當前位置:首頁 » 基礎知識 » 初一數學華師版下冊知識點大全

初一數學華師版下冊知識點大全

發布時間: 2022-06-30 08:50:13

Ⅰ 七年級下冊華師大版數學重點是什麼

計算、應用都是數學的重點!

Ⅱ 求華東師大版數學七年級下冊知識點整理

經過8年艱苦抗戰和1946到1949年的非常艱苦的反抗蔣介石國民黨的統治,中共黨的組織、人民武裝力量和山東解放區都有了極大的發展。到1945年抗日戰爭勝利結束時,山東解放區已經擁有12.5萬平方公里的土地,2800餘萬人口;山東地區的人民武裝發展到野戰軍27萬餘人,民兵71萬餘人,自衛團209萬餘人;山東的黨員發展到22萬餘人,黨組織形成了從山東分局、區黨委、地委、縣委、區委、鄉村支部自上而下的、統一的、完備的系統;山東解放區建立了全國第一個共產黨領導的省政府,從省到鄉建成了完備的、統一的政權系統。山東解放區已經成為中國共產黨領導的人民革命的重要力量和鞏固的根據地。

Ⅲ 初一下學期數學知識點總結

第五章:
本章重點:一元一次不等式的解法,
本章難點:了解不等式的解集和不等式組的解集的確定,正確運用
不等式基本性質3。
本章關鍵:徹底弄清不等式和等式的基本性質的區別.
(1)不等式概念:用不等號(「≠」、「<」、「>」)表示的不 等關系的式子叫做不等式
(2)不等式的基本性質,它是解不等式的理論依據.
(3)分清不等式的解集和解不等式是兩個完全不同的概念.
(4)不等式的解一般有無限多個數值,把它們表示在數軸上,(5)一元一次不等式的概念、解法是本章的重點和核心
(6)一元一次不等式的解集,在數軸上表示一元一次不等式的解集
(7)由兩個一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(同未知數的)一元一次不等式組成
(8).利用數軸確定一元一次不等式組的解集
第六章:
1.二元一次方程,二元一次方程組以及它的解,明確二元一次方程組的解是一對未知數的值,會檢驗一對數值是不是某一個二元一次方程組的解.
2.一次方程組的兩種基本解法,能靈活運用代入法,加減法解二元一次方程組及簡單的三元一次方程組.
3.根據給出的應用問題,列出相應的二元一次方程組或三元一次方程組,從而求出問題的解,並能根據問題的實際意義,檢查結果是否合理.
本章的重點是:二元一次方程組的解法——代入法,加減法以及列一次方程組解簡單的應用問題.
本章的難點是:
1.會用適當的消元方法解二元一次方程組及簡單的三元一次方程組;
2.正確地找出應用題中的相等關系,列出一次方程組.
第七章
本章重點是:整式的乘除運算,特別是對冪的運算及乘法公式的應用要達到熟練程度.
本章難點是:對乘法公式結構特徵和公式中字母意義的理解及乘法公式的靈活應用
1.冪的運算性質,正確地表述這些性質,並能運用它們熟練地進行有關計算.
2.單項式乘以(或除以)單項式,多項式乘以(或除以)單項式,以及多項式乘以多項式的法則,熟練地運用它們進行計算.
3.乘法公式的推導過程,能靈活運用乘法公式進行計算.
4.熟練地運用運算律、運演算法則進行運算,
5.體會用字母表示數和用字母表示式子的意義.通過式的變形,深入理解轉化的思想方法.
第八章:
1、認識事物的幾種方法:觀察與實驗 歸納與類比 猜想與證明 生活中的說理 數學中的說理
2、定義、命題、公理、定理
3、簡單幾何圖形中的推理
4、餘角、補交、對頂角
5、平行線的判定
判定:一個公理兩個定理。
公理:兩直線被第三條直線所截,如果同位角相等(數量關系)兩直線平行(位置關系)
定理:內錯角相等(數量關系)兩直線平行(位置關系)
定理:同旁內角互補(數量關系)兩直線平行(位置關系).
平行線的性質:
兩直線平行,同位角相等
兩直線平行,內錯角相等
兩直線平行,同旁內角互補
由圖形的「位置關系」確定「數量關系」
第九章:
重點:因式分解的方法,
難點:分析多項式的特點,選擇適合的分解方法
1. 因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分組分解法(十字相乘法)
3.運用因式分解解決一些實際問題.(包括圖形習題)
第十章:
重點是:用統計知識解決現實生活中的實際問題.
難點是:用統計知識解決實際問題.
1.統計初步的基本知識,平均數、中位數、眾數等的計算、
2.了解數據的收集與整理、繪畫三種統計圖.
3.應用統計知識解決實際問題能解決與統計相關的綜合問題.

Ⅳ 七年級數學下冊知識點總結

第一章 整式的運算
一. 整式
※1. 單項式
①由數與字母的積組成的代數式叫做單項式。單獨一個數或字母也是單項式。
②單項式的系數是這個單項式的數字因數,作為單項式的系數,必須連同數字前面的性質符號,如果一個單項式只是字母的積,並非沒有系數.
③一個單項式中,所有字母的指數和叫做這個單項式的次數.
※2.多項式
①幾個單項式的和叫做多項式.在多項式中,每個單項式叫做多項式的項.其中,不含字母的項叫做常數項.一個多項式中,次數最高項的次數,叫做這個多項式的次數.
②單項式和多項式都有次數,含有字母的單項式有系數,多項式沒有系數.多項式的每一項都是單項式,一個多項式的項數就是這個多項式作為加數的單項式的個數.多項式中每一項都有它們各自的次數,但是它們的次數不可能都作是為這個多項式的次數,一個多項式的次數只有一個,它是所含各項的次數中最高的那一項次數.
※3.整式單項式和多項式統稱為整式.

二. 整式的加減
¤1. 整式的加減實質上就是去括弧後,合並同類項,運算結果是一個多項式或是單項式.
¤2. 括弧前面是「-」號,去括弧時,括弧內各項要變號,一個數與多項式相乘時,這個數與括弧內各項都要相乘.
三. 同底數冪的乘法
※同底數冪的乘法法則: (m,n都是正數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
①法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
②指數是1時,不要誤以為沒有指數;
③不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;
④當三個或三個以上同底數冪相乘時,法則可推廣為 (其中m、n、p均為正數);
⑤公式還可以逆用: (m、n均為正整數)
四.冪的乘方與積的乘方
※1. 冪的乘方法則: (m,n都是正數)是冪的乘法法則為基礎推導出來的,但兩者不能混淆.
※2. .
※3. 底數有負號時,運算時要注意,底數是a與(-a)時不是同底,但可以利用乘方法則化成同底,
如將(-a)3化成-a3

※4.底數有時形式不同,但可以化成相同。
※5.要注意區別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※6.積的乘方法則:積的乘方,等於把積每一個因式分別乘方,再把所得的冪相乘,即 (n為正整數)。
※7.冪的乘方與積乘方法則均可逆向運用。
五. 同底數冪的除法
※1. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
※2. 在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,
④運算要注意運算順序.
六. 整式的乘法
※1. 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
①積的系數等於各因式系數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將系數相乘與指數相加混淆;
②相同字母相乘,運用同底數的乘法法則;
③只在一個單項式里含有的字母,要連同它的指數作為積的一個因式;
④單項式乘法法則對於三個以上的單項式相乘同樣適用;
⑤單項式乘以單項式,結果仍是一個單項式。
※2.單項式與多項式相乘
單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
單項式與多項式相乘時要注意以下幾點:
①單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;
②運算時要注意積的符號,多項式的每一項都包括它前面的符號;
③在混合運算時,要注意運算順序。
※3.多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合並同類項之前,積的項數應等於原兩個多項式項數的積;
②多項式相乘的結果應注意合並同類項;
③對含有同一個字母的一次項系數是1的兩個一次二項式相乘 ,其二次項系數為1,一次項系數等於兩個因式中常數項的和,常數項是兩個因式中常數項的積。對於一次項系數不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得到
七.平方差公式
¤1.平方差公式:兩數和與這兩數差的積,等於它們的平方差,
※即 。
¤其結構特徵是:
①公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;
②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
八.完全平方公式
¤1. 完全平方公式:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,
¤即 ;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2.結構特徵:
①公式左邊是二項式的完全平方;
②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
¤3.在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現 這樣的錯誤。
九.整式的除法
¤1.單項式除法單項式
單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
¤2.多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。

第二章 平行線與相交線
一.檯球桌面上的角
※1.互為餘角和互為補角的有關概念與性質
如果兩個角的和為90°(或直角),那麼這兩個角互為餘角;
如果兩個角的和為180°(或平角),那麼這兩個角互為補角;
注意:這兩個概念都是對於兩個角而言的,而且兩個概念強調的是兩個角的數量關系,與兩個角的相互位置沒有關系。
它們的主要性質:同角或等角的餘角相等;
同角或等角的補角相等。
二.探索直線平行的條件
※兩條直線互相平行的條件即兩條直線互相平行的判定定理,共有三條:
①同位角相等,兩直線平行;
②內錯角相等,兩直線平行;
③同旁內角互補,兩直線平行。
三.平行線的特徵
※平行線的特徵即平行線的性質定理,共有三條:
①兩直線平行,同位角相等;
②兩直線平行,內錯角相等;
③兩直線平行,同旁內角互補。
四.用尺規作線段和角
※1.關於尺規作圖
尺規作圖是指只用圓規和沒有刻度的直尺來作圖。
※2.關於尺規的功能
直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。
圓規的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為圓心,任意長度為半徑畫一段弧。
第三章生活中的數據
※1.科學記數法:對任意一個正數可能寫成a×10n的形式,其中1≤a<10,n是整數,這種記數的方法稱為科學記數法。
¤2.利用四捨五入法取一個數的近似數時,四捨五入到哪一位,就說這個近似數精確到哪一位;對於一個近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數字都叫做這個數的有效數字。
¤3.統計工作包括:
①設定目標;②收集數據;③整理數據;④表達與描述數據;⑤分析結果。

第四章 概率
¤1.隨機事件發生與不發生的可能性不總是各佔一半,都為50%。
※2.現實生活中存在著大量的不確定事件,而概率正是研究不確定事件的一門學科。
※3.了解必然事件和不可能事件發生的概率。
必然事件發生的概率為1,即P(必然事件)=1;不可能事件發生的概率為0,即P(不可能事件)=0;如果A為不確定事件,那麼0<P(A)<1

※4.了解幾何概率這類問題的計算方法
事件發生概率=
第五章 三角形
一.認識三角形
1.關於三角形的概念及其按角的分類
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
這里要注意兩點:
①組成三角形的三條線段要「不在同一直線上」;如果在同一直線上,三角形就不存在;
②三條線段「首尾是順次相接」,是指三條線段兩兩之間有一個公共端點,這個公共端點就是三角形的頂點。
三角形按內角的大小可以分為三類:銳角三角形、直角三角形、鈍角三角形。
2.關於三角形三條邊的關系
根據公理「連結兩點的線中,線段最短」可得三角形三邊關系的一個性質定理,即三角形任意兩邊之和大於第三邊。
三角形三邊關系的另一個性質:三角形任意兩邊之差小於第三邊。
對於這兩個性質,要全面理解,掌握其實質,應用時才不會出錯。
設三角形三邊的長分別為a、b、c則:
①一般地,對於三角形的某一條邊a來說,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三條線段才能構成三角形;
②特殊地,如果已知線段a最大,只要滿足b+c>a,那麼a、b、c三條線段就能構成三角形;如果已知線段a最小,只要滿足|b-c|<a,那麼這三條線段就能構成三角形。
3.關於三角形的內角和
三角形三個內角的和為180°
①直角三角形的兩個銳角互余;
②一個三角形中至多有一個直角或一個鈍角;
③一個三角中至少有兩個內角是銳角。
4.關於三角形的中線、高和中線
①三角形的角平分線、中線和高都是線段,不是直線,也不是射線;
②任意一個三角形都有三條角平分線,三條中線和三條高;
③任意一個三角形的三條角平分線、三條中線都在三角形的內部。但三角形的高卻有不同的位置:銳角三角形的三條高都在三角形的內部,如圖1;直角三角形有一條高在三角形的內部,另兩條高恰好是它兩條邊,如圖2;鈍角三角形一條高在三角形的內部,另兩條高在三角形的外部,如圖3。
④一個三角形中,三條中線交於一點,三條角平分線交於一點,三條高所在的直線交於一點。
二.圖形的全等
¤能夠完全重合的圖形稱為全等形。全等圖形的形狀和大小都相同。只是形狀相同而大小不同,或者說只是滿足面積相同但形狀不同的兩個圖形都不是全等的圖形。
四.全等三角形
¤1.關於全等三角形的概念
能夠完全重合的兩個三角形叫做全等三角形。互相重合的頂點叫做對應點,互相重合的邊叫做對應邊,互相重合的角叫做對應角
所謂「完全重合」,就是各條邊對應相等,各個角也對應相等。因此也可以這樣說,各條邊對應相等,各個角也對應相等的兩個三角形叫做全等三角形。
※2.全等三角形的對應邊相等,對應角相等。
¤3.全等三角形的性質經常用來證明兩條線段相等和兩個角相等。
五.探三角形全等的條件
※1.三邊對應相等的兩個三角形全等,簡寫為「邊邊邊」或「SSS」
※2.有兩邊和它們的夾角對應相等的兩個三角形全等,簡寫成「邊角邊」或「SAS」
※3.兩角和它們的夾邊對應相等的兩個三角形全等,簡寫成「角邊角」或「ASA」
※4.兩角和其中一個角的對邊對應相等的兩個三角形全等,簡寫成「角角邊」或「AAS」
六.作三角形
1.已知兩個角及其夾邊,求作三角形,是利用三角形全等條件「角邊角」即(「ASA」)來作圖的。
2.已知兩條邊及其夾角,求作三角形,是利用三角形全等條件「邊角邊」即(「SAS」)來作圖的。
3.已知三條邊,求作三角形,是利用三角形全等條件「邊邊邊」即(「SSS」)來作圖的。
八.探索直三角形全等的條件
※1.斜邊和一條直角邊對應相等的兩個直角三角形全等。簡稱為「斜邊、直角邊」或「HL」。這只對直角三角形成立。
※2.直角三角形是三角形中的一類,它具有一般三角形的性質,因而也可用「SAS」、「ASA」、「AAS」、「SSS」來判定。
直角三角形的其他判定方法可以歸納如下:
①兩條直角邊對應相等的兩個直角三角形全等;
②有一個銳角和一條邊對應相等的兩個直角三角形全等。
③三條邊對應相等的兩個直角三角形全等。

第七章 生活中的軸對稱
※1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
※2.角平分線上的點到角兩邊距離相等。
※3.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
※4.角、線段和等腰三角形是軸對稱圖形。
※5.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
※6.軸對稱圖形上對應點所連的線段被對稱軸垂直平分。
※7.軸對稱圖形上對應線段相等、對應角相等。

Ⅳ 七年級下冊數學知識點歸納

第五章 平等線與相交線
1、同角或等角的餘角相等,同角或等角的補角相等。
2、對頂角相等
3、判斷兩直線平行的條件:
1)同位角相等,兩直線平行。 (2)內錯角相等,兩直線平行。 3)同旁內角互補,兩直線平行。 (4)如果兩條直線都和第三條直線平行,那麼這兩面三刀條直線也互相平行。
4、平行線的特徵:
(1)同位角相等,兩直線平行。 (2)內錯角相等,兩直線平行。 (3)同旁內角互補,兩直線平行。
5、命題:
⑴命題的概念:
判斷一件事情的語句,叫做命題。
⑵命題的組成
每個命題都是題設、結論兩部分組成。題設是已知事項;結論是由已知事項推出的事項。命題常寫成「如
果……,那麼……」的形式。具有這種形式的命題中,用「如果」開始的部分是題設,用「那麼」開始的部分是結論。
6、平移
平移是指在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移,平移不改變物體的形狀和大小。
(1) 把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
(2) 新圖形中的每一點,都是由原圖形中的某一點移動後得到的,這兩個點是對應點。連接各組對應點的線段平行且相等。
第六章 平面直角坐標系
1、含有兩個數的詞來表示一個確定個位置,其中兩個數各自表示不同的意義,我們把這種有順序的兩個數組成的數對,叫做有序數對,記作(a,b)
2、數軸上的點可以用一個數來表示,這個數叫做這個點的坐標。
3、在平面內畫兩條互相垂直,並且有公共原點的數軸。這樣我們就說在平面上建立了平面直角坐標系,簡稱直角坐標系。平面直角坐標系有兩個坐標軸,其中橫軸為X軸,取向右方向為正方向;縱軸為Y軸,取向上為正方向。坐標系所在平面叫做坐標平面,兩坐標軸的公共原點叫做平面直角坐標系的原點。X軸和Y軸把坐標平面分成四個象限,右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數軸為界,橫軸、縱軸上的點及原點不屬於任何象限。一般情況下,x軸和y軸取相同的單位長度。
3、特殊位置的點的坐標的特點:
(1).x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
(2).第一、三象限角平分線上的點橫、縱坐標相等;第二、四象限角平分線上的點橫、縱坐標互為相反數。
(3).在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行於縱軸;如果兩點的縱坐標相同,則兩點的連線平行於橫軸。
4.點到軸及原點的距離
點到x軸的距離為|y|; 點到y軸的距離為|x|;點到原點的距離為x的平方加y的平方再開根號;
在平面直角坐標系中對稱點的特點:
1.關於x成軸對稱的點的坐標,橫坐標相同,縱坐標互為相反數。
2.關於y成軸對稱的點的坐標,縱坐標相同,橫坐標互為相反數。
3關於原點成中心對稱的點的坐標,橫坐標與橫坐標互為相反數,縱坐標與縱坐標互為相反數。
各象限內和坐標軸上的點和坐標的規律:
第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x軸正方向:(+,0)x軸負方向:(-,0)y軸正方向:(0,+)y軸負方向:(0,-)
x軸上的點縱坐標為0,y軸橫坐標為0。
第七章 三角形
1、三角形任意兩邊之和大於第三邊,確形任意兩邊之差小於第三邊。
2、三角形三個內角的和等於180度。
3、直角三角形的兩個銳角互余
4、三角形的三條角平分線交於一點,三條中線交於一點;三角形的三條高所在的直線交於一點。
5、直角三角形全等的條件:
斜邊和一條直角邊對應相等的兩個直角三角形全等,簡寫成「斜邊、直角邊」或「HL」。
(只要有任意兩條邊相等,這兩個直角三角形就全等)。
6、三角形全等的條件:
(1)三邊對應相等的兩個三角形全等,簡寫為「邊邊邊」或「SSS」。
(2)兩角和它們的夾邊對應相等的兩個三角形全等,簡寫為「角邊角」或「ASA」。
(3)兩角和其中一角的對邊對應相等的兩個三角形全等,簡寫為「角角邊」或「AAS」。
(4)兩邊和它們的夾角對應相等的兩個三角形全等,簡寫為「邊角邊」或「SAS」。
27、等腰三角形的特徵:
(1) 有兩條邊相等的三角形叫做等腰三角形;
(2) 等腰三角形是軸對稱圖形;
(3) 等腰三角形頂角的平分線、底邊上的中線、底邊上的重合(也稱「三線合一」),它們所在的直線都是等腰三角形的對稱軸。
(4)等腰三角形的兩個底角相等。
(5)等腰三角形的底角只能是銳角

Ⅵ 初中七下數學復習提綱 華師版

平時有抄筆記么?
復習筆記就好了.
網上搜索也都搜索的到.
我自己是不會整理啦.
抱歉.
幫不上忙了。
只是來告訴一下.
數學是靠平時積累和習題的運用的.
考試前突擊其實沒什麼用哦..

Ⅶ 初一下數學知識點有哪些

1、在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。

2、在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。

3、兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。鄰補角的性質:鄰補角互補。

4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質:對頂角相等。

5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,其中一條叫做另一條的垂線。

6、平行公理:經過直線外一點有且只有一條直線與已知直線平行。平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

Ⅷ 華師大版七年級數學知識點總結

七年級數學知識點
第一章 走進數學世界
第二章 有理數
1.數軸:數軸三要素:原點,正方向和單位長度;數軸上的點與實數是一一對應的。
2.相反數實數a的相反數是-a;若a與b互為相反數,則有a+b=0,反之亦然;幾何意義:在數軸上,表示相反數的兩個點位於原點的兩側,並且到原點的距離相等。
3.倒數:若兩個數的積等於1,則這兩個數互為倒數。
4.絕對值:代數意義:正數的絕對值是它本身,負數的絕對值是它的相反數,0的絕對值是0;幾何意義:一個數的絕對值,就是在數軸上表示這個數的點到原點的距離.
5.科學記數法: ,其中 。 6.實數大小的比較:利用法則比較大小;利用數軸比較大小。
7.在實數范圍內,加、減、乘、除、乘方運算都可以進行,但開方運算不一定能行,如負數不能開偶次方。實數的運算基礎是有理數運算,有理數的一切運算性質和運算律都適用於實數運算。正確的確定運算結果的符號和靈活的使用運算律是掌握好實數運算的關鍵。
第三章 整式的加減
一、整式的有關概念
1、單項式:數與字母乘積,這樣的代數式叫單項式。單獨的一個數或字母也是單項式。
2、單項式的系數:單項式中的數字因數。
3、單項式的次數:單項式中所有的字母的指數和。
4、多項式:幾個單項式的和叫多項式。
5、多項式的項及次數:組成多項式中的單項式叫多項式的項,多項式中次數最高項的次數叫多項式的次數。特別注意,多項式的次數不是組成多項式的所有字母指數和!!!
6、整式:單項式與多項式統稱整式。(分母含有字母的代數式不是整式)
二、整式的運算
(一)整式的加減法 基本步驟:去括弧,合並同類項。
(二)整式的乘法
1、同底數的冪相乘 法則:同底數的冪相乘,底數不變,指數相加。 數學符號表示:___ (其中m、n為正整數)
2、冪的乘方 法則:冪的乘方,底數不變,指數相乘。 數學符號表示:_______ (其中m、n為正整數)
3、積的乘方 法則:積的乘方,先把積中各因式分別乘方,再把所得的冪相乘。(即等於積中各因式乘方的積。數學符號表示:_______ (其中n為正整數)
4、同底數的冪相除 法則:同底數的冪相除,底數不變,指數相減。 數學符號表示:___ (其中m、n為正整數)
5、單項式乘以單項式 法則:單項式乘以單項式,把它們的系數、相同字母的冪分別相乘,其餘的字母則連同它的指數不變,作為積的一個因式。
6、單項式乘以多項式 法則:單項式乘以多項式,就是根據分配律用單項式的去乘多項式的每一項,再把所得的積相加。
7、多項式乘以多項式 法則:多項式乘以多項式,先用一個多項式的每一項去乘另一個多項式的每一項,再把所得的積相加。
8、平方差公式 法則: 兩數的各乘以這兩數的差,等於這兩數的平方差。 數學符號表示:_____ (其中a、b既可以是數,也可以是代數式) 說明:平方差公式是根據多項式乘以多項式得到的,它是兩個數的和與同樣的兩個數的差的積的形式。
9、完全平方公式 法則:兩數和(或差)的平方,等於這兩數的平方和再加上(或減去)這兩數積的2倍。
數學符號表示: ______
(二)整式的除法
1、單項式除以單項式 法則:單項式除以單項式,把它們的系數、相同字母的冪分別相除後,作為商的一個因式,對於只在被除式里含有的字母,則連同它的指數一起作為商的一個因式。
2、多項式除以單項式 法則:多項式除以單項式,就是多項式的每一項去除以單項式,再把所得的商相加。
第四章 圖形初步認識
1.點、線、面:通過豐富的實例,進一步認識點、線、面(如交通圖上用點表示城市,屏幕上的畫面是由點組成的)。2.角 ①通過豐富的實例,進一步認識角。②會比較角的大小,能估計一個角的大小,會計算角度的和與差,識別度分、秒,會進行簡單換算。 ③了解角平分線及其性質。
相交線和平行線
一、基本概念
1. 直線:(1)直線是向__________無限延伸的,直線沒有端點。(2)經過兩點有且只有一條__________。
2.射線:直線上一點和它一旁的部分叫做__________,這個點叫做射線的端點,射線只有一個端點。
2. 線段:(1)直線上兩點之間的部分叫做__________,__________有兩個端點.(2)兩點之間,__________最短。
(3)把一條線段分成兩條相等線段的點,叫做線段的__________。
4.垂線;當兩條直線相交所構成的四個角中有一個角是__________時,叫做兩條直線互相垂直;其中一條直線叫做另一條直線的垂線,它們的交點叫做__________。
5、垂線的性質:(1)經過一點,有且只有___條直線和已知直線垂直;(2)直線外一點與直線上各點連結的所有線段中,__最短。
6.兩點間的距離:連結__________的線段的長度。
7.點到直線的距離:從直線外一點到__________的垂線段的長度。
8.兩條平行線間的距離:兩條平行線中一條直線上__________到另一條直線的距離。
9、角:有公共端,點的兩條__________組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條_____叫做角的邊。
10、角平分線:從一個角的頂點出發,把這個角分成兩個__________的角的射線,叫做角平分線。
11.平角、周角:射線繞端點旋轉,當終止位置和起始位置成__________時,所成的角叫做平角;繼續旋轉回到__________位置時,所成的角叫做周角。
12、角的度量:1周角=__平角=___直角=360°, 1°=___』 , 1』=___」
13.小於平角的角的分類:__________角、__________角、__________角。
14.互為餘角、補角:如果兩個角的和是_,這兩個角叫做互為餘角;如果兩個角的和是_,這兩個角叫做互為補角。
15.相關角的性質:(1)對頂角______(2)同角或等角的餘角_____;(3)同角或等角的補角_______。
二、相交線和平行線
1.平行線:在同一平面內,__________的兩條直線叫做平行線。
2.在同一平面內,兩條直線的位置關系只有兩種:__________。相交時,對頂角相等。
3.平行線的判定:(1)同位角___,兩直線平行。(2)內錯角相等,兩直線_____。
(3)同旁內角__________,兩直線平行。(4)平行(或垂直)於同一直線的兩直線__________。
4、平行線的性質:(1)經過直線外一點,有且只有____條直線與這條直線平行。
(2)兩直線平行,同位角_______。(3)兩直線平行,內錯角__________。
(4)兩直線平行,同旁內角_.(5)一條直線和兩條平行線中的一條垂直(或平行),這條直線也和_垂直(或平行).
(6)平行線間的距離處處__________。(7)經過三角形一邊的中點與另一邊平行的直線必平分__________。
三、平行線分線段成比例
1.平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也____。
2、平行線等分線段定理的推論:(1)經過梯形一腰的中點與底_____的直線,必平分另一腰。(2)經過三角形一邊的中點與另一邊平行的直線必平分__________。
3.平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成_________。
4.平行線分線段成比例定理的推論:__於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例。5.定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段比例,那麼這條直線_於三角形的第三邊。
第五章 數據的收集與表達
 學習如何去收集數據、整理數據、分析數據並最後得到相應的結論;另外,我們還必須掌握有關頻數、頻率等知識點。
明確調查問題————數據的用途;
確定調查對象————數據收集的范圍;
選擇調查方法————收集數據所採用的方法;
展開調查——————數據收集;
記錄結果——————數據整理;
得出結論——————數據分析;
 概括:頻數表示每個對象出現的次數;
頻率表示每個對象出現的次數與總次數的比值(或者百分比)
頻數和頻率都能夠反映每個對象出現的頻繁程度。
 學會用統計來直觀來表示數據,並從統計圖中發現數據間的聯系。學會用計算機畫出統計圖。
第六章 一元一次方程
1.會對方程進行適當的變形解一元一次方程:解方程的基本思想就是轉化,即對方程進行變形,變形時要注意兩點,一時方程兩邊不能乘以(或除以)含有未知數的整式,否則所得方程與原方程的解可能不同;二是去分母時,不要漏乘沒有分母的項,一元一次方程是學習二元一次方程組、一元二次方程、一元一次不等式及函數問題的基本內容。
2.正確理解方程解的定義,並能應用等式性質巧解考題:方程的解應理解為,把它代入原方程是適合的,其方法就是把方程的解代入原方程,使問題得到了轉化。
3.理解方程ax=b在不同條件下解的各種情況,並能進行簡單應用:(1)a≠0時,方程有唯一解x= ;
(2)a=0,b=0時,方程有無數個解; (3)a=0,b≠0時,方程無解。
4.正確列一元一次方程解應用題:列方程解應用題,關鍵是尋找題中的等量關系,可採用圖示、列表等方法,根據近幾年的考試題目分析,要多關注社會熱點,密切聯系實際,多收集和處理信息,解應用題時還要注意檢查結果是否符合實際意義。
5.幾種常見的問題:和差倍分問題、等機變形問題、勞力調配問題、比例分配問題、數字問題、工程問題。
第七章 二元一次方程組
1.二元一次方程(組)及解的應用:注意:方程(組)的解適合於方程,任何一個二元一次方程都有無數個解,有時考查其整數解的情況,還經常應用方程組的概念巧求代數式的值。
2.解二元一次方程組:解方程組的基本思想是消元,常用方法是代入消元和加減消元,轉化思想和整體思想也是本章考查重點。
會用代入消元法解含有未知數系數為1的二元一次方程組。會運用代入法解未知數系數都不是1的二元一次方程組。會用加減法求未知數系數相等或互為相反數的二元一次方程組的解。學會使用方程變形,再用加減消元法解二元一次方程組。靈活運用代入消元法、加減消元法解題。
3.二元一次方程組的應用:列二元一次方程組的關鍵是能正確分析出題目中的等量關系,題目內容往往與生活實際相貼近,與社會關系的熱點問題相聯系,請平時注意搜集、觀察與分析。
第八章 一元一次不等式
1.判斷不等式是否成立:關鍵是分析判定不等號的變化,變化的依據是不等式的性質,特別注意的是,不等式兩邊都乘以(或除以)同一個負數時,要改變不等號方向;反之,若不等式的不等號方向發生改變,則說明不等式兩邊同乘以(或除以)了一個負數。因此,在判斷不等式成立與否或由不等式變形求某些字母的范圍時,要認真觀察不等式的形式與不等號方向。
2.解一元一次不等式(組):解一元一次不等式的步驟與解一元一次方程的步驟大致相同,應注意的是,不等式兩邊所乘以(或除以)的數的正負,並根據不同情況靈活運用其性質。一元一次不等式(組)常與分式、根式、一元二次方程、函數等知識相聯系,解決綜合性問題
3.求不等式(組)的特殊解:不等式(組)的解往往是有無數多個,但其特殊解在某些范圍內是有限的,如整數解、非負整數解,要求這些特殊解,首先是確定不等式(組)的解集, 然後再找到相應的答案。注意應用數形結合思想。
4.列不等式(組)解應用題:注意分析題目中的不等量關系,考查的熱點是與實際生活密切相聯的不等式(組)應用題。
第九章 多邊形
1. 多邊形:一般來說,多邊形是由一些線段依次首尾相連圍成的封閉圖形。我們通常根據多邊形的邊數將它們分為三角形、四邊形、五邊形……
2. n邊形:由n條線段依次首尾相接圍成的封閉圖形叫做叫做n邊形(n為大於或等於3的整數)。
3. 多邊形的分割:從一個多邊形的某一個頂點出發,分別連接這個頂點與其他各頂點,可以把這個多邊形分割成若干個三角形。
4. 從n邊形的一個頂點出發有(n-3)條對角線,把n邊形分成(n-2)個三角形。一個n邊形共有n個頂點,n條邊,n(n-3)÷2 條對角線。
5. 圓:一條線段繞著它的一端旋轉一周形成的圖形叫做圓。
6. 圓上兩點之間的線段叫做弧,由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫做扇形。
7. 圓可以分成若干個扇形。
8. 圓上兩點(連接兩點的線段不是直徑)將圓分成兩個部分,一部分大於半圓,一部分小於半圓,因此圓上的兩點分圓成兩條弧,每條弧都對應一個扇形。
⒐了解三角形有關概念(內角、外角、中線、高、角平分線),會畫出任意三角形的角平分線、中線和高.了解三角形的穩定性。三角形兩邊之和大於第三邊。②探索並掌握三角形中位線的性質。
⒑重點: 1.四邊形的基本概念:
(1)四邊形:平面內,四條線段首尾順次相接,如果任何兩條線段都不在同一直線上,所形成的圖形叫做四邊形.
(2)各部分名稱: 邊:組成四邊形各邊的線段 頂點:相鄰兩邊的公共點 內角:從四邊形內部看相鄰兩邊所成的角,簡稱為角. 對角線:連結四邊形不相鄰的兩個頂點的線段. 外角:四邊形的一條邊與
第十章 軸對稱
 軸對稱與軸對稱圖形是不同的概念:「軸對稱」是指兩個圖形之間的形狀與位置關系 「軸對稱圖形」是指一個圖形的形狀。
 定義:有兩邊相等的三角形是等腰三角形
 等腰三角形的性質:
等腰三角形的兩個底角相等。 (簡寫成「等邊對等角」)
等腰三角形的頂角的平分線,底邊上的中線,底邊上的高的重合(簡寫成「三線合一」)
等腰三角形的兩底角的平分線相等。(兩條腰上的中線相等,兩條腰上的高相等)
等腰三角形的底邊上到兩條腰的距離相等
等腰三角形的一腰上的高與底邊的夾角等於頂角的一半
 等腰三角形的判定: 有兩個角相等的三角形是等腰三角形
 三角形的一些性質:
1.三角形的任何兩邊的和一定大於第三邊 ,由此亦可證明得三角形的任意兩邊的差一定小於第三邊。
2.三角形內角和等於180度
3.等腰三角形的頂角平分線,底邊的中線,底邊的高重合,即三線合一。
圖形的軸對稱是中考題的新題型,熱點題型。分值一般為3-4分,題型以填空,選擇,作圖為主,偶爾也會出現解答題。
考察內容:①軸對稱和軸對稱圖形的性質判別。②注意鏡面對稱與實際問題的解決。 突破方法: ①熟練掌握圖形的對稱基本性質和基本作圖法。②結合具體的問題大膽嘗試,動手操作,探究發現其內在的規律。③注重對網格內和坐標內的圖形的變換試題的研究,熟練掌握其常用的解題方法。④關注圖形與變換創新題,弄清其本質,掌握基本解題方法,如動手操作法,折疊法,旋轉法。
第十一章 體驗不確定現象
1、 必然事件:在每次實驗中一定發生的事件,發生的機會是100%。
2、 不可能事件:在每次實驗中一定不發生的事件,發生的機會是0。
(必然事件與不可能事件統稱為確定事件)
3、 不確定事件(隨機事件):無法確定在一次試驗中會不會發生的事件,發生
的機會是0~1之間的數。
4、 「不太可能」不等於「不可能」,可能性小並不意味著一定不會發生。
5.機會:不確定事件或隨機事件經過多次試驗使之趨於穩定時狀態,就是這個事件的成功率我們以後把這種成功率表示一隨機事件發生的可能性,即機會。
6.機會的均等與不等:不確定事件成功與失敗的機會各佔一半即0.50時,我們稱這不確定事件的機會均等,否則就是機會不等。
7、 不確定現象發生的機會的估計。
(1) 實驗法:通過大量重復實驗來估計。
(2) 分析法:從實驗結果的所有可能情況來確定。
8、 不確定事件在大量重復實驗中事件發生頻率的穩定性。
7、 實驗必須在相同條件下進行,實驗次數越多,得到的機會估計值就越好。
8、 實驗是估計機會大小的一種方法。

Ⅸ 初一數學下冊知識點

初一數學上冊知識點匯總

(一)有理數及其運算復習
一、有理數的基礎知識
1、三個重要的定義:
(1)正數:像1、2.5、這樣大於0的數叫做正數;(2)負數:在正數前面加上「-」號,表示比0小的數叫做負數;(3)0即不是正數也不是負數.
2、有理數的分類:
(1)按定義分類:

(2)按性質符號分類:

3、數軸
數軸有三要素:原點、正方向、單位長度.畫一條水平直線,在直線上取一點表示0(叫做原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸.在數軸上的所表示的數,右邊的數總比左邊的數大,所以正數都大於0,負數都小於0,正數大於負數.
4、相反數
如果兩個數只有符號不同,那麼其中一個數就叫另一個數的相反數.0的相反數是0,互為相反的兩上數,在數軸上位於原點的兩則,並且與原點的距離相等.
5、絕對值
(1)絕對值的幾何意義:一個數的絕對值就是數軸上表示該數的點與原點的距離.
(2)絕對值的代數意義:一個正數的絕對值是它本身;0的絕對值是0;一個負數的絕對值是它的相反數,可用字母a表示如下:

(3)兩個負數比較大小,絕對值大的反而小.
二、有理數的運算
1、有理數的加法
(1)有理數的加法法則:同號兩數相加,取相同的符號,並把絕對值相加;絕對值不等的異號兩數相加,取絕對值較大數的符號,並用較大的絕對值減去較小的絕對值;互為相反的兩個數相加得0;一個數同0相加,仍得這個數.
(2)有理數加法的運算律:
加法的交換律 :a+b=b+a;加法的結合律:( a+b ) +c = a + (b +c)
用加法的運算律進行簡便運算的基本思路是:先把互為相反數的數相加;把同分母的分數先相加;把符號相同的數先相加;把相加得整數的數先相加.
2、有理數的減法
(1)有理數減法法則:減去一個數等於加上這個數的相反數.
(2)有理數減法常見的錯誤:顧此失彼,沒有顧到結果的符號;仍用小學計算的習慣,不把減法變加法;只改變運算符號,不改變減數的符號,沒有把減數變成相反數.
(3)有理數加減混合運算步驟:先把減法變成加法,再按有理數加法法則進行運算;
3、有理數的乘法
(1)有理數乘法的法則:兩個有理數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0.
(2)有理數乘法的運算律:交換律:ab=ba;結合律:(ab)c=a(bc);交換律:a(b+c)=ab+ac.
(3)倒數的定義:乘積是1的兩個有理數互為倒數,即ab=1,那麼a和b互為倒數;倒數也可以看成是把分子分母的位置顛倒過來.
4、有理數的除法
有理數的除法法則:除以一個數,等於乘上這個數的倒數,0不能做除數.這個法則可以把除法轉化為乘法;除法法則也可以看成是:兩個數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數都等於0.
5、有理數的乘法
(1)有理數的乘法的定義:求幾個相同因數a的運算叫做乘方,乘方是一種運算,是幾個相同的因數的特殊乘法運算,記做「 」其中a叫做底數,表示相同的因數,n叫做指數,表示相同因數的個數,它所表示的意義是n個a相乘,不是n乘以a,乘方的結果叫做冪.
(2)正數的任何次方都是正數,負數的偶數次方是正數,負數的奇數次方是負數
6、有理數的混合運算
(1)進行有理數混合運算的關建是熟練掌握加、減、乘、除、乘方的運演算法則、運算律及運算順序.比較復雜的混合運算,一般可先根據題中的加減運算,把算式分成幾段,計算時,先從每段的乘方開始,按順序運算,有括弧先算括弧里的,同時要注意靈活運用運算律簡化運算.
(2)進行有理數的混合運算時,應注意:一是要注意運算順序,先算高一級的運算,再算低一級的運算;二是要注意觀察,靈活運用運算律進行簡便運算,以提高運算速度及運算能力.

(2)整式的加減復習

(3)一元一次方程復習
一、方程的有關概念
1、方程的概念:
(1)含有未知數的等式叫方程.
(2)在一個方程中,只含有一個未知數,並且未知數的指數是1,系數不為0,這樣的方程叫一元一次方程.
2、等式的基本性質:
(1)等式兩邊同時加上(或減去)同一個代數式,所得結果仍是等式.若a=b,則a+c=b+c或a – c = b – c .
(2)等式兩邊同時乘以(或除以)同一個數(除數不能為0),所得結果仍是等式.若a=b,則ac=bc或
(3)對稱性:等式的左右兩邊交換位置,結果仍是等式.若a=b,則b=a.
(4)傳遞性:如果a=b,且b=c,那麼a=c,這一性質叫等量代換.
二、解方程
1、移項的有關概念:
把方程中的某一項改變符號後,從方程的一邊移到另一邊,叫做移項.這個法則是根據等式的性質1推出來的,是解方程的依據.要明白移項就是根據解方程變形的需要,把某一項從方程的左邊移到右邊或從右邊移到左邊,移動的項一定要變號.
2、解一元一次方程的步驟:
(1)去分母 等式的性質2
注意拿這個最小公倍數乘遍方程的每一項,切記不可漏乘某一項,分母是小數的,要先利用分數的性質,把分母化為整數,若分子是代數式,則必加括弧.
(2)去括弧 去括弧法則、乘法分配律
嚴格執行去括弧的法則,若是數乘括弧,切記不漏乘括弧內的項,減號後去括弧,括弧內各項的符號一定要變號.
(3)移項 等式的性質1
越過「=」的叫移項,屬移項者必變號;未移項的項不變號,注意不遺漏,移項時把含未知數的項移在左邊,已知數移在右邊,書寫時,先寫不移動的項,把移動過來的項改變符號寫在後面
(4)合並同類項 合並同類項法則
注意在合並時,僅將系數加到了一起,而字母及其指數均不改變.
(5)系數化為1 等式的性質2
兩邊同除以未知數的系數,記住未知數的系數永遠是分母(除數),切不可分子、分母顛倒.
(6)檢驗
二、列方程解應用題
1、列方程解應用題的一般步驟:
(1)將實際問題抽象成數學問題;
(2)分析問題中的已知量和未知量,找出等量關系;
(3)設未知數,列出方程;
(4)解方程;
(5)檢驗並作答.
2、一些實際問題中的規律和等量關系:
(1)日歷上數字排列的規律是:橫行每整行排列7個連續的數,豎列中,下面的數比上面的數大7.日歷上的數字范圍是在1到31之間,不能超出這個范圍.
(2)幾種常用的面積公式:
長方形面積公式:S=ab,a為長,b為寬,S為面積;正方形面積公式:S = a2,a為邊長,S為面積;
梯形面積公式:S = ,a,b為上下底邊長,h為梯形的高,S為梯形面積;
圓形的面積公式: ,r為圓的半徑,S為圓的面積;
三角形面積公式: ,a為三角形的一邊長,h為這一邊上的高,S為三角形的面積.
(3)幾種常用的周長公式:
長方形的周長:L=2(a+b),a,b為長方形的長和寬,L為周長.
正方形的周長:L=4a,a為正方形的邊長,L為周長.
圓:L=2πr,r為半徑,L為周長.
(4)柱體的體積等於底面積乘以高,當體積不變時,底面越大,高度就越低.所以等積變化的相等關系一般為:變形前的體積=變形後的體積.
(5)打折銷售這類題型的等量關系是:利潤=售價–成本.
(6)行程問題中關建的等量關系:路程=速度×時間,以及由此導出的其化關系.
(7)在一些復雜問題中,可以藉助表格分析復雜問題中的數量關系,找出若干個較直接的等量關系,藉此列出方程,列表可幫助我們分析各量之間的相互關系.
(8)在行程問題中,可將題目中的數字語言用「線段圖」表達出來,分析問題中的數量關系,從而找出等量關系,列出方程.
(9)關於儲蓄中的一些概念:
本金:顧客存入銀行的錢;利息:銀行給顧客的酬金;本息:本金與利息的和;期數:存入的時間;利率:每個期數內利息與本金的比;利息=本金×利率×期數;本息=本金+利息.
(4)圖形初步認識總復習
(一)多姿多彩的圖形
立體圖形:稜柱、棱錐、圓柱、圓錐、球等.
1、幾何圖形
平面圖形:三角形、四邊形、圓等.
主(正)視圖---------從正面看
2、幾何體的三視圖 側(左、右)視圖-----從左(右)邊看
俯視圖---------------從上面看
(1)會判斷簡單物體(直稜柱、圓柱、圓錐、球)的三視圖.
(2)能根據三視圖描述基本幾何體或實物原型.
3、立體圖形的平面展開圖
(1)同一個立體圖形按不同的方式展開,得到的平現圖形不一樣的.
(2)了解直稜柱、圓柱、圓錐、的平面展開圖,能根據展開圖判斷和製作立體模型.
4、點、線、面、體
(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形最基本的圖形.
線:面和面相交的地方是線,分為直線和曲線.
面:包圍著體的是面,分為平面和曲面.
體:幾何體也簡稱體.
(2)點動成線,線動成面,面動成體.
(二)直線、射線、線段
1、基本概念
圖形 直線 射線 線段
端點個數 無 一個 兩個
表示法 直線a
直線AB(BA) 射線AB 線段a
線段AB(BA)
作法敘述 作直線AB;
作直線a 作射線AB 作線段a;
作線段AB;
連接AB
延長敘述 不能延長 反向延長射線AB 延長線段AB;
反向延長線段BA
2、直線的性質
經過兩點有一條直線,並且只有一條直線.
簡單地:兩點確定一條直線.
3、畫一條線段等於已知線段
(1)度量法
(2)用尺規作圖法
4、線段的大小比較方法
(1)度量法
(2)疊合法
5、線段的中點(二等分點)、三等分點、四等分點等
定義:把一條線段平均分成兩條相等線段的點.
圖形:

A M B
符號:若點M是線段AB的中點,則AM=BM=AB,AB=2AM=2BM.
6、線段的性質
兩點的所有連線中,線段最短.簡單地:兩點之間,線段最短.
7、兩點的距離
連接兩點的線段長度叫做兩點的距離.
8、點與直線的位置關系
(1)點在直線上 (2)點在直線外.
(三)角
1、角:由公共端點的兩條射線所組成的圖形叫做角.
2、角的表示法(四種):
3、角的度量單位及換算
4、角的分類
∠β 銳角 直角 鈍角 平角 周角
范圍 0<∠β<90° ∠β=90° 90°<∠β<180° ∠β=180° ∠β=360°
5、角的比較方法
(1)度量法
(2)疊合法
6、角的和、差、倍、分及其近似值
7、畫一個角等於已知角
(1)藉助三角尺能畫出15°的倍數的角,在0~180°之間共能畫出11個角.
(2)藉助量角器能畫出給定度數的角.
(3)用尺規作圖法.
8、角的平線線
定義:從一個角的頂點出發,把這個角分成相等的兩個角的射線叫做角的平分線.
圖形:
符號:
9、互余、互補
(1)若∠1+∠2=90°,則∠1與∠2互為餘角.其中∠1是∠2的餘角,∠2是∠1的餘角.
(2)若∠1+∠2=180°,則∠1與∠2互為補角.其中∠1是∠2的補角,∠2是∠1的補角.
(3)余(補)角的性質:等角的補(余)角相等.
10、方向角
(1)正方向
(2)北(南)偏東(西)方向
(3)東(西)北(南)方向

希望能幫助你!