當前位置:首頁 » 基礎知識 » 迪慶小考數學知識點匯總

迪慶小考數學知識點匯總

發布時間: 2022-06-30 14:50:21

『壹』 小學數學知識點總結(全部)

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

『貳』 小學數學知識點有哪些

數學作為一門具有很強邏輯性和連續性的學科,是每個小學生都應該掌握的基礎知識.小學數學重點是基礎知識的掌握基和學習,學習數學的標准就是能夠對該學籍范圍內的題目進行正確的解答.考察公式概念是小學數學重點要掌握的知識,下面這幾個學習方法帶你學好數學.

(同學們開講)

學習小學數學重點就是注重學習的方法,但是也需要學生有堅持不懈的精神.勤學多問不恥下問是學習的良好態度,他們會把你帶到一個更高的層次,掌握好學習方法,你會對每一天的新知識充滿興趣.

『叄』 小學數學知識點有哪些

小學數學知識點歸納:數學概念。

1.加法交換律:兩數相加交換加數的位置,和不變。

2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。

3.乘法交換律:兩數相乘,交換因數的位置,積不變。

4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。

5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。

如:(2+4)×5=2×5+4×5。

簡便乘法:被乘數、乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。

7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。

等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。

8.方程式:含有未知數的等式叫方程式。

9.一元一次方程式:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。

學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。

『肆』 小學的數學知識點總結歸納

1、數與代數:數的認識、數的運算、式與方程、比和比例。

2、空間與圖形:線與角、平面圖形、立體圖形、圖形與變換、圖形與位置。

3、統計與可能性:量的計量、統計、可能性。

4、實踐與綜合應用:探索規律、一般復合應用問題、典型應用問題、分數和百分數應用問題、比和比例問題、解決問題的策略、綜合應用問題。

(4)迪慶小考數學知識點匯總擴展閱讀:

整數

1、整數的意義:…像-4,-3,-2,-1,0,1,2,3,…這樣的數叫整數。

2、自然數:我們在數物體的時候,用來表示物體個數的1,2,3,4……叫做自然數。一個物體也沒有,用0表示,0也是自然數。

3、計數單位

一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。

每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。

4、數位

計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。

5、數的整除:整數a除以整數b(b≠0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a。

如果數a能被數b(b≠0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。

因為35能被7整除,所以35是7的倍數,7是35的約數。

7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3

比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。

8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18

9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。

10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18

解比例的依據是比例的基本性質。

11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y

12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y=k(k一定)或k/x=y

百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。

13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。

把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。

把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。

15、要學會把小數化成分數和把分數化成小數的化法。

16、最大公因數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)

17、互質數:公因數只有1的兩個數,叫做互質數。

18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。

19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)

20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公因數)

21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。

分數計算到最後,得數必須化成最簡分數。

個位上是0、2、4、6、8的數,都能被2整,即能用2進行

約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。

22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。

23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。

24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。

28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)

29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。

32、一天的時間:一天有24小時,一小時60分,1分60秒

『伍』 小升初數學總復習總歸納(必備知識點大全)

一、和差倍問題:

1、適用范圍:

已知兩個數的和,差,倍數關系。

2、公式:(和-差)÷2=較小數,較小數+差=較大數,和-較小數=較大數,(和+差)÷2=較大數,較大數-差=較小數。

二、年齡問題三個基本特徵:

1、兩個人的年齡差是不變的。

2、兩個人的年齡是同時增加或者同時減少的。

3、兩個人的年齡的倍數是發生變化的。

三、植樹問題:

1、基本類型:在直線或者不封閉的曲線上植樹,兩端都植樹 在直線或者不封閉的曲線上植樹,兩端都不植樹。在直線或者不封閉的曲線上植樹,只有一端植樹。

2、基本公式:棵數=段數+1、棵距×段數=總長、棵數=段數-1、棵距×段數=總長。

四、雞兔同籠問題

1、基本概念:雞兔同籠問題又稱為置換問題、假設問題,就是把假設錯的那部分置換出來。

2、基本公式:把所有雞假設成兔子:雞數=(兔腳數×總頭數-總腳數)÷(兔腳數-雞腳數)。把所有兔子假設成雞:兔數=(總腳數一雞腳數×總頭數)÷(兔腳數一雞腳數)。

五、盈虧問題:

1、基本概念:一定量的對象,按照某種標准分組,產生一種結果:按照另一種標准分組,又產生一種結果,由於分組的標准不同,造成結果的差異,由它們的關系求對象分組的組數或對象的總量。

2、基本思路:先將兩種分配方案進行比較,分析由於標準的差異造成結果的變化,根據這個關系求出參加分配的總份數,然後根據題意求出對象的總量。

六、周期循環與數表規律

1、周期現象:事物在運動變化的過程中,某些特徵有規律循環出現。

2、周期:我們把連續兩次出現所經過的時間叫周期。

『陸』 小學升初中的數學知識點

全國小升初是小學生升入初中生的簡稱。按照中國義務教育政策與相關法律法規,小學升入初中就讀是不需要升學考試的,大多為免試就近入學,但是民辦初中和部分公辦重點初中依然舉辦小升初的升學選拔性考試。小升初考試的組織形式小升初考試大體可以總結為兩種主要形式,即筆試和面試。其中筆試考查主要是數學和語文兩個科目,一般來說每科平均考試時間為60分鍾。小升初考試是由各個學校半公開組織 的選拔性考試,因此它具有不穩定性和多樣性(各學校考試時間不一樣,出題角度不同)。針對這樣的特性,目前的社會上呈現出眾多紛繁復雜的應考策略。很多家長的文章中也把小升初簡寫為:xsc。考試形式其中筆試考查主要是語文和數學兩個科目。題目來源是所在中學初二上學期或初一下學期的期末考試題;重點從語法和閱讀理解兩個方面來測試學生。考試時間最長為二十分鍾,最短為五六分鍾。小升初考試是由各個學校半公開組織的選拔性考試。因此它具有不穩定性和多樣性。針對這樣的特性,在此我想就這一角度入手談談小升初考試的誤區。小升初不僅是考試,更應注重知識的實用性。說明:小升初考試內容屬於地方教委入學政策,全國各地考試政策不盡相同,需要查詢具體學校相關規定;小升初免試就近入學,單校劃片學校,用對口直升方式招生;多校劃片學校,按隨機派位等方式招生。公辦、民辦學校均不得採取考試方式選拔學生;逐步減少特長招生,到2016年特長生比例降到5%以內;公辦學校不得以各類競賽證書或考級證明作為招生入學依據。

『柒』 數學知識點總結

小學數學知識匯總
圖形的周長、面積、體積公式及相關知識
長方形周長 =(長+寬)×2
長方形面積 =長×寬
正方形周長 = 邊長 × 4
正方形面積 = 邊長×邊長
三角形面積 = 底×高÷2
平行四邊形面積 = 底 × 高

梯形面積 = (上底 +下底)×高÷2
圓的周長等於∏×直徑或∏×半徑×2 即C =∏d或C = 2∏r
圓的面積等於3.14×半徑的平方。
環形的面積等於3.14×(大半徑的平方-
小半徑的平方)
半圓的周長 = 圓的周長的一半 + 直徑
即:∏ r + 2 r
長方體的表面積 = (長×寬 + 長×高 + 寬×高)× 2
長方體的體積 = 長 × 寬 × 高

底面積×高

正方體的表面積 = 棱長×棱長× 6
正方體的體積 = 棱長×棱長×棱長
圓柱體的表面積=2個底面積 + 側面積

側面積=底面周長×高
圓柱體的體積 = 底面積 × 高

圓錐體的體積 = 底面積 × 高 ÷ 3
長方體和正方體都有6個面、8個頂點和12條棱。
相交於同一頂點的三條棱分別叫做長方體的長、寬、高。
正方體可以看作是特殊的長方體。
最少需要8個相同的小正方體才能拼成一個大正方體。
圓柱體上下兩個底面都是圓形,而且它們的面積都相等。
圓柱體的側面展開是長方形,它的長是圓柱底面的周長,它的高是圓柱的高。
圓錐的底面也是圓形,側面展開是扇形。
圓柱體的體積是和它等底等高的圓錐體的體積的3倍。
大圓的半徑是小圓的直徑,則大圓的面積是小圓的面積的4倍。
在正方形里剪一個最大的圓,正方形的邊長就是圓的直徑。
在長方形里剪一個最大的圓,長方形的寬就是圓的直徑。
把一個長方形拉成一個平行四邊形以後,面積比原來變小了。
長方形的周長要先除以2,然後再按比例分配;而長方體的棱長總和要先除以4,然後再分配。
圓的半徑擴大3倍,周長也擴大3倍,面積擴大9倍。
正方體的棱長擴大3倍,則表面積擴大9倍,體積擴大27倍。
圓柱體或圓錐體的底面半徑擴大2倍,體積擴大4倍。
常見的統計圖有條形統計圖、折線統計圖和扇形統計圖。
條形統計圖的特點是很容易看出各種數量的多少;折線統計圖的特點是不但可以看出各種數量的多少,而且能夠清楚地表示出數量增減變化的情況;扇形統計圖的特點是可以清楚地表示出各部分數量和總數之間的關系
幾何初步知識
直線沒有端點,兩端可以無限延長,不能測量長度。
射線有一個端點,一端可以無限延長,不能測量長度。
線段有兩個端點,不能延長,可以測量長度。
過一點可以畫無數條直線,過兩點可以畫一條直線。
在同一平面內,兩條直線的相互位置有相交和平行兩種。
在同一平面內,不相交的兩條直線叫做平行線。
一個頂點和從這個頂點出發的兩條射線組成的圖形叫做角。
大於0度小於90度的角叫銳角;大於90度小於180度的角叫鈍角。
三角形的內角和是180度;四邊形的內角和是360度。
直角是90度,平角是180度,周角是360度。
三角形按角可以分為直角三角形、銳角三角形和鈍角三角形。
三角形按邊可分為等邊三角形、等腰三角形和不等邊三角形;等邊三角形三條邊都相等,三個角都是60度。
長方形和正方形都是特殊的平行四邊形。
當圓、正方形和長方形的周長相等時,圓的面積最大,長方形的面積最小。
三角形具有穩定性,平行四邊形容易變形。
等底等高的情況下,三角形的面積是平行四邊形面積的一半。
圓是平面上的一種曲線圖形,圍成圓的曲線的長度叫做圓的周長;圓所在的平面的大小叫做圓的面積。
從圓心到圓上任意一點的線段叫做圓的半徑。
通過圓心,並且兩端都在圓上的線段叫做圓的直徑。
頂點在圓心的角叫做圓心角;圓內最長的線段是直徑。
圓有無數條半徑和無數條直徑。
在同一圓內,所有的半徑都相等,所有的直徑也都相等。
在同一圓內,直徑是半徑的2倍。
圓的周長與直徑的比值叫做圓周率,用字母∏來表示,是祖沖之最早計算出來的。∏≈ 3.14
圓心決定了圓的位置,半徑決定了圓的大小。
扇形的大小是由半徑和圓心角來決定的 。
圓規兩角間的距離指的是圓的半徑。
如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就叫做軸對稱圖形,摺痕所在的直線叫做對稱軸。
圓有無數條對稱軸,長方形有兩條對稱軸,正方形有四條對稱軸,等腰三角形有一條對稱軸,等邊三角形有三條對稱軸,等腰梯形有一條對稱軸,半圓或扇形都有一條對稱軸。
量的計量
常用的長度單位有千米、米、分米、厘米和毫米。
常用的面積單位有平方千米,公頃、平方米,平方分米和平方厘米。
常用的體積單位有立方米,立方分米,立方厘米。
常用的容積單位有升和毫升。1升=1000毫升。
立方分米就是升,立方厘米就是毫升。
常用的重量單位有噸,千克和克。
常用的人民幣單位有元、角、分。
常用的時間單位有世紀、年、月、日、時、分、秒。
1世紀=100年,1年=12月,大月31天,小月30天。
一年有12個月,分為四個季度,每個季度三個月。
每四年中有三個平年和一個閏年。平年2月有28天,閏年2月有29天。
代數初步知識
含有未知數的等式叫做方程。
求方程的解的過程叫做解方程。
兩個數相除又叫做兩個數的比;表示兩個比相等的式 子叫做比例。
比的後項不能為0。
比的前項除以後項的商,叫做比值。比值可以是整數、小數或分數。
比的前項和後項都乘上或除以相同的數(0除外),比值不變,叫做比的基本性質。
在比例里,兩個內項的積等於兩個外項的積,叫做比例的基本性質 。
圖上距離和實際距離的比叫做比例尺。
比例尺有數值比例尺和線段比例尺兩種。
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值一定,這兩種量就叫做乘正比例的量,它們的關系叫做正比例關系。即: x ÷ y = k (一定)
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做乘反比例的量,它們的關系叫做反比例關系。即: x × y = k ( 一定 )
圓的半徑和面積不成比例 和 周長成正比例。
三角形的面積一定,底和高成反比例。
比例尺一定,圖上距離和實際距離成正比例。
一種商品先降價10%,再提價10%,價格比原來降低了。
甲比乙多25%,則乙比甲少20%。

數和數的運算
我們在數物體的時候,用來表示物體個數的1 ,2 ,3 …… 叫做自然數。0也是自然數,是最小的自然數,沒有最大的自然數。自然數都是整數。
把單位「l」平均分成若干份,表示這樣的一份或幾份的數叫做分數。表示其中一份的數是這個分數的分數單位。
兩個整數相除,它們的商可以用分數表示。即:a÷b = (b≠0)
分子和分母是互質數的分數叫做最簡分數。
真分數的倒數一定大於1,但假分數的倒數不一定小於1。
分數的分子和分母同時乘上或者除以相同的數(0除外),分數的大小不變,叫做分數的基本性質。
小數的末尾添上「0」或者去掉「0」,小數的大小不變,這叫做小數的基本性質。
一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷地重復出現,這樣的小數叫做循環小數。
循環節從小數部分第一位就開始的叫做純循環小數;循環節不是從小數部分第一位開始的叫做混循環小數。
表示一個數是另一個數的百分之幾的數叫做百分數,也叫做百分率或百分比。百分數沒有單位。
整數a除以整數b( b≠0 ),除得的商正好是整數而沒有餘數,我們就說a能被b整除,或者b能整除a 。
如果a能被b整除,我們就說a是b的倍數,b是a的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它的本身。
一個數的倍數的個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。
一個數,如果只有1和它本身兩個約數,叫做質數。
一個數,如果除了1和它本身,還有別的約數,叫做合數。
把一個合數寫成幾個質數相乘的形式,叫做分解質因數。
幾個數公有的倍數叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
幾個數公有的約數叫做這幾個數的公約數,其中最大的一個數叫做這幾個數的最大公約數。
公約數只有1的兩個數,叫做互質數。
能被2整除的數叫做偶數,不能被2整除的數叫做奇數。一個自然數不是偶數就是奇數。
最小的偶數是0,最小的奇數是1 ,最小的質數是2 ,最小的合數是4 。
除了0和2以外,所有的偶數都是合數。
能同時被2、3、5整除的最小的兩位數是30,最小的三位數是120。
一個算式,如果只含有同一級運算,要按照從左往右的順序依次計算。如果含有兩級運算,要先算乘除,後算加減。如果有括弧,還要先算括弧裡面的,再算括弧外面的。
乘積是1的兩個數叫做互為倒數。
甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
利息 = 本金 × 利率 × 時間
稅後利息 = 本金 × 利率 × 時間 ×80%

概念
數的讀法和寫法
1. 整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個「億」或「萬」字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。
2. 整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3. 小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作「點」,小數部分從左向右順次讀出每一位數位上的數字。
4. 小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。
5. 分數的讀法:讀分數時,先讀分母再讀「分之」然後讀分子,分子和分母按照整數的讀法來讀。
6. 分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。
7. 百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。
8. 百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。
1. 准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。 例如把 1254300000 改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。
2. 近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。
3. 四捨五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略 345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。
4. 大小比較
1. 比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
2. 比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
(三)數的互化
1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
2. 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3. 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。
4. 小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。
5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
6. 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除
1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。
2. 求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數。
3. 求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4. 成為互質關系的兩個數:1和任何自然數互質;相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質;兩個合數的公約數只有1時,這兩個合數互質。
(五)約分和通分
約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
第一章 數和數的運算
(一)整數
整數的意義
自然數和0都是整數。
自然數
我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
數位
計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
數的整除
整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。
一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。
一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
例如把28分解質因數
幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。
公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:
1和任何自然數互質。
相鄰的兩個自然數互質。
兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。
如果兩個數是互質數,它們的最大公約數就是1。
幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……
3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。
如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
(二)小數的意義
把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。
小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。
帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。
有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54 」 。
純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環節只有一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
(三)分數的意義
把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。
分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。
帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。
約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數,叫做約分。
分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數
表示一個數是另一個數的百分之幾的數叫做百分數,也叫做百分率或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。

『捌』 小學六年級數學必考知識點有哪些

小學六年級數學必考知識點有如下:

1、在熟悉的生活情境中初步認識負數,能正確的讀、寫正數和負數,知道0既不是正數也不是負數。

2、初步學會用負數表示一些日常生活中的實際問題,體驗數學與生活的密切聯系。

3、能藉助數軸初步學會比較正數、0和負數之間的大小。

4、16℃讀作十六攝氏度,表示零上16℃;-16℃讀作負十六攝氏度,表示零下16℃。

5、如果2000表示存入2000元,那麼-500表示支出了500元。向東走3m記作+3,向西4m記作-4。

6、在數軸上,從左到右的順序就是數從小到大的順序。0是正數和負數的分界點,所有的負數都在0的左邊,也就是負數都比0小,而正數都比0大,負數都比正數小。負號後面的數越大,這個數就越小。

『玖』 小學數學知識點總結

《小學蘇教數學一二三四五六上冊知識點歸納》網路網盤資源免費下載

鏈接:https://pan..com/s/1C0FyvStiI3Q1lrSHYNkUsw

提取碼:9wi8

小學蘇教數學一二三四五六上冊知識點歸納|一年級上冊數學期末復習知識點歸納(17頁).doc|五年級上冊數學數學期末復習知識點歸納(7頁).doc|五年級上冊數學期末復習知識點歸納(23頁)(教師版).docx|五年級上冊數學期末復習知識點歸納(21頁)(學生版).docx|四年級上冊數學期末復習知識點歸納(20頁)(教師版).docx|四年級上冊數學期末復習知識點歸納(18頁)(學生版).docx|三年級上冊數學數學期末復習知識點歸納(3頁).doc|三年級上冊數學期末復習知識點歸納(22頁)(教師版).docx|三年級上冊數學期末復習知識點歸納(20頁)(學生版).docx|六年級上冊數學期末復習知識點歸納(17頁)(教師版).doc|六年級上冊數學期末復習期末知識點歸納(4頁).doc|六年級上冊期末復習期末知識點歸納(16頁)(學生版).doc|二年級上冊數學期末復習知識點歸納(3頁).docx