Ⅰ 請求七年級下冊數學各章知識重點總結
第一章
有理數
1.1
正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative
number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive
number)(根據需要,有時在正數前面也加上「+」)。
1.2
有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational
number)。
通常用一條直線上的點表示數,這條直線叫數軸(number
axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite
number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute
value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3
有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。
1.4
有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。
mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base
number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant
digit)。
第二章
一元一次方程
2.1
從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear
equation
with
one
unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
2.2
從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號後移到另一邊,叫做移項。
第三章
圖形認識初步
3.1
多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。
3.2
直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
3.3
角的度量
1度=60分
1分=60秒
1周角=360度
1平角=180度
3.4
角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary
angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary
angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的餘角相等。
第四章
數據的收集與整理
收集、整理、描述和分析數據是數據處理的基本過程。
基本是這些,其他需要自己運用知識答題!
Ⅱ 初一數學第五章知識點歸納!jijijijijijji!
第五章:
本章重點:一元一次不等式的解法,
本章難點:了解不等式的解集和不等式組的解集的確定,正確運用
不等式基本性質3。
本章關鍵:徹底弄清不等式和等式的基本性質的區別.
(1)不等式概念:用不等號(「≠」、「<」、「>」)表示的不 等關系的式子叫做不等式
(2)不等式的基本性質,它是解不等式的理論依據.
(3)分清不等式的解集和解不等式是兩個完全不同的概念.
(4)不等式的解一般有無限多個數值,把它們表示在數軸上,(5)一元一次不等式的概念、解法是本章的重點和核心
(6)一元一次不等式的解集,在數軸上表示一元一次不等式的解集
(7)由兩個一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(同未知數的)一元一次不等式組成
(8).利用數軸確定一元一次不等式組的解集
Ⅲ 七年級(下冊)數學復習提綱
一元一次方程
1.等式與等量:用「=」號連接而成的式子叫等式.注意:「等量就能代入」!
2.等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;
等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.
3.方程:含未知數的等式,叫方程.
4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:「方程的解就能代入」!
5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.
6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.
7.一元一次方程的標准形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).
8.一元一次方程的最簡形式: ax=b(x是未知數,a、b是已知數,且a≠0).
9.一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括弧 …… 移項 …… 合並同類項 …… 系數化為1 …… (檢驗方程的解).
10.列一元一次方程解應用題:
(1)讀題分析法:………… 多用於「和,差,倍,分問題」
仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套-----」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程.
(2)畫圖分析法: ………… 多用於「行程問題」
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
11.列方程解應用題的常用公式:
(1)行程問題: 距離=速度•時間 ;
(2)工程問題: 工作量=工效•工時 ;
(3)比率問題: 部分=全體•比率 ;
(4)順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(5)商品價格問題: 售價=定價•折• ,利潤=售價-成本, ;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,
S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐= πR2h.
Ⅳ 跪求,人教版七下數學第五章到第十章的主要知識點整理
一:整式的運算
公式:
1單項式的次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。
2一個多項式中,次數最高的項的次數,叫做這個多項式的次數。
3整式的加減法,實質就是將整式中的同類項合並,如果有括弧應先去括弧,再合並同類項。
4同底數冪相除,底數不變,指數相減。
二:平行線與相交線
公式:
餘角和補角定律:1如果兩個角的和是直角,稱這兩個角互為餘角。如果兩個角的和是直角,稱這兩個角互為補角。
三:生活中的數據
1有效數字:對於一個近似數,從左邊起第一個不是零的數起,到精確到的數位止,所有的數字叫這個數的有效數字。
2平行線像這樣的,不會相交的兩條直線,就是互相平行的兩條直線,簡稱平行線。4四邊形:兩組對邊平行。
3統計圖:1條形統計圖:條形統計圖是用一個單位長度表示一定的數量,根據數量的多少畫成長短不同的直條,然後把這些紙條按一定的順序排列起來。從條形統計圖中很容易看出各種數量的多少。
條形統計圖分為:單式條形統計圖和復式條形統計圖,前者只表示1個項目的數據,後者可以同時表示多個項目的數據。
2折線統計圖:折線統計圖是用一個單位長度表示一定的數量,根據數量的多少描出各點,然後把各點用線段順次連接起來,以折線的上升或下降來表示統計數量增減變化。折線統計圖不但可以表示出數量的多少,而且還能夠清楚的表示出數量增減變化的情況。折線統計圖分單式或復式
3扇形統計圖:扇形統計圖是用整個圓表示總數用圓內各個扇形
的大小表示各部分數量占總數的百分數。通過扇形統計圖可以很清楚的表示出各部分數量同總數之間的關系。用整個圓的面積表示總數(單位1),用圓的扇形面積表示各部分佔總數的百分數.作用:能清楚地反映書各部分數同總數之間的關系.扇形面積與其對應的圓心角的關系是:扇形面積越大,圓心角的度數越大。扇形面積越小,圓心角的度數越小。扇形所對圓心角的度數與百分比的關系是:圓心角的度數=百分比*360度扇形統計圖還可以畫成圓柱形的。
四:三角形
三角形一公有三種,銳角三角形:並不是有一個銳角的三角形,而是三個角都為銳角,比如等邊三角形也是銳角三角形。直角三角形:有一個角為90度的三角形,就是直角三角形。鈍角三角形:有一個角是鈍角的三角形叫鈍角三角形。任意一個三角形,最多有三個銳角;最多有一個鈍角;最多有一個直角。
一個三角形有三條中線,並且都在三角形的內部,相交於一點。三角形的中線是一條線段。
Ⅳ 七年級數學下冊知識點總結
第一章 整式的運算
一. 整式
※1. 單項式
①由數與字母的積組成的代數式叫做單項式。單獨一個數或字母也是單項式。
②單項式的系數是這個單項式的數字因數,作為單項式的系數,必須連同數字前面的性質符號,如果一個單項式只是字母的積,並非沒有系數.
③一個單項式中,所有字母的指數和叫做這個單項式的次數.
※2.多項式
①幾個單項式的和叫做多項式.在多項式中,每個單項式叫做多項式的項.其中,不含字母的項叫做常數項.一個多項式中,次數最高項的次數,叫做這個多項式的次數.
②單項式和多項式都有次數,含有字母的單項式有系數,多項式沒有系數.多項式的每一項都是單項式,一個多項式的項數就是這個多項式作為加數的單項式的個數.多項式中每一項都有它們各自的次數,但是它們的次數不可能都作是為這個多項式的次數,一個多項式的次數只有一個,它是所含各項的次數中最高的那一項次數.
※3.整式單項式和多項式統稱為整式.
二. 整式的加減
¤1. 整式的加減實質上就是去括弧後,合並同類項,運算結果是一個多項式或是單項式.
¤2. 括弧前面是「-」號,去括弧時,括弧內各項要變號,一個數與多項式相乘時,這個數與括弧內各項都要相乘.
三. 同底數冪的乘法
※同底數冪的乘法法則: (m,n都是正數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
①法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
②指數是1時,不要誤以為沒有指數;
③不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;
④當三個或三個以上同底數冪相乘時,法則可推廣為 (其中m、n、p均為正數);
⑤公式還可以逆用: (m、n均為正整數)
四.冪的乘方與積的乘方
※1. 冪的乘方法則: (m,n都是正數)是冪的乘法法則為基礎推導出來的,但兩者不能混淆.
※2. .
※3. 底數有負號時,運算時要注意,底數是a與(-a)時不是同底,但可以利用乘方法則化成同底,
如將(-a)3化成-a3
※4.底數有時形式不同,但可以化成相同。
※5.要注意區別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※6.積的乘方法則:積的乘方,等於把積每一個因式分別乘方,再把所得的冪相乘,即 (n為正整數)。
※7.冪的乘方與積乘方法則均可逆向運用。
五. 同底數冪的除法
※1. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
※2. 在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,
④運算要注意運算順序.
六. 整式的乘法
※1. 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
①積的系數等於各因式系數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將系數相乘與指數相加混淆;
②相同字母相乘,運用同底數的乘法法則;
③只在一個單項式里含有的字母,要連同它的指數作為積的一個因式;
④單項式乘法法則對於三個以上的單項式相乘同樣適用;
⑤單項式乘以單項式,結果仍是一個單項式。
※2.單項式與多項式相乘
單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
單項式與多項式相乘時要注意以下幾點:
①單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;
②運算時要注意積的符號,多項式的每一項都包括它前面的符號;
③在混合運算時,要注意運算順序。
※3.多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合並同類項之前,積的項數應等於原兩個多項式項數的積;
②多項式相乘的結果應注意合並同類項;
③對含有同一個字母的一次項系數是1的兩個一次二項式相乘 ,其二次項系數為1,一次項系數等於兩個因式中常數項的和,常數項是兩個因式中常數項的積。對於一次項系數不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得到
七.平方差公式
¤1.平方差公式:兩數和與這兩數差的積,等於它們的平方差,
※即 。
¤其結構特徵是:
①公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;
②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
八.完全平方公式
¤1. 完全平方公式:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,
¤即 ;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2.結構特徵:
①公式左邊是二項式的完全平方;
②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
¤3.在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現 這樣的錯誤。
九.整式的除法
¤1.單項式除法單項式
單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
¤2.多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。
第二章 平行線與相交線
一.檯球桌面上的角
※1.互為餘角和互為補角的有關概念與性質
如果兩個角的和為90°(或直角),那麼這兩個角互為餘角;
如果兩個角的和為180°(或平角),那麼這兩個角互為補角;
注意:這兩個概念都是對於兩個角而言的,而且兩個概念強調的是兩個角的數量關系,與兩個角的相互位置沒有關系。
它們的主要性質:同角或等角的餘角相等;
同角或等角的補角相等。
二.探索直線平行的條件
※兩條直線互相平行的條件即兩條直線互相平行的判定定理,共有三條:
①同位角相等,兩直線平行;
②內錯角相等,兩直線平行;
③同旁內角互補,兩直線平行。
三.平行線的特徵
※平行線的特徵即平行線的性質定理,共有三條:
①兩直線平行,同位角相等;
②兩直線平行,內錯角相等;
③兩直線平行,同旁內角互補。
四.用尺規作線段和角
※1.關於尺規作圖
尺規作圖是指只用圓規和沒有刻度的直尺來作圖。
※2.關於尺規的功能
直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。
圓規的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為圓心,任意長度為半徑畫一段弧。
第三章生活中的數據
※1.科學記數法:對任意一個正數可能寫成a×10n的形式,其中1≤a<10,n是整數,這種記數的方法稱為科學記數法。
¤2.利用四捨五入法取一個數的近似數時,四捨五入到哪一位,就說這個近似數精確到哪一位;對於一個近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數字都叫做這個數的有效數字。
¤3.統計工作包括:
①設定目標;②收集數據;③整理數據;④表達與描述數據;⑤分析結果。
第四章 概率
¤1.隨機事件發生與不發生的可能性不總是各佔一半,都為50%。
※2.現實生活中存在著大量的不確定事件,而概率正是研究不確定事件的一門學科。
※3.了解必然事件和不可能事件發生的概率。
必然事件發生的概率為1,即P(必然事件)=1;不可能事件發生的概率為0,即P(不可能事件)=0;如果A為不確定事件,那麼0<P(A)<1
※4.了解幾何概率這類問題的計算方法
事件發生概率=
第五章 三角形
一.認識三角形
1.關於三角形的概念及其按角的分類
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
這里要注意兩點:
①組成三角形的三條線段要「不在同一直線上」;如果在同一直線上,三角形就不存在;
②三條線段「首尾是順次相接」,是指三條線段兩兩之間有一個公共端點,這個公共端點就是三角形的頂點。
三角形按內角的大小可以分為三類:銳角三角形、直角三角形、鈍角三角形。
2.關於三角形三條邊的關系
根據公理「連結兩點的線中,線段最短」可得三角形三邊關系的一個性質定理,即三角形任意兩邊之和大於第三邊。
三角形三邊關系的另一個性質:三角形任意兩邊之差小於第三邊。
對於這兩個性質,要全面理解,掌握其實質,應用時才不會出錯。
設三角形三邊的長分別為a、b、c則:
①一般地,對於三角形的某一條邊a來說,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三條線段才能構成三角形;
②特殊地,如果已知線段a最大,只要滿足b+c>a,那麼a、b、c三條線段就能構成三角形;如果已知線段a最小,只要滿足|b-c|<a,那麼這三條線段就能構成三角形。
3.關於三角形的內角和
三角形三個內角的和為180°
①直角三角形的兩個銳角互余;
②一個三角形中至多有一個直角或一個鈍角;
③一個三角中至少有兩個內角是銳角。
4.關於三角形的中線、高和中線
①三角形的角平分線、中線和高都是線段,不是直線,也不是射線;
②任意一個三角形都有三條角平分線,三條中線和三條高;
③任意一個三角形的三條角平分線、三條中線都在三角形的內部。但三角形的高卻有不同的位置:銳角三角形的三條高都在三角形的內部,如圖1;直角三角形有一條高在三角形的內部,另兩條高恰好是它兩條邊,如圖2;鈍角三角形一條高在三角形的內部,另兩條高在三角形的外部,如圖3。
④一個三角形中,三條中線交於一點,三條角平分線交於一點,三條高所在的直線交於一點。
二.圖形的全等
¤能夠完全重合的圖形稱為全等形。全等圖形的形狀和大小都相同。只是形狀相同而大小不同,或者說只是滿足面積相同但形狀不同的兩個圖形都不是全等的圖形。
四.全等三角形
¤1.關於全等三角形的概念
能夠完全重合的兩個三角形叫做全等三角形。互相重合的頂點叫做對應點,互相重合的邊叫做對應邊,互相重合的角叫做對應角
所謂「完全重合」,就是各條邊對應相等,各個角也對應相等。因此也可以這樣說,各條邊對應相等,各個角也對應相等的兩個三角形叫做全等三角形。
※2.全等三角形的對應邊相等,對應角相等。
¤3.全等三角形的性質經常用來證明兩條線段相等和兩個角相等。
五.探三角形全等的條件
※1.三邊對應相等的兩個三角形全等,簡寫為「邊邊邊」或「SSS」
※2.有兩邊和它們的夾角對應相等的兩個三角形全等,簡寫成「邊角邊」或「SAS」
※3.兩角和它們的夾邊對應相等的兩個三角形全等,簡寫成「角邊角」或「ASA」
※4.兩角和其中一個角的對邊對應相等的兩個三角形全等,簡寫成「角角邊」或「AAS」
六.作三角形
1.已知兩個角及其夾邊,求作三角形,是利用三角形全等條件「角邊角」即(「ASA」)來作圖的。
2.已知兩條邊及其夾角,求作三角形,是利用三角形全等條件「邊角邊」即(「SAS」)來作圖的。
3.已知三條邊,求作三角形,是利用三角形全等條件「邊邊邊」即(「SSS」)來作圖的。
八.探索直三角形全等的條件
※1.斜邊和一條直角邊對應相等的兩個直角三角形全等。簡稱為「斜邊、直角邊」或「HL」。這只對直角三角形成立。
※2.直角三角形是三角形中的一類,它具有一般三角形的性質,因而也可用「SAS」、「ASA」、「AAS」、「SSS」來判定。
直角三角形的其他判定方法可以歸納如下:
①兩條直角邊對應相等的兩個直角三角形全等;
②有一個銳角和一條邊對應相等的兩個直角三角形全等。
③三條邊對應相等的兩個直角三角形全等。
第七章 生活中的軸對稱
※1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
※2.角平分線上的點到角兩邊距離相等。
※3.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
※4.角、線段和等腰三角形是軸對稱圖形。
※5.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
※6.軸對稱圖形上對應點所連的線段被對稱軸垂直平分。
※7.軸對稱圖形上對應線段相等、對應角相等。
Ⅵ 初一下學期數學第五章重點內容
你所說的第五章內容是不是三角形?如果是三角形的話重點是三角形的邊、角關系,兩個三角形全等的條件,利用尺規作出三角形。
Ⅶ 初一下學期數學知識點總結
第五章:
本章重點:一元一次不等式的解法,
本章難點:了解不等式的解集和不等式組的解集的確定,正確運用
不等式基本性質3。
本章關鍵:徹底弄清不等式和等式的基本性質的區別.
(1)不等式概念:用不等號(「≠」、「<」、「>」)表示的不 等關系的式子叫做不等式
(2)不等式的基本性質,它是解不等式的理論依據.
(3)分清不等式的解集和解不等式是兩個完全不同的概念.
(4)不等式的解一般有無限多個數值,把它們表示在數軸上,(5)一元一次不等式的概念、解法是本章的重點和核心
(6)一元一次不等式的解集,在數軸上表示一元一次不等式的解集
(7)由兩個一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(同未知數的)一元一次不等式組成
(8).利用數軸確定一元一次不等式組的解集
第六章:
1.二元一次方程,二元一次方程組以及它的解,明確二元一次方程組的解是一對未知數的值,會檢驗一對數值是不是某一個二元一次方程組的解.
2.一次方程組的兩種基本解法,能靈活運用代入法,加減法解二元一次方程組及簡單的三元一次方程組.
3.根據給出的應用問題,列出相應的二元一次方程組或三元一次方程組,從而求出問題的解,並能根據問題的實際意義,檢查結果是否合理.
本章的重點是:二元一次方程組的解法——代入法,加減法以及列一次方程組解簡單的應用問題.
本章的難點是:
1.會用適當的消元方法解二元一次方程組及簡單的三元一次方程組;
2.正確地找出應用題中的相等關系,列出一次方程組.
第七章
本章重點是:整式的乘除運算,特別是對冪的運算及乘法公式的應用要達到熟練程度.
本章難點是:對乘法公式結構特徵和公式中字母意義的理解及乘法公式的靈活應用
1.冪的運算性質,正確地表述這些性質,並能運用它們熟練地進行有關計算.
2.單項式乘以(或除以)單項式,多項式乘以(或除以)單項式,以及多項式乘以多項式的法則,熟練地運用它們進行計算.
3.乘法公式的推導過程,能靈活運用乘法公式進行計算.
4.熟練地運用運算律、運演算法則進行運算,
5.體會用字母表示數和用字母表示式子的意義.通過式的變形,深入理解轉化的思想方法.
第八章:
1、認識事物的幾種方法:觀察與實驗 歸納與類比 猜想與證明 生活中的說理 數學中的說理
2、定義、命題、公理、定理
3、簡單幾何圖形中的推理
4、餘角、補交、對頂角
5、平行線的判定
判定:一個公理兩個定理。
公理:兩直線被第三條直線所截,如果同位角相等(數量關系)兩直線平行(位置關系)
定理:內錯角相等(數量關系)兩直線平行(位置關系)
定理:同旁內角互補(數量關系)兩直線平行(位置關系).
平行線的性質:
兩直線平行,同位角相等
兩直線平行,內錯角相等
兩直線平行,同旁內角互補
由圖形的「位置關系」確定「數量關系」
第九章:
重點:因式分解的方法,
難點:分析多項式的特點,選擇適合的分解方法
1. 因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分組分解法(十字相乘法)
3.運用因式分解解決一些實際問題.(包括圖形習題)
第十章:
重點是:用統計知識解決現實生活中的實際問題.
難點是:用統計知識解決實際問題.
1.統計初步的基本知識,平均數、中位數、眾數等的計算、
2.了解數據的收集與整理、繪畫三種統計圖.
3.應用統計知識解決實際問題能解決與統計相關的綜合問題.
Ⅷ 七年級下冊數學第五章的知識點以知識樹的形式整理出來!! 快 快 快啊
七年級數學(下)期末復習知識點整理
5.1相交線
1、鄰補角與對頂角
兩直線相交所成的四個角中存在幾種不同關系的角,它們的概念及性質如下表:
圖形 頂點 邊的關系 大小關系
對頂角
∠1與∠2 有公共頂點 ∠1的兩邊與∠2的兩邊互為反向延長線 對頂角相等
即∠1=∠2
鄰補角
∠3與∠4 有公共頂點 ∠3與∠4有一條邊公共,另一邊互為反向延長線。 ∠3+∠4=180°
注意點:⑴對頂角是成對出現的,對頂角是具有特殊位置關系的兩個角;
⑵如果∠α與∠β是對頂角,那麼一定有∠α=∠β;反之如果∠α=∠β,那麼∠α與∠β不一定是對頂角
⑶如果∠α與∠β互為鄰補角,則一定有∠α+∠β=180°;反之如果∠α+∠β=180°,則∠α與∠β不一定是鄰補角。
⑶兩直線相交形成的四個角中,每一個角的鄰補角有兩個,而對頂角只有一個。
2、垂線
⑴定義,當兩條直線相交所成的四個角中,有一個角是直角時,就說這兩條直線互相垂直,其中的一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
符號語言記作:
如圖所示:AB⊥CD,垂足為O
⑵垂線性質1:過一點有且只有一條直線與已知直線垂直 (與平行公理相比較記)
⑶垂線性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。簡稱:垂線段最短。
3、垂線的畫法:
⑴過直線上一點畫已知直線的垂線;⑵過直線外一點畫已知直線的垂線。
注意:①畫一條線段或射線的垂線,就是畫它們所在直線的垂線;②過一點作線段的垂線,垂足可在線段上,也可以在線段的延長線上。
畫法:⑴一靠:用三角尺一條直角邊靠在已知直線上,⑵二移:移動三角尺使一點落在它的另一邊直角邊上,⑶三畫:沿著這條直角邊畫線,不要畫成給人的印象是線段的線。
4、點到直線的距離
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離
記得時候應該結合圖形進行記憶。
5、如何理解「垂線」、「垂線段」、「兩點間距離」、「點到直線的距離」這些相近而又相異的概念
分析它們的聯系與區別
⑴垂線與垂線段 區別:垂線是一條直線,不可度量長度;垂線段是一條線段,可以度量長度。 聯系:具有垂直於已知直線的共同特徵。(垂直的性質)
⑵兩點間距離與點到直線的距離 區別:兩點間的距離是點與點之間,點到直線的距離是點與直線之間。 聯系:都是線段的長度;點到直線的距離是特殊的兩點(即已知點與垂足)間距離。
⑶線段與距離 距離是線段的長度,是一個量;線段是一種圖形,它們之間不能等同。
5.2平行線
1、平行線的概念:
在同一平面內,不相交的兩條直線叫做平行線,直線 與直線 互相平行,記作 ‖ 。
2、兩條直線的位置關系
在同一平面內,兩條直線的位置關系只有兩種:⑴相交;⑵平行。
因此當我們得知在同一平面內兩直線不相交時,就可以肯定它們平行;反過來也一樣(這里,我們把重合的兩直線看成一條直線)
判斷同一平面內兩直線的位置關系時,可以根據它們的公共點的個數來確定:
①有且只有一個公共點,兩直線相交;
②無公共點,則兩直線平行;
③兩個或兩個以上公共點,則兩直線重合(因為兩點確定一條直線)
3、平行公理――平行線的存在性與惟一性
經過直線外一點,有且只有一條直線與這條直線平行
4、平行公理的推論:
如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行
7、兩直線平行的判定方法
方法一 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行
簡稱:同位角相等,兩直線平行
方法二 兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行
簡稱:內錯角相等,兩直線平行
方法三 兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行
簡稱:同旁內角互補,兩直線平行
注意:⑴幾何中,圖形之間的「位置關系」一般都與某種「數量關系」有著內在的聯系,常由「位置關系」決定其「數量關系」,反之也可從「數量關系」去確定「位置關系」。上述平行線的判定方法就是根據同位角或內錯角「相等」或同旁內角「互補」這種「數量關系」,判定兩直線「平行」這種「位置關系」。
⑵根據平行線的定義和平行公理的推論,平行線的判定方法還有兩種:①如果兩條直線沒有交點(不相交),那麼兩直線平行。②如果兩條直線都平行於第三條直線,那麼這兩條直線平行。
典型例題:判斷下列說法是否正確,如果不正確,請給予改正:
⑴不相交的兩條直線必定平行線。
⑵在同一平面內不相重合的兩條直線,如果它們不平行,那麼這兩條直線一定相交。
⑶過一點可以且只可以畫一條直線與已知直線平行
解答:⑴錯誤,平行線是「在同一平面內不相交的兩條直線」。「在同一平面內」是一項重要條件,不能遺漏。
⑵正確
⑶不正確,正確的說法是「過直線外一點」而不是「過一點」。因為如果這一點不在已知直線上,是作不出這條直線的平行線的。
1、平行線的性質:
性質1:兩直線平行,同位角相等;
性質2:兩直線平行,內錯角相等;
性質3:兩直線平行,同旁內角互補。
兩條平行線的距離
直線AB‖CD,EF⊥AB於E,EF⊥CD於F,則稱線段EF的長度為兩平行線AB與CD間的距離。
注意:直線AB‖CD,在直線AB上任取一點G,過點G作CD的垂線段GH,則垂線段GH的長度也就是直線AB與CD間的距離。
3、命題:
⑴命題的概念:
判斷一件事情的語句,叫做命題。
⑵命題的組成
每個命題都是題設、結論兩部分組成。題設是已知事項;結論是由已知事項推出的事項。命題常寫成「如果……,那麼……」的形式。具有這種形式的命題中,用「如果」開始的部分是題設,用「那麼」開始的部分是結論。
有些命題,沒有寫成「如果……,那麼……」的形式,題設和結論不明顯。對於這樣的命題,要經過分析才能找出題設和結論,也可以將它們改寫成「如果……,那麼……」的形式。
注意:命題的題設(條件)部分,有時也可用「已知……」或者「若……」等形式表述;命題的結論部分,有時也可用「求證……」或「則……」等形式表述。
4、平行線的性質與判定
①平行線的性質與判定是互逆的關系
兩直線平行 同位角相等;
兩直線平行 內錯角相等;
兩直線平行 同旁內角互補。
其中,由角的相等或互補(數量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數量關系)的結論是平行線的性質。
5.4平移
1、平移變換
①把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
②新圖形的每一點,都是由原圖形中的某一點移動後得到的,這兩個點是對應點
③連接各組對應點的線段平行且相等
2、平移的特徵:
①經過平移之後的圖形與原來的圖形的對應線段平行(或在同一直線上)且相等,對應角相等,圖形的形狀與大小都沒有發生變化。
②經過平移後,對應點所連的線段平行(或在同一直線上)且相等。
Ⅸ 初一數學下冊第五章:三角形 總結
1)角角平分線的性質:角平分線上的點到角的兩邊距離相等,角的內部到兩邊距離相等的點在角平分線上。(2)相交線與平行線同角或等角的補角相等,同角或等角的餘角相等;對頂角的性質:對頂角相等垂線的性質:①過一點有且只有一條直線與已知直線垂直;②直線外一點有與直線上各點連結的所有線段中,垂線段最短;線段垂直平分線定義:過線段的中點並且垂直於線段的直線叫做線段的垂直平分線;線段垂直平分線的性質:線段垂直平分線上的點到線段兩端點的距離相等,到線段兩端點的距離相等的點在線段的垂直平分線;平行線的定義:在同一平面內不相交的兩條直線叫做平行線;平行線的判定:①同位角相等,兩直線平行;②內錯角相等,兩直線平行;③同旁內角互補,兩直線平行;平行線的特徵:①兩直線平行,同位角相等;②兩直線平行,內錯角相等;③兩直線平行,同旁內角互補;平行公理:經過直線外一點有且只有一條直線平行於已知直線。(3)三角形三角形的三邊關系定理及推論:三角形的兩邊之和大於第三邊,兩邊之差小於第三邊;三角形的內角和定理:三角形的三個內角的和等於;三角形的外角和定理:三角形的一個外角等於和它不相鄰的兩個的和;三角形的外角和定理推理:三角形的一個外角大於任何一個和它不相鄰的內角;三角形的三條角平分線交於一點(內心);三角形的三邊的垂直平分線交於一點(外心);三角形中位線定理:三角形兩邊中點的連線平行於第三邊,並且等於第三邊的一半;全等三角形的判定:①邊角邊公理(SAS)②角邊角公理(ASA)③角角邊定理(AAS)④邊邊邊公理(SSS)⑤斜邊、直角邊公理(HL)等腰三角形的性質:①等腰三角形的兩個底角相等;②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)等腰三角形的判定:有兩個角相等的三角形是等腰三角形;直角三角形的性質:①直角三角形的兩個銳角互為餘角;②直角三角形斜邊上的中線等於斜邊的一半;③直角三角形的兩直角邊的平方和等於斜邊的平方(勾股定理);④直角三角形中角所對的直角邊等於斜邊的一半;直角三角形的判定:①有兩個角互余的三角形是直角三角形;②如果三角形的三邊長a、b 、c有下面關系,那麼這個三角形是直角三角形(勾股定理的逆定理)
Ⅹ 七年級數學定義總結
初一數學下冊知識點總結:第五章 三角形
一、三角形及其有關概念
1、三角形:
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.組成三角形的線段叫做三角形的邊;相鄰兩邊的公共端點叫做三角形的頂點;相鄰兩邊所組成的角叫做三角形的內角,簡稱三角形的角.
2、三角形的表示:
三角形用符號「 」表示,頂點是A、B、C的三角形記作「 ABC」,讀作「三角形ABC」.
3、三角形的三邊關系:
(1)三角形的兩邊之和大於第三邊.
(2)三角形的兩邊之差小於第三邊.
(3)作用:
①判斷三條已知線段能否組成三角形
②當已知兩邊時,可確定第三邊的范圍.
③證明線段不等關系.
4、三角形的內角的關系:
(1)三角形三個內角和等於180°.
(2)直角三角形的兩個銳角互余.
5、三角形的穩定性:
三角形的形狀是固定的,三角形的這個性質叫做三角形的穩定性.
6、三角形的分類:
(1)三角形按邊分類:
不等邊三角形
三角形 底和腰不相等的等腰三角形
等腰三角形
等邊三角形
(2)三角形按角分類:
直角三角形(有一個角為直角的三角形)
三角形 銳角三角形(三個角都是銳角的三角形)
斜三角形
鈍角三角形(有一個角為鈍角的三角形)
把邊和角聯系在一起,我們又有一種特殊的三角形:等腰直角三角形.它是兩條直角邊相等的直角三角形.
7、三角形的三種重要線段:
(1)三角形的角平分線:
定義:在三角形中,一個內角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線.
性質:三角形的三條角平分線交於一點.交點在三角形的內部.
(2)三角形的中線:
定義:在三角形中,連接一個頂點和它對邊的中點的線段叫做三角形的中線.
性質:三角形的三條中線交於一點,交點在三角形的內部.
(3)三角形的高線:
定義:從三角形一個頂點向它的對邊所在直線作垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高).
性質:三角形的三條高所在的直線交於一點.銳角三角形的三條高線的交點在它的內部;直角三角形的三條高線的交點是它的斜邊的中點;鈍角三角形的三條高所在的直線的交點在它的外部;
8、三角形的面積:
三角形的面積= ×底×高
二、全等圖形:
定義:能夠完全重合的兩個圖形叫做全等圖形.
性質:全等圖形的形狀和大小都相同.
三、全等三角形
1、全等三角形及有關概念:
能夠完全重合的兩個三角形叫做全等三角形.兩個三角形全等時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角.
2、全等三角形的表示:
全等用符號「≌」表示,讀作「全等於」.如△ABC≌△DEF,讀作「三角形ABC全等於三角形DEF」.
註:記兩個全等三角形時,通常把表示對應頂點的字母寫在對應的位置上.
3、全等三角形的性質:全等三角形的對應邊相等,對應角相等.
4、三角形全等的判定:
(1)邊邊邊:有三邊對應相等的兩個三角形全等(可簡寫成「邊邊邊」或「SSS」).
(2)角邊角:兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成「角邊角」或「ASA」)
(3)角角邊:兩角和其中一角的對邊對應相等的兩個三角形全等(可簡寫成「角角邊」或「AAS」)
(4)邊角邊:兩邊和它們的夾角對應相等的兩個三角形全等(可簡寫成「邊角邊」或「SAS」)
直角三角形全等的判定:
對於特殊的直角三角形,判定它們全等時,還有HL定理(斜邊、直角邊定理):斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成「斜邊、直角邊」或「HL」)