的加減。二次根式的乘法。二次根式的除法。分母有理化。

具體要求:

(1)了解二次根式、最簡二次根式、同類二次根式的概念,會辨別最簡二次根式和同類二次根式。

(2)掌握積與商的方根的運算性質

會根據這兩個性質熟練地化簡二次根式(如無特別說明,根號內所有的字母都表示正數,並且不需要討論).

(3)掌握二次根式(不含雙重根號)的加、減、乘、除的運演算法則,會用它們進行運算。

(4)會將分母中含有一個或兩個二次根式的式於進行分母有理化。

*(5)掌握二次根式的性質

會利用它化簡二次根式

(十二)一元二次方程

1.一元二次方程

一元二次方程。一元二次方程的解法:直接開平方法,配方法,公式法,因式分解法。

一元二次方程的根的判別式。

*①一元二次方程根與系數的關系。

二次三項式的因式分解(公式法)。

一元二次方程的應用。

具體要求:

(1)了解一元二次方程的概念,會用直接開平方法解形如

(x-a)2=b(b≥0)的方程,用配方法解數字系數的一元二次方程;掌握一元二次方程求根公式的推導,會用求根公式解一元二次方程;會用因式分解法解一元二次方程。靈活運用一元二次方程的四種解法求方程的根。

(2)理解一元二次方程的根的判別式,會根據根的判別式判斷數字系數的一元二次方程的根的情況。

*(3)掌握一元二次方程根與系數的關系式,會用它們由已知一元二次方程的一個根求出另一個根與未知系數,會求一元二次方程兩個根的倒數和與平方和。

(4)了解二次三項式的因式分解與解方程的關系,會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式。

(5)能夠列出一元二次方程解應用題。

(6)結合教學內容進一步培養學生的思維能力,對學生進行辯證唯物主義觀點的教育。

2.可化為一元二次方程的方程

可化為一元二次方程的分式方程。

* 可化為一元一次、一元二次方程的無理方程。

具體要求:

(1)掌握可化為一元二次方程的分式方程(方程中的分式不超過三個)的解法,會用去分母或換元法求分式方程的解,並會驗根。

(2)能夠列出可化為一元二次方程的分式方程解應用題。

*(3)了解無理方程的概念,掌握可化為一元一次、一元一二次方程的無理方程(方程中含有未知數的二次根式不超過兩個)的解法,會用兩邊平方或換元法求無理方程的解,並會驗根。

(4)通過可化為一元二次方程的分式方程、無理方程的教學,使學生進一步獲得對事物可以轉化的認識。

3.簡單的二元二次方程組

二元二次方程。二元二次方程組。

由一個二元一次方程和一個二元二次方程組成的方程組的解法。

* 由一個二元二次方程和一個可以分解為兩個二元一次方程

的方程組成的方程組的解法。

具體要求:

(l)了解二元二次方程、二元二次方程組的概念,掌握由一個二元一次方程和一個二元二次方程組成的方程組的解法,會用代人法求方程組的解。

*(2)掌握由一個二元二次方程和一個可以分解為兩個二元一次方程的方程組成的方程組的解法。

(3)通過解簡單的二元二次方程組,使學生進一步理解「.消元」、「降次」的數學方法,獲得對事物可以轉化的進一步認識。

(十三)函數及其圖象

1·函數

平面直角坐標系。常量。變數。函數及其表示法。

具體要求:

(l)理解平面直角坐標系的有關概念,並會正確地畫出直角坐標系;理解平面內點的坐標的意義,會根據坐標確定點和由點求得坐標。了解平面內的點與有序實數對之間—一對應。

(2)了解常量、變數、函數的意義,會舉出函數的實例,以及分辨常量與變數、自變數與函數。

(3)理解自變數的取值范圍和函數值的意義,對解析式為只含有一個自變數的簡單的整式、分式、二次根式的函數,會確定它們的自變數的取值范圍和求它們的函數值。

(4)了解函數的三種表示法,會用描點法畫出函數的圖象。

(5)通過函數的教學,使學生體會事物是互相聯系和有規律地變化著的,並向學生滲透數形結合的思想方法。

2·正比例函數和反比例函數

正比例函數及其圖象。反比例函數及其圖象。

具體要求:

(1)理解正比例函數、反比例函數的概念,能夠根據問題中的條件確定正比例函數和反比例函數的解析式。

(2)理解正比例函數、反比例函數的性質,會畫出它們的圖象,以及根據圖象指出函數值隨自變數的增加或減小而變化的情況。

(3)理解待定系數法。會用待定系數法求正、反比例函數的解析式。

3.一次函數的圖象和性質

一次函數。一次函數的圖象和性質。

△①二元一次方程組的圖象解法。

具體要求:

(1)理解一次函數的概念,能夠根據實際問題中的條件,確

定一次函數的解析式。

(2)理解一次函數的性質,會畫出它的圖象。

△(3)會用圖象法求二元一次方程組的近似解。

(4)會用待定系數法求一次函數的解析式。

4·二次函數的圖象

二次函數。拋物線的頂點、對稱軸和開口方向。

西一元二次方程的圖象解法。

具體要求:

(l)理解二次函數和拋物線的有關概念,會用描點法畫出二

次函數的圖象,會用公式(。配方法)確定拋物線的頂點和對稱

軸。

△(2)會用圖象法求一元二次方程的近似解。

*(3)會用待定系數法由已知圖象上三個點的坐標求二次函

數的解析式。

(十四)統計初步

總體和樣本。眾數。中位數。平均數。方差與標准差。方差的簡化計算。頻率分布。

實習作業。

具體要求:

(1)了解總體、個體、樣本、樣本容量等概念,能夠指出研究對象的總體、個體和樣本。

(2)理解眾數、中位數的意義,掌握它們的求法。

(3)理解平均數的意義,了解總體平均數和樣本平均數的意義,掌握平均數的計算公式;理解加權平均數的概念,掌握它的計算公式;會用樣本平均數估計總體平均數。

(4)了解樣本方差、總體方差、樣本標准差的意義,會計算(可使用計算器)樣本方差和樣本標准差,會根據同類問題的兩組樣本數據的方差或樣本標准差比較這兩組樣本數據的波動情況。

(5)理解頻數、頻率的概念,了解頻率分布的意義和作用,掌握整理數據的步驟和方法,會對數據進行合理的分組,列出樣本頻率分布表,畫出頻率分布直方圖。

△(6)會用科學計算器求樣本平均數與標准差。

(7)通過實習作業,使學生初步掌握搜集、整理和分析數據的方法,培養解決實際問題的能力。

(8)通過統計初步的教學,使學生了解用樣本估計總體的數理統計的基本思想,並培養學生用數學的意識,踏實細致的作風和實事求是的科學態度。

初中幾何是在小學數學中幾何初步知識的基礎上,使學生進

一步學習基本的平面幾何圖形知識,向他們直觀地介紹一些空間

幾何圖形知識。初中幾何將邏輯性與直觀性相結合,通過各種圖

形的概念、性質、作(畫)圖及運算等方面的教學,發展學生的

邏輯思維能力、空間觀念和運算能力,並使他們初步獲得研究幾

何圖形的基本方法。

幾 何

初中幾何的教學要求是:

1.使學生理解有關相交線、平行線、三角形、四邊形、圓,以及全等三角形、相似三角形的概念和性質,掌握用這些概念和性質對簡單圖形進行論證和計算的方法。了解關於軸對稱、中心對稱的概念和性質。理解銳角三角函數的意義,會用銳角三角函數和勾股定理解直角三角形。

2.使學生會用直尺、圓規、刻度尺、三角尺、量角器等工具作和畫幾何圖形。

3.使學生通過具體模型,了解空間的直線、平面的平行與垂直關系,並會用展開圖和面積公式計算圓柱和圓錐的側面積和全面積。

4·逐步培養學生觀察、比較、分析、綜合、抽象、概括的能力,逐步使學生掌握簡單的推理方法,從而提高學生的邏輯思維能力。

5.通過辨認圖形、畫圖和論證的教學,進一步培養學生的空間觀念。

6.通過揭示幾何知識來源於實踐又應用於實踐的關系,以及幾何概念、性質之間的聯系和圖形的運動、變化,對學生進行辯證唯物主義的教育。利用有關的幾何史料和社會主義建設成就,對學生進行思想教育。通過論證與畫圖的教學,逐步培養學生嚴謹的科學態度,並使他們獲得美的感受。

教學內容和具體要求如下:

(一)線段、角

1·幾何圖形

幾何體。幾何圖形。點。直線。平面。

具體要求:

(1)通過具體模型(如長方體)了解從物體外形抽象出來的幾何體、平面、直線和點等。

(2)了解幾何圖形的有關概念。了解幾何的研究對象。

(3)通過幾何史料的介紹,對學生進行幾何知識來源於實踐的教育和愛國主義教育,使學生了解學習幾何的必要性,從而激發他們學習幾何的熱情。

2.線段

兩點確定一條直線。相交線。

線段。射線。線段大小的比較。線段的和與差。線段的中點。

具體要求:

(1)掌握兩點確定一條直線的性質。了解兩條相交直線確定一個交點。

(2)了解直線、線段和射線等概念的區別。

(3)理解線段的和與差及線段的中點等概念,會比較線段的大小。

(4)理解兩點間的距離的概念,會度量兩點間的距離。

3.角

角。角的度量。角的平分線。 小於平角的角的分類。

具體要求:

(1)理解角的概念。掌握角的平分線的概念,會比較角的大小。會用量角器畫一個角等於已知角。

(2)掌握度、分、秒的換算。會計算角度的和、差、倍、分。

(3)理解周角、平角、直角、銳角、鈍角的概念,並會進行有關的計算。

(4)掌握角的平分線的概念。會畫角的平分線。

(5)掌握幾何圖形的符號表示法。會根據幾何語句准確、整潔地畫出相應的圖形,會用幾何語句描述簡單的幾何圖形。

(二)相交、平行

l·相交線

對頂角。鄰角、補角。

垂線。點到直線的距離。

同位角。內錯角。同旁內角。

具體要求:

(1)理解對頂角的概念。理解對頂角的性質和它的推證過程,會用它進行推理和計算。

(2)理解補角、鄰補角的概念,理解同角或等角的補角相等的性質和它的推證過程,會用它進行推理和計算。

(3)掌握垂線、垂線段等概念;會用三角尺或量角器過一點畫一條直線的垂線。了解斜線、斜線段等概念,了解垂線段最短的性質。

(4)掌握點到直線的距離的概念,並會度量點到直線的距離。

(5)會識別同位角、內錯角和同旁內角。

2.平行線 平行線。

平行線的性質及判定。

具體要求:

(1)了解平行線的概念及平行線的基本性質。會用平行的傳遞性進行推理。

(2)會用一直線截兩平行直線所得的同位角相等、內錯角相等、同旁內角互補等性質進行推理和計算;會用同位角相等,或內錯角相等,或同旁內角互補判定兩條直線平行。

(3)會用三角尺和直尺過已知直線外一點畫這條直線的平行線。

(4)理解學過的描述圖形形狀和位置關系的語句,並會用這些語句描述簡單的圖形和根據語句畫圖。

3.空間直線、平面的位置關系

直線與直線,直線與平面,平面與平面的位置關系。

具體要求:

通過長方體的棱、對角線和各面之間的位置關系,了解直線與直線的平行、相交、異面的關系,以及直線與平面、平面與平面的平行、垂直關系。

4.命題、定義、公理、定理

命題。定義。公理。定理。

定理的證明。

具體要求:

(1)了解命題的概念,會區分命題的條件(題設)和結論(題斷),會把命題改寫成「如果…』··,那麼」』…」的形式。

(2)了解定義、公理、定理的概念。

(3)了解證明的必要性和推理過程中要步步有據,了解綜合法證明的格式。 (三)三角形

1.三角形

三角形。三角形的角平分線、中線、高。三角形三邊間的不等關系。三角形的內角和。三角形的分類。

具體要求:

(1)理解三角形,三角形的頂點、邊、內角、外角、角平分線、中線和高等概念,會畫出任意三角形的角平分線、中線和高。

(2)理解三角形的任意兩邊之和大於第三邊的性質。會根據三條線段的長度判斷它們能否構成三角形。

(3)掌握三角形的內角和定理,三角形的外角等於不相鄰的兩內角的和,三角形的外角大於任何一個和它不相鄰的內角的性質。

(4)會按角的大小和邊長的關系對三角形進行分類。

2.全等三角形

全等形。全等三角形及其性質。三角形全等的判定。

具體要求:

(1)了解全等形、全等三角形的概念和性質,能夠辨認全等

形中的對應元素。

(2)能夠靈活運用「邊、角、邊」,「角、邊、角」,「角、角、邊」,「邊、邊、邊」等來判定三角形全等;會證明「角、角、邊」定理。了解三角形的穩定性。

(3)會用三角形全等的判定定理來證明簡單的有關問題,並會進行有關的計算。

有什麼不明白的地方再問我。

謝謝!!!
參考資料:http://..com/question/27836101.html?fr=qrl3

http://..com/question/11306552.html?fr=qrl3

㈦ 數學物理方法的一個知識點為什麼-π

根據柯西公式,積分的值是2πi×1=2πi。把曲線|z|=1的參數方程寫出來是z=e^(iθ),θ從0到2π,把積分化簡一下,其虛部是2π。再利用這個定積分的周期是π,而積分限是0到2π,由此即可得到結果。

㈧ 高中數學和物理有哪些知識點是重點

數學:函數基本功(求定義域值域、單調性奇偶性、基本初等函數、二次函數等等), 解析幾何里的圓錐曲線部分,立體幾何學完空間向量後的綜合題, 數列,不等式(弄清幾個典型問題即可,比如恆成立問題,均值不等式問題,線性規劃計算比較麻煩但是解法簡單) 統計概率部分最難得是排列組合,一般要到高二下學期再講

㈨ 初中數學、物理知識點

初中數學知識點大全

1、一元一次方程根的情況
△=b2-4ac
當△>0時,一元二次方程有2個不相等的實數根;
當△=0時,一元二次方程有2個相同的實數根;
當△<0時,一元二次方程沒有實數根
2、平行四邊形的性質:
① 兩組對邊分別平行的四邊形叫做平行四邊形。
② 平行四邊形不相鄰的兩個頂點連成的線段叫他的對角線。
③ 平行四邊形的對邊/對角相等。
④平行四邊形的對角線互相平分。
菱形:①一組鄰邊相等的平行四邊形是菱形
②領心的四條邊相等,兩條對角線互相垂直平分,每一組對角線平分一組對角。
③判定條件:定義/對角線互相垂直的平行四邊形/四條邊都相等的四邊形。
矩形與正方形:
① 有一個內角是直角的平行四邊形叫做矩形。
② 矩形的對角線相等,四個角都是直角。
③ 對角線相等的平行四邊形是矩形。
④ 正方形具有平行四邊形,矩形,菱形的一切性質。
⑤一組鄰邊相等的矩形是正方形。
多邊形:
①N邊形的內角和等於(N-2)180度
②多邊心內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內角和(都等於360度)

平均數:對於N個數X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個N個數的算術平均數,記為X
加權平均數:一組數據里各個數據的重要程度未必相同,因而,在計算這組數據的平均數時往往給每個數據加一個權,這就是加權平均數。

二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:
如果a:b=c:d,那麼ad=bc
如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:
如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d﹤r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d﹥r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上
135、①兩圓外離 d﹥R+r
②兩圓外切 d=R+r
③兩圓相交 R-r﹤d﹤R+r(R﹥r)
④兩圓內切 d=R-r(R﹥r)
⑤兩圓內含 d﹤R-r(R﹥r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)

三、常用數學公式
公式分類 公式表達式

乘法與因式分解 a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)

一元二次方程的解 -b+√(b2-4ac)/2a
-b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a
X1*X2=c/a 註:韋達定理

某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R
註:其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB
註:角B是邊a和邊c的夾角
初中幾何常見輔助線作法歌訣匯編
圖中有角平分線,可向兩邊作垂線。
也可將圖對折看,對稱以後關系現。
角平分線平行線,等腰三角形來添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長縮短可試驗。
三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線等中線。
平行四邊形出現,對稱中心等分點。
梯形裡面作高線,平移一腰試試看。
平行移動對角線,補成三角形常見。
證相似,比線段,添線平行成習慣。
等積式子比例換,尋找線段很關鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
半徑與弦長計算,弦心距來中間站。
圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。
要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。
弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。
還要作個內接圓,內角平分線夢圓。
如果遇到相交圓,不要忘作公共弦。
內外相切的兩圓,經過切點公切線。
若是添上連心線,切點肯定在上面。
要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對稱旋轉去實驗。
基本作圖很關鍵,平時掌握要熟練。