① 數學八年級全等三角形這一章角平分線的重難點歸納
全等三角形的判定:SSS SAS ASA AAS HL 角平分線的判定:角的內部到角到三角形三邊距離相等的點有四個,其中內部有一個. 如果兩個三角形的底邊
② 數學全等三角形判定方法
首先SSS(邊邊邊),即三邊對應相等的兩個三角形全等。
③ 全等、相似三角形和三角函數的知識歸納總結
自學啊,不錯。但是數學學習的過程就是總結,還以自己總結比較好。你現在初一,我初二,但初一時也學完了這三項。但我建議你先別學三角函數,因為解析幾何好幾何還不是一碼事——你這樣的自學沒有知識連貫性,所以許多三角函數題都做不了,但是全等你們應該講完了,而相似還是值得一學的,做題很有用!
我給你總結吧,過幾天給你
④ 求人教版數學八年級上第十一章《全等三角形》全張總結
全等三角形
能夠完全重合的兩個三角形叫做全等三角形,「全等」用符號「≌」表示,讀作「全等於」。
當兩個三角形完全重合時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。
由此,可以得出:全等三角形的對應邊相等,對應角相等。
證明:有3種
1.三組對應邊分別相等(簡稱SSS)
2.有一個角和夾這個角的兩條夾邊對應相等的兩個三角形全等(SAS)
3.有兩個角和這兩個角的夾邊對應相等的兩個三角形全等(ASA)
注:S是邊的英文縮寫,A是角的英文縮寫
由3可推到
4.有兩角和其中一個角的對邊對應相等的兩個三角形全等(AAS)
並且由這些可證明:
線段垂直平分線上的點到線段兩端點的距離相等.
角平分線上的點到角兩邊的距離相等
還有一種判定方法
直角三角形獨有:
斜邊和一條直角邊對應相等的兩個直角三角形全等(HL)
全等三角形定義
1、 概念理解:
兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形,而兩個三角形全等的判定是幾何證明的有力工具。
2、三角形全等的判定公理及推論有:
(1)「邊角邊」簡稱「SAS」
(2)「角邊角」簡稱「ASA」
(3)「邊邊邊」簡稱「SSS」
(4)「角角邊」簡稱「AAS」
注意:在全等的判定中,沒有AAA和SSA,這兩種情況都不能唯一確定三角形的形狀。
3、 全等三角形的性質:
全等三角形的對應角相等、對應邊相等。
注意:
1)性質中三角形全等是條件,結論是對應角、對應邊相等。
而全等的判定卻剛好相反。
2)利用性質和判定,學會准確地找出兩個全等三角形中的對應邊與對應角是關鍵。在寫兩個三角形全等時,一定把對應的頂點,角、邊的順序寫一致,為找對應邊,角提供方便。
⑤ 初中數學知識點歸納
數學呢,是一個研究數量,結構變化和空間模型等等的含義的一種科學方式,它是物理化學等科目的基礎.而且和我們的日常生活有著很大的關聯,所以說,學好數學對於我們每個人來說都是非常重要的.下面就向大家來介紹一下怎麼學習初中數學吧!
學習數學還必要的,因為數學是從幼兒園開始就接觸的科目,如果說不會數學,那不是太丟人了嗎?以下就是關於怎麼學習初中數學的技巧:
積極做題
二:考試時的技巧
如果你是想得高分的話,你需要在選擇填空,還有計算題上是絕對不能丟分兒的,所以這需要你謹慎的做題.如果是一開始不知道一道題該怎麼做,但是後來突然明白的那一種,千萬要冷靜,不能瞎寫,要先在草稿紙上寫一遍,最後再放在答題紙上.
以上就是關於怎麼學習初中數學的一些技巧.希望大家是可以理解的.其實學習數學並不難,重要的是要多做題.並且了解題型的技巧.
⑥ 初二數學上冊第一章全等三角形、角平分線的判定的總結
1.全等三角形性質:
全等三角形的對應邊相等
全等三角形的對應角相等
2.判定
SSS,SAS,AAS,ASA,HL
3.角平分線性質
角平分線到兩邊距離相等
⑦ 初中數學知識點總結
初中數學概念及定義總結 三角形三條邊的關系 定理:三角形兩邊的和大於第三邊 推論:三角形兩邊的差小於第三邊 三角形內角和 三角形內角和定理 三角形三個內角的和等於180° 推論1 直角三角形的兩個銳角互余 推論2 三角形的一個外角等於和它不相鄰的兩個內角和 推論3 三角形的一個外角大雨任何一個和它不相鄰的內角 角的平分線 性質定理 在角的平分線上的點到這個角的兩邊的距離相等 判定定理 到一個角的兩邊的距離相等的點,在這個角的平分線上 等腰三角形的性質 等腰三角形的性質定理 等腰三角形的兩底角相等 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 推論2 等邊三角形的各角都相等,並且每一個角等於60° 等腰三角形的判定 判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等 推論1 三個角都相等的三角形是等邊三角形 推論2 有一個角等於60°的等腰三角形是等邊三角形 推論3 在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半 線段的垂直平分線 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 軸對稱和軸對稱圖形 定理1 關於某條之間對稱的兩個圖形是全等形 定理2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 定理3 兩個圖形關於某直線對稱,若它們的對應線段或延長線相交,那麼交點在對稱軸上 逆定理 若兩個圖形的對應點連線被同一條直線垂直平分,那這兩個圖形關於這條直線對稱 勾股定理 勾股定理 直角三角形兩直角邊a、b的平方和,等於斜邊c的平方,即 a2 + b2 = c2 勾股定理的逆定理 勾股定理的逆定理 如果三角形的三邊長a、b、c有關系,那麼這個三角形是直角三角形 四邊形 定理 任意四邊形的內角和等於360° 多邊形內角和 定理 多邊形內角和定理n邊形的內角的和等於(n - 2)·180° 推論 任意多邊形的外角和等於360° 平行四邊形及其性質 性質定理1 平行四邊形的對角相等 性質定理2 平行四邊形的對邊相等 推論 夾在兩條平行線間的平行線段相等 性質定理3 平行四邊形的對角線互相平分 平行四邊形的判定 判定定理1 兩組對邊分別平行的四邊形是平行四邊形 判定定理2 兩組對角分別相等的四邊形是平行四邊形 判定定理3 兩組對邊分別相等的四邊形是平行四邊形 判定定理4 對角線互相平分的四邊形是平行四邊形 判定定理5 一組對邊平行且相等的四邊形是平行四邊形 矩形 性質定理1 矩形的四個角都是直角 性質定理2 矩形的對角線相等 推論 直角三角形斜邊上的中線等於斜邊的一半 判定定理1 有三個角是直角的四邊形是矩形 判定定理2 對角線相等的平行四邊形是矩形 菱形 性質定理1 菱形的四條邊都相等 性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 判定定理1 四邊都相等的四邊形是菱形 判定定理2 對角線互相垂直的平行四邊形是菱形 正方形 性質定理1 正方形的四個角都是直角,四條邊都相等 性質定理2 正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 中心對稱和中心對稱圖形 定理1 關於中心對稱的兩個圖形是全等形 定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱 梯形 等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 三角形、梯形中位線 三角形中位線定理 三角形的中位線平行與第三邊,並且等於它的一半 梯形中位線定理 梯形的中位線平行與兩底,並且等於兩底和的一半 比例線段 1、 比例的基本性質 如果a∶b=c∶d,那麼ad=bc 2、 合比性質 3、 等比性質 平行線分線段成比例定理 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例 推論 平行與三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行與三角形的第三邊 垂直於弦的直徑 垂徑定理 垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧 推論1 (1) 平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧 (2) 弦的垂直平分線過圓心,並且平分弦所對的兩條弧 (3) 平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧 推論2 圓的兩條平分弦所夾的弧相等 圓心角、弧、弦、弦心距之間的關系 定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距也相等 推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等 圓周角 定理 一條弧所對的圓周角等於它所對的圓心角的一半 推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直角 推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形 圓的內接四邊形 定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角 切線的判定和性質 切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線 切線的性質定理 圓的切線垂直於經過切點半徑 推論1 經過圓心且垂直於切線的直徑必經過切點 推論2 經過切點且垂直於切線的直線必經過圓心 切線長定理 定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角 弦切角 弦切角定理 弦切角等於它所夾的弧對的圓周角 推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等 和圓有關的比例線段 相交弦定理:圓內的兩條相交弦,被焦點分成的兩條線段長的積相等 推論:如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項 切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓焦點的兩條線段長的比例中項 推論 從圓外一點因圓的兩條割線,這一點到每條割線與圓的焦點的兩條線段長的積相
⑧ 初二數學全等三角形的基礎知識
1、三組對應邊分別相等的兩個三角形全等(SSS)。
2、有兩邊及其夾角對應相等的兩個三角形全等(SAS)。
3、有兩角及其夾邊對應相等的兩個三角形全等(ASA)。
4、有兩角及一角的對邊對應相等的兩個三角形全等(AAS)。
5.斜邊及一直角邊對應相等的兩個直角三角形全等(HL)
注意:沒有邊邊角。
這個應該是很簡單的概念問題啦、書上也有沒錯。這中圖形證明題目貌似需要多練、多觀察。這就是要點、也沒什麼難度的,只要搞清楚這幾個概念的意思、這就已經拿下5成叻。
你應該做這方面題目該怎樣下手吧?、如果不知道,我有些容易上手的辦法,再問我就OK叻。
⑨ 人教版初二數學下學期全等三角形知識點總結
三角形是多邊形中邊數最少的一種。它的定義是:由不在同一條直線上的三條線段首尾順次相接組成的圖形叫做三角形。
三條線段不在同一條直線上的條件,如果三條線段在同一條直線上,我們認為三角形就不存在。另外三條線段必須首尾順次相接,這說明三角形這個圖形一定是封閉的。三角形中有三條邊,三個角,三個頂點。
三角形中的主要線段
三角形中的主要線段有:三角形的角平分線、中線和高線。
這三條線段必須在理解和掌握它的定義的基礎上,通過作圖加以熟練掌握。並且對這三條線段必須明確三點:
(1)三角形的角平分線、中線、高線均是線段,不是直線,也不是射線。
(2)三角形的角平分線、中線、高線都有三條,角平分線、中線,都在三角形內部。而三角形的高線在當△ABC是銳角三角形時,三條高都是在三角形內部,鈍角三角形的高線中有兩個垂足落在邊的延長線上,這兩條高在三角形的外部,直角三角形中有兩條高恰好是它的兩條直角邊。
(3)在畫三角形的三條角平分線、中線、高時可發現它們都交於一點。在以後我們可以給出具體證明。今後我們把三角形三條角平分線的交點叫做三角形的內心,三條中線的交點叫做三角形的重心,三條高的交點叫做三角形的垂心。
三角形的按邊分類
三角形的三條邊,有的各不相等,有的有兩條邊相等,有的三條邊都相等。所以三角形按邊的相等關系分類如下:
等邊三角形是等腰三角形的一種特例。
判定三條邊能否構成三角形的依據
△ABC的三邊長分別是a、b、c,根據公理「連接兩點的所有線中,線段最短」。可知:
③a+b>c,①a+c>b,②b+c>a
定理:三角形任意兩邊的和大於第三邊。
由②、③得 b―a<c,且b―a>―c
故|a―b|<c,同理可得|b―c|<a,|a―c|<b。
從而得到推論:
三角形任意兩邊的差小於第三邊。
上述定理和推論實際上是一個問題的兩種敘述方法,定理包含了推論,推論也可以代替定理。另外,定理和推論是判定三條線段能否構成三角形的依據。如:三條線段的長分別是5、4、3便能構成三角形,而三條線段的長度分別是5、3、1,就不能構成三角形。
判定三條邊能否構成三角形
對於某一條邊來說,如一邊a,只要滿足|b-c|<a<b+c,則可構成三角形。這是因為|b-c|<a,即b-c<a,且b-c>-a.也就是a+c>b且a+b>c,再加上b+c>a,便滿足任意兩邊之和大於第三邊的條件。反過來,只要a、b、c三條線段滿足能構成三角形的條件,則一定有|b-c|<a<b+c。
在特殊情況下,如果已知線段a最大,只要滿足b+c>a就可判定a、b、c三條線段能夠構成三角形。同時如果已知線段a最小,只要滿足|b-c|<a,就能判定三條線段a、b、c構成三角形。
證明三角形的內角和定理
除了課本上給出的證明方法外還有多種證法,這里再介紹兩種證法的思路:
方法1 如圖,過頂點A作DE‖BC,
運用平行線的性質,可得∠B=∠2,
∠C=∠1,從而證得三角形的內角
和等於平角∠DAE。
方法2 如圖,在△ABC的邊BC上任取
一點D,過D作DE‖AB,DF‖AC,
分別交AC、AB於E、F,再運用平行
線的性質可證得△ABC的內角和等於
平角∠BDC。
三角形按角分類
根據三角形的內角和定理可知,三角形的任一個內角都小於180°,其內角可能都是銳角,也可能有一個直角或一個鈍角。
三角形按角可分類如下:
根據三角形的內角和定理可有如下推論:
推論1 直角三角形的兩個銳角互余。
推論2 三角形的一個外角等於和它不相鄰的兩個內角的和。
推論3 三角形的一個外角大於任何一個和它不相鄰的內角。
同時我們還很容易得到如下幾條結論:
(1)一個三角形最多有一個直角或鈍角。
(2)一個三角形至少有兩個內角是銳角。
(3)一個三角形至少有一個角等於或小於60°(否則,若三個內角都大於60°;則這個三角形的內角和大於180°,這與定理矛盾)。
(4) 三角形有六個外角,其中兩兩是對頂角相等,所以三角形的三個外角和等於360°。
全等三角形的性質
全等三角形的兩個基本性質
(1)全等三角形的對應邊相等。
(2)全等三角形的對應角相等。
確定兩個全等三角形的對應邊和對應角
怎樣根據已知條件准確迅速地找出兩個全等三角形的對應邊和對應角?其方法主要可歸結為:
(1)若兩個角相等,這兩個角就是對應角,對應角的對邊是對應邊。
(2)若兩條邊相等,這兩條邊就是對應邊,對應邊的對角是對應角。
(3)兩個對應角所夾的邊是對應邊。
(4)兩個對應邊所夾的角是對應角。
由全等三角形的定義判定三角形全等
由全等三角形的定義知,要判定兩個三角形全等,需要知道三條邊,三個角對應相等,但在應用中,利用定義判定兩個三角形全等卻是十分麻煩的,因而需要找到能完全確定一個三角形的條件,以便用較少的條件,簡便的方法來判定兩個三角形的全等。
判定兩個三角形全等的邊、角、邊公理
內容:有兩邊和它們的夾角對應相等的兩個三角形全等(即SAS)。
這個判定方法是以公理形式給出的,我們可以通過實踐操作去驗證它,但驗證不等於證明,這點要區分開來。
公理中的題設條件是三個元素:邊、角、邊,意指兩條邊和這兩條邊所夾的角對應相等。不能理解成兩邊和其中一個角相等。否則,這兩個三角形就不一定全等。
例如 在△ABC和△A′B′C′中,
如右圖,AB=A′B′,∠A=∠A′,
BC=A′C′,但是△ABC不全等於
△A′B′C′。
又如,右圖,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,AC=A′C′,但△ABC和△A′B′C′不全等。
原因就在於兩邊和一角對應相等不是
公理中所要求的兩邊和這兩條邊的夾
角對應相等的條件。
說明:從以上兩例可以看出,SAS≠SSA。
判定兩個三角形全等的第二個公理
內容:有兩角和它們的夾邊對應相等的兩個三角形全等(即ASA)。
這個公理也應該通過畫圖和實驗去進一步理解它。
公理強調了兩角和這兩角的夾邊對應相等,這里實質上包含了一個順序關系。千萬不能理解成為在其中一個三角形中是兩角和其夾邊,而在另一個三角形中卻是兩角和其中一角的對邊。
如右圖,在△ABC和△A′B′C′中,
∠A=∠A′,∠B=∠B′,AB=A′C′,
但這兩個三角形顯然不全等。原因就是
沒有注意公理中「對應」二字。
公理一中的邊、角、邊,其順序是不能改變的,即SAS不能改為SSA或ASS。而ASA
公理卻能改變其順序,可改變為AAS或SAA,但兩個三角形之間的「對應」二字不能變。同時這個公理反映出有兩個角對應相等,實質上是在兩個三角形中有三個角對應相等,故在應用過程中只須注意有一條對應邊相等就行了。
由公理二可知,有一個銳角與一條邊對應相等的兩個直角三角形全等
判定兩個三角形全等的邊、邊、邊公理
公理:三條邊對應相等的兩個三角形全等(即邊、邊、邊公理)。
邊、邊、邊公理在判定兩個三角形全等時,其對應邊就是相等的兩條邊。
這個公理告訴我們,只要一個三角形的三邊長度確定了,則這個三角形的形狀就完全確定了。這就是三角形的穩定性。
判定兩個三角形全等
通過以上三個公理的學習,可以知道,在判定兩個三角形全等時,無需根據定義去判定兩個三角形的三角和三邊對應相等,而只需要其中三對條件。
三個角和三條邊這六個條件中任取三個條件進行組合。無非有如下情況:
(1)三邊對應相等。
(2)兩邊和一角對應相等。
(3)一邊和兩角對應相等。
(4)三角對應相等。
HL公理
我們知道,滿足邊、邊、角對應相等的兩個三角形不一定全等。
但是,對於兩個直角三角形來說,這個結論卻一定成立。
斜邊、直角邊公理:有斜邊和一條直角邊對應相等的兩個直角三角形全等(簡寫為HL)。
這個公理的題設實質上也是三個元素對應相等,其本身包含了一個直角相等。這種邊、 邊、角對應相等的兩個三角形全等成立的核心是有一個角是直角的條件。由於直角三角形是一種特殊的三角形,所以過去學過的四種判定方法對於直角三角形照常適用。
角平分線的性質定理和逆定理
性質定理:在角平分線上的點到這個角的兩邊的距離相等。
逆定理:到一個角的兩邊距離相等的點,在這個角的平分線上。
點在角平分線上點到這個角的兩邊距離相等。
用符號語言表示角平分線的性質定理和逆定理
性質定理:
∵P在∠AOB的平分線上
PD⊥OA,PE⊥OB
∴PD=PE
逆定理:
∵PD=PE,PD⊥OA,PE⊥OB
∴點P在∠AOB的平分線上。
角平分線定義
如果一條射線把一個角分成兩個相等的角,那麼這條射線叫做這個角的平分線。
角的平分線是到角兩邊距離相等的所有點的集合。
三角形角平分線性質
三角形三條平分線交於一點,並且交點到三邊距離相等。
互逆命題
在兩個命題中,如果第一個命題的題設是第二個命題的結論,而第一個命題的結論是第二個命題的題設,那麼這兩個命題叫做互逆命題,如果把其中一個叫做原命題,那麼另一個叫做它的逆命題。
原命題和逆命題的真假性
每個命題都有逆命題,但原命題是真命題,而它的逆命題不一定是真命題,原命題和逆命題的真假性一般有四種情況:真、假;真、真;假、假;假、真。
互逆定理
如果一個定理的逆命題經過證明是真命題,那麼它也是一個定理,這兩個定理叫做互逆定理,其中一個叫做另一個的逆定理。
每個命題都有逆命題,但不是所有的定理都有逆定理
尺規作圖
限定用直尺(沒有刻度)和圓規的作圖方法叫尺規作圖。
基本作圖
最基本最常見的尺規作圖稱之為基本作圖,主要有以下幾種:
(1)作一個角等於已知角;
(2)平分已知角;
(3)過一點作已知直線的垂線;
(4)作已知線段的垂直平分線;
(5)過直線外一點作已知直線的平行線。
有關概念
有兩邊相等的三角形稱為等腰三角形。
三邊都相等的三角形稱為等邊三角形,又稱為正三角形。
有一個直角的等腰三角形稱為等腰直角三角形。
等邊三角形和等腰直角三角形都是等腰三角形的特例。
等腰三角形的有關概念
等腰三角形中,相等的兩邊稱為腰,另一邊稱為底邊,兩腰的夾角稱為頂角,底邊上的兩個角稱為底角。
等腰三角形的主要性質
兩底角相等。
如圖,ΔABC中AB=AC,取BC中點D,連結AD,
容易證明:ΔABD≌ΔACD,∴∠B=∠C。
如圖,ΔABC中為等邊三角形,
那麼,由AB=AC,得∠B=∠C,
由CA=CB,得∠A=∠B,
於是∠A=∠B=∠C,但∠A+∠B+∠C=180°,
∴∠A=∠B=∠C=60°
如圖,ΔABC中AB=AC,且AD平分∠BAC,
那麼由ΔABD≌ΔACD,
可得BD=CD,∠ADB=∠ADC,
但∠ADB+∠ADC=180°,
∴∠ADB=90°,從而AD⊥BC,
由此又可得到另外兩個重要推論。
兩個重要推論
等腰三角形頂角的平分線垂直且平分底邊;
等邊三角形各內角相等,且都等於60°。
等腰三角形性質及其推論的另一種論述方法
三角形中,相等的邊所對的角相等。
等腰三角形頂角的平分線、底邊上的中線和高三線合而為一。
等腰三角形的判定定理及其兩個推論的核心都可概括為等角對等邊。它們都是證明兩條線段相等的重要方法。
推論3
在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半。
容易證明:這個推論的逆命題也是正確的。即:在直角三角形中,如果一條直角邊等於斜邊的一半,那麼這條直角邊所對的角等於30°。
運用
利用等腰三角形的判定定理和性質定理容易證明結論:「在一個三角形內,如果兩條邊不等,那麼它們所對的角也不等,大邊所對的角也較大;反過來,在一個三角形中,如果兩個角不等,那麼它們所對的邊也不等,大角所對的邊較大。」
對稱軸及中心
線段的垂直平分線把線段分為相等的兩部分。
線段的中點就是它的中心,今後要學習「線段是關於中點對稱的中心圖形」。
線段是以它的中垂線為對稱軸的圖形。
三線合一的定理的逆定理
如圖所示,線段中垂線的性質定理的幾何語言為:
,
於是可以用來判定等腰三角形,其定理實質上是
三線合一定理的逆定理。
「距離」不同,「心」也不同
「線段垂直平分線的性質定理與逆定理中的「距離」是指「兩點間的距離」,而角平分線的性質定理與逆定理中的「距離」是指「點到直線的距離」。
三角形三條角平分線相交於一點,這點到三邊的距離相等(這點稱為三角形的內心)。
三角形三邊的垂直平分線相交於一點,這點到三個頂點的距離相等(這點稱為三角形的外心)。
重要的軌跡
圖(A)所示。到角的兩邊OA、OB的距
離相等的點P1、P2,P3…組成一條射
線OP,即點的集合。
如圖(B)所示,到線段AB的兩端點的距離
相等的所有點P1、P2、P3…組成一條直
線P1P2,因此這條直線可以看成動點形
成的「軌跡」。
第十三節軸線稱和軸對稱圖形
軸對稱
把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那麼這兩個圖形叫做關於這條直線對稱,也稱軸對稱。
根據定義,兩個圖形和如果關於直線l軸對稱,則:
(1)和這兩個圖形的大小及形狀完全相同。
(2)把其中一個圖形沿l翻折後,和應完全重合,自然兩個圖形中的有關對應點也應重合。
事實上,直線l是兩個軸對稱圖形中對應點連線的垂直平分線。所以容易得到如下性質:
性質1 關於某條直線對稱的兩個圖形是全等形。
性質2 如果兩個圖形關於某條直線對稱,那麼對稱軸是對應點連線的垂直平分線。
性質3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點必在對稱軸上。
不難看出,如果兩個圖形的對應點的連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱。
軸對稱圖形
如果一個圖形沿著一條直線翻折,直線兩旁的部分能夠互相重合,那麼這個圖形就叫做軸對稱圖形。
軸對稱和軸對稱圖形的區別和聯系
區別
①軸對稱是指兩個圖形關於某條直線對稱,而軸對稱圖形是一個圖形關於某條直線對稱。
②軸對稱的對應點分別在兩個圖形上,而軸對稱圖形中的對應點都在這一個圖形上。
③軸對稱中的對稱軸可能在兩個圖形的外邊,而軸對稱圖形中的對稱軸一定過這個圖形。
聯系
①都是沿著某一條直線翻折後兩邊能夠完全重合。
②如果把軸對稱的兩個圖形看成是一個整體,那麼這個整體反映出的圖形便是一個
軸對稱圖形;反過來,如果把一個軸對稱圖形中關於對稱軸的兩邊部分看成是兩個
圖形,那麼這兩部分對應的兩個圖形則關於這條對稱軸而成軸對稱。
第十四節 勾股定理
直角三角形
直角三角形中,兩銳角互余,夾直角的兩邊叫直角邊,直角的對邊叫斜邊,斜邊最長。
等腰直角三角形
等腰直角三角形是直角三角形中的特例。也是等腰三角形中的特例。等腰直角三角形的兩個底角都等於45°,頂角等於90°,相等的兩條直角邊是腰。
勾股定理
直角三角形中,兩直角邊a、b的平方和等於斜邊c的平方,即,這就是勾股定理。
判定直角三角形
如果ΔABC的三邊長為a、b、c,且滿足,那麼ΔABC是直角三角形,其中∠C=90°。
第十五節勾股定理的逆定理
勾股定理的逆定理
勾股定理是直角三角形的性質定理,而勾股定理的逆定理是直角三角形的判定定理。即:在△ABC中,若a2+b2=c2,則△ABC為Rt△。
如何判定一個三角形是否是直角三角形
首先求出最大邊(如c)。
驗證c2與a2+b2是否具有相等關系。
若c2=a2+b2,則△ABC是以∠C=90°的直角三角形。若c2≠a2+b2,則△ABC不是直角三角形。
**********************
*****攻關秘技****
方法1: 證明「文字敘述的
幾何命題」的方法
這類題目證明起來較一般幾何題要難,但還是有一定的思路和方法,一般先對題目進行總體分析,分析內容大致分為以下四點,然後逐步解決。
(1)分析命題的題設和結論;
(2)結合題設和結論畫出圖形;
(3)綜合題設結論和圖形寫出已知、求證;
(4)進行證題分析。
方法2: 等腰三角形的邊角求值法
在解等腰三角形的邊角求值題時,應考慮到各種可能的情況,還要排除不能構成三角形的情形。特別在解決線段或角的和差倍半關系時,常利用合成法或分解法,藉助添加輔助線來完成。
方法3: 判定一個三角形是
直角三角形的方法
判定一個直角三角形可利用勾股定理的逆定理、線段的垂直平分線性質或直角三角形的定義等,這些方法都要求掌握並能靈活運用。
方法4: 作圖題
幾何作圖題的每一步都必須有根有據,所以就要求我們掌握好已學過的公理、定理等。要掌握好尺規作圖,還要多畫多練。
知識點: 全等三角形的判定與性質
方 法: 分析法
能 力: 分析與解決問題的能力
難 度: 中等
知識點: 全等三角形;角平分線
方 法: 合成法;分解法
能 力: 分析與解決問題的能力;
邏輯推理能力
難 度: 中等偏難
知識點: 等腰直角三角形的性質;
線段的垂直平分線性質;勾股定理
方 法: 綜合法
能 力: 分析與解決問題的能力
難 度: 中等偏難
知識點: 線段的性質
方 法: 數形結合法
能 力: 空間想像能力;
分析與解決問題的能力
難 度: 中等偏難
****************************
%%%%%%熱點追蹤%%%%%
%%%%%%%%%%%%%%%%%%%%%%%
專題1: 一題多問、一題多圖和多題一解
提高分析問題和解決問題能力的方法是多種多樣的,而認真的設計課本中例題、習題的變式,挖掘其潛能也是方法之一。課本中的例題、習題為中考命題提供了豐富的源泉,它們具有豐富的內涵,在由知識轉化為能力上具有示範性和啟發性,在解題思路和方法上具有典型性和代表性。如果我們不以得到解答為滿足,而是在解完之後,深入其中作進一步的挖掘和多方位探索,不僅可得到一系列的新命題,也可從「題海」中解脫出來,達到事半功倍的效果。而且通過不同角度、不同方位去思考問題,探索不同的解答方案,從而拓寬了思路,培養了思維的靈活性和應變能力。
專題2: 利用擴、剖、串、改提高解題能力
學習幾何時,感到例題好學易懂,但對稍加變化拓寬引申的問題束手無策,原因是把例題的學習看成是孤立的學一道題,學完就了事,致使解題時缺乏應變能力,但如果平時能重視對題目的擴充、剖解、串聯和改編,就能較好地解決這一問題。
1.擴充:將原題條件拓展,使結論更加豐富充分。
2.剖解:分析原題,將較復雜的圖形肢解為若干個基本圖形,使問題化隱為顯。
3.串聯:由例題的形式(條件、結論等),聯想與它相似、相近、相反的問題。
4.改編:改變原題的條件形式,探索結論是否成立?
專題3: 分析、綜合、輔助線
我們研究不等式的有關問題時,會發現很多巧妙的方法,還會不斷學習掌握類比的數學思想,形數結合的思想,從未知向已知轉化的化歸思想,通過研究這些不斷變化的問題,全面把握不等式及不等式組的解法,從而提高我們分析問題、解決問題的能力。
專題4: 不等式的若干應用
在平面幾何里,證題思路主要有:(1)分析法,即從結論入手,逐步逆推,直至達到已知事實後為止。(2)綜合法,先從已知條件入手,運用已學過的公式、定理、性質等推出證明的結論。(3)兩頭湊,就是將綜合法和分析法有機地結合起來思考:一方面「從已知推可知」,從已知看可以推出哪些結論;另一方面「由未知看需知」,從所求結論逆推看需要什麼條件,一旦可知與需知溝通,證題思路即有了。添加輔助線是證明幾何題的重要手段,也是學習中的難點之一。
專題5: 幾何證題的基本方法有兩種:
一種是從條件出發,通過一系列已確立的命題逐步向前推演,直到達到證題目的,簡言之,這是由因導果的方法,我們稱之為直接證法或綜合法,綜合法證題的程序如下:欲證AB,由於AC,CD,…,x,而xB,故AB.
另一種則反過來,先假定命題的結論成立,考慮達到目的需具備什麼條件,通過一系列的逆推直到回朔到已知條件為止。簡言之,這是執果索因的方法,我們稱之為分析法,分析法證題的程序如下:欲證「AB」,也就是BA,若能分析出BC,CD,…,x,而xA,則斷言BA,也就是AB。
在實際操作上,往往把這兩種方法結合起來,先分析探求鋪路,再綜合解題成功,簡言之就是「倒著推,順著走」。
—平移、旋轉、對稱
在幾何證題中,常需要將一個圖形進行適當的變換,常見的幾何變換有全等變換,等積變換和相似變換。
本章只講全等變換,也就是不改變圖形的形狀和大小,只改變圖形位置的變換。
常見的全等變換的形式有三:
1.平移:將圖形中的某些線段乃至整個圖形平行移動到某一適當位置,作出輔助圖形,使問題得
到解決。平移的基本特點是:任一線段在平移過
程中,其長度保持不變。
2.旋轉:將平面圖形繞平面內一定點M旋轉一個定角α得到與原來形狀和大小相同的圖形,這樣
的變換叫做旋轉變換,M叫旋轉中心,α角叫旋
轉角。
旋轉變換的主要性質:(1)變換後的圖形與原圖形全等;(2)原圖中任一線段與旋轉後的對應線段所成的角等於旋轉角。
3.對稱:將一個圖形(或它的一部分)繞著一條直線翻轉180°,得一個與原來形狀、大小完全相同的圖形,這種變換稱為軸對稱變換,軸對稱變換的主要特點是:對稱軸是一切翻轉前後對應點連線的垂直平分線。
除軸對稱外,還有中心對稱,這一點我們將在下一章四邊形中講到。
方法總結:
復雜的圖形都是由較簡單的基本圖形組成,故可將復雜的圖形分解成幾個基本圖形這樣使問題顯而易見。
當直接證題有困難時,常通過添加輔助線構造基本圖形以達到解題的目的。
綜合法是從已知條件出發探索解題途徑的方法。
分析法是從結論出發,用倒推來尋找證明思路的方法。
兩頭「湊」的方法,也就是綜合運用以上兩種方法才能找到證明思路。(又叫分析――綜合法)。
轉化思想就是將復雜問題轉化、分解為簡單的問題;或將陌生的問題轉化為熟悉的問題來處理的一種思想。
⑩ 人教版數學初二 第十一章 全等三角形 知識點歸納
全等三角形的概念:能夠完全重合的兩個三角形叫做全等三角形.
全等三角形的表示:
(1)兩個全等的三角形重合時:重合的頂點叫做對應頂點;重合的邊叫做對應邊;重合的角叫做對應角.
全等三角形的性質:
(1)全等三角形的對應邊相等;全等三角形的對應角相等.
(2)全等三角形的周長、面積相等.
全等變換:只改變位置,不改變形狀和大小的圖形變換.
平移、翻折(對稱)、旋轉變換都是全等變換