A. 奧運與數學的手抄報,字少,要圖
奧運與數學:
我們知道很多比賽需要計時,
比如在游泳比賽中我們就能看到數學中時、分、秒的知識。
田徑比賽的跑道也很有學問,
像400米起跑時,運動員並不在同一條起跑線上,這里就有數學中圓的周長的知識。
有些比賽是有比分的,比如籃球比賽幾比幾,就是數學中比的知識。
比賽中會出現很多數,比如運動員的號碼是整數,
射擊的環數會精確到小數,
另外我們經常聽到的1/8決賽、1/4決賽就是分數。
賽場還有很多名數。比如說200米、100千克等等。
有些比賽的成績需要求平均數,這里就既有計算的知識,又有求平均數的知識。
其實一些比賽的賽制也是很有學問的。循環賽制,淘汰賽制,這會涉及數學中組合的知識。
B. 幫我發一些六年級下冊數學圓的知識,做一個手抄報。謝謝.
圓的有關性質
一,〖知識點〗圓、圓的對稱性、點和圓的位置關系、不在同一直線上的三點確定一個圓、三角形的外接圓、垂徑定理逆定理、圓心角、弧、弦、弦心距之間的關系、圓周角定理、圓內接四邊形的性質
生活中的圓
--------------------------------------------------------------------------------
1.
車輪是圓的,不然車子會顛簸。
2.
同樣長的線圍成的圖形,圓的面積最大,所以,圓的水桶裝水更多。
C. 關於圓的手抄報,寫什麼內容呢,求助,明天就要交啦
圓是一種幾何圖形。當一條線段繞著它的一個端點在平面內旋轉一周時,它的另一個端點的軌跡叫做圓。根據定義,通常用圓規來畫圓。 圓周率,一般以π來表示,是一個在數學及物理學普遍存在的數學常數。它定義為圓形之周長與直徑之比。它也等於圓形之面積與半徑平方之比。是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值。 在分析學上,π可以嚴格地定義為滿足sin(x) = 0的最小正實數x。
π 約等於(精確到小數點後第100位)
祖沖之( 公元429年—公元500年)是我國傑出的數學家,科學家。南北朝時期人,漢族人,字文遠。生於宋文帝元嘉六年,卒於齊昏侯永元二年。祖籍范陽郡遒縣(今河北淶水縣)。為避戰亂,祖沖之的祖父祖昌由河北遷至江南。祖昌曾任劉宋的「大匠卿」,掌管土木工程;祖沖之的父親也在朝中做官。祖沖之從小接受家傳的科學知識。青年時進入華林學省,從事學術活動。一生先後任過南徐州(今鎮江市)從事史、公府參軍、婁縣(今崑山市東北)令、謁者僕射、長水校尉等官職。其主要貢獻在數學、天文歷法和機械三方面。
D. 關於圓的手抄報,寫什麼內容呢,求助,明
圓是一種幾何圖形.當一條線段繞著它的一個端點在平面內旋轉一周時,它的另一個端點的軌跡叫做圓.根據定義,通常用圓規來畫圓.圓周率,一般以π來表示,是一個在數學及物理學普遍存在的數學常數.它定義為圓形之周長與直徑之比.它也等於圓形之面積與半徑平方之比.是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值.在分析學上,π可以嚴格地定義為滿足sin(x) = 0的最小正實數x.
π 約等於(精確到小數點後第100位)
祖沖之( 公元429年—公元500年)是我國傑出的數學家,科學家.南北朝時期人,漢族人,字文遠.生於宋文帝元嘉六年,卒於齊昏侯永元二年.祖籍范陽郡遒縣(今河北淶水縣).為避戰亂,祖沖之的祖父祖昌由河北遷至江南.祖昌曾任劉宋的「大匠卿」,掌管土木工程;祖沖之的父親也在朝中做官.祖沖之從小接受家傳的科學知識.青年時進入華林學省,從事學術活動.一生先後任過南徐州(今鎮江市)從事史、公府參軍、婁縣(今崑山市東北)令、謁者僕射、長水校尉等官職.其主要貢獻在數學、天文歷法和機械三方面.
E. 要做一個「圓的認識「手抄報,有哪個學霸願意給我指點一下
先在紙上寫一個大的標題,然後把圓的定義抄上去,再把圓和其他圖形的關系寫上以及一些關於圓的知識寫上,然後再在旁邊畫上幾個圓
F. 數學手抄報,要圖文並茂的那種
第一寫關於數學的名言
羅素說:「數學是符號加邏輯」
畢達哥拉斯說:「數支配著宇宙」
哈爾莫斯說:「數學是一種別具匠心的藝術」
米斯拉說:「數學是人類的思考中最高的成就」
培根(英國哲學家)說:「數學是打開科學大門的鑰匙」
布爾巴基學派(法國數學研究團體)認為:「數學是研究抽象結構的理論」
黑格爾說:「數學是上帝描述自然的符號」
魏爾德(美國數學學會主席)說:「數學是一種會不斷進化的文化」
柏拉圖說:「數學是一切知識中的最高形式」
考特說:「數學是人類智慧皇冠上最燦爛的明珠」
第二寫關於數學的意義
數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
第三寫關於數學的小故事
數學名人小故事-康托爾
由於研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為「悖論」),許多大數學家唯恐陷進去而採取退避三舍的態度。在1874—1876年期間,不到30歲的年輕德國數學家康托爾向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都「一樣多」,後來幾年,康托爾對這類「無窮集合」問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論。康托爾的創造性工作與傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托爾的集合論是一種「疾病」,康托爾的概念是「霧中之霧」,甚至說康托爾是「瘋子」。來自數學權威們的巨大精神壓力終於摧垮了康托爾,使他心力交瘁,患了精神分裂症,被送進精神病醫院。
真金不怕火煉,康托爾的思想終於大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托爾的工作「可能是這個時代所能誇耀的最巨大的工作。」可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托爾在一家精神病院去世。
第四,可以寫關於數學的笑話
小明小學數學考試,回來後他媽問他考得怎麼樣.小明說:"我基本上會做,但有一題3乘7,我怎麼也想不出來.最後打鈴了,我不管三七二十一就寫了個18."
奶奶:「1+2等於幾?」
孫子:「等於3。」
奶奶:「答對了,因此你會得到3塊糖。」
孫子:「早知道是這樣,我就說是等於5就好啦!」
第五,可以寫動物中的數學家
蜜蜂蜂房是嚴格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個相同的菱形組成,組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料,蜂房的巢壁厚0.073毫米,誤差極少。
丹頂鶴總是成群結隊遷飛,而且排成「人」字開。「人」字形的角度是110度,更精確地計算還表明「人」字形夾角的一半——即每邊與鶴群前進方向的夾角為54度44分8秒!而金剛石結晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的「默契?」
蜘蛛結的「八卦」形網,是既復雜又美麗的八角形幾何圖案,人們即使用直尺和圓規也很難畫出像蜘蛛那樣勻稱的圖案。
冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數學,因為球形使身體的表面積最小,從而散發的熱量也最少。
真正的數學「天才」是珊瑚蟲。珊瑚蟲在自己的身上記下「日歷」,它們每年在自己的體壁上「刻畫」出365條斑紋,顯然是一天「畫」一條。奇怪的是,古生物學業家發現3億5千萬年前的珊瑚蟲每年「畫」出400幅「水彩畫」。天文學家告訴我們,當時地球一天僅21.9小時,一年不是365天,而是400天。
G. 發一些圖片給我,關於數學手抄報的版面設計!謝謝!
阿拉伯數字
在生活中,我們經常會用到0、1、2、3、4、5、6、7、8、9這些數字。那麼你知道這些數字是誰發明的嗎?
這些數字元號原來是古代印度人發明的,後來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發明的,就把它們叫做"阿拉伯數字",因為流傳了許多年,人們叫得順口,所以至今人們仍然將錯就錯,把這些古代印度人發明的數字元號叫做阿拉伯數字。
現在,阿拉伯數字已成了全世界通用的數字元
九九歌
九九歌就是我們現在使用的乘法口訣。
遠在公元前的春秋戰國時代,九九歌就已經被人們廣泛使用。在當時的許多著作中,都有關於九九歌的記載。最初的九九歌是從"九九八十一"起到"二二如四"止,共36句。因為是從"九九八十一"開始,所以取名九九歌。大約在公元五至十世紀間,九九歌才擴充到"一一如一"。大約在公元十三、十四世紀,九九歌的順序才變成和現在所用的一樣,從"一一如一"起到"九九八十一"止。
現在我國使用的乘法口訣有兩種,一種是45句的,通常稱為"小九九";還有一種是81句的,通常稱為"大九九"。
數學符號的起源
數學除了記數以外,還需要一套數學符號來表示數和數、數和形的相互關系。數學符號的發明和使用比數字晚,但是數量多得多。現在常用的有200多個,初中數學書里就不下20多種。它們都有一段有趣的經歷。
例如加號曾經有好幾種,現在通用"+"號。
"+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文"più"(加的意思)的第一個字母表示加,草為"μ"最後都變成了"+"號。
"-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。
到了十五世紀,德國數學家魏德美正式確定:"+"用作加號,"-"用作減號。
乘號曾經用過十幾種,現在通用兩種。一個是"×",最早是英國數學家奧屈特1631年提出的;一個是"· ",最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:"×"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘。可是這個符號現在應用到集合論中去了。
到了十八世紀,美國數學家歐德萊確定,把"×"作為乘號。他認為"×"是"+"斜起來寫,是另一種表示增加的符號。
"÷"最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用":"表示除或比,另外有人用"-"(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將"÷"作為除號。
十六世紀法國數學家維葉特用"="表示兩個量的差別。可是英國牛津大學數學、修辭學教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數相等是最合適不過的了,於是等於符號"="就從1540年開始使用起來。
1591年,法國數學家韋達在菱中大量使用這個符號,才逐漸為人們接受。十七世紀德國萊布尼茨廣泛使用了"="號,他還在幾何學中用"∽"表示相似,用"≌"表示全等。
大於號"〉"和小於號"〈",是1631年英國著名代數學家赫銳奧特創用。至於≯""≮"、"≠"這三個符號的出現,是很晚很晚的事了。大括弧"{ }"和中括弧"[ ]"是代數創始人之一魏治德創造的。
奇妙的圓形
圓形,是一個看來簡單,實際上是很奇妙的圓形。
古代人最早是從太陽,從陰歷十五的月亮得到圓的概念的。一萬八千年前的山頂洞人曾經在獸牙、礫石和石珠上鑽孔,那些孔有的就很圓。
以後到了陶器時代,許多陶器都是圓的。圓的陶器是將泥土放在一個轉盤上製成的。
當人們開始紡線,又制出了圓形的石紡綞或陶紡綞。
古代人還發現圓的木頭滾著走比較省勁。後來他們在搬運重物的時候,就把幾段圓木墊在大樹、大石頭下面滾著走,這樣當然比扛著走省勁得多。
大約在6000年前,美索不達米亞人,做出了世界上第一個輪子--圓的木盤。大約在4000多年前,人們將圓的木盤固定在木架下,這就成了最初的車子。
會作圓,但不一定就懂得圓的性質。古代埃及人就認為:圓,是神賜給人的神聖圖形。一直到兩千多年前我國的墨子(約公元前468-前376年)才給圓下了一個定義:"一中同長也"。意思是說:圓有一個圓心,圓心到圓周的長都相等。這個定義比希臘數學家歐幾里得(約公元前330-前275年)給圓下定義要早100年。
圓周率,也就是圓周與直徑的比值,是一個非常奇特的數。
《周髀算經》上說"徑一周三",把圓周率看成3,這只是一個近似值。美索不達來亞人在作第一個輪子的時候,也只知道圓周率是3。
魏晉時期的劉徽於公元263年給《九章算術》作注。他發現"徑一周三"只是圓內接正六邊形周長和直徑的比值。他創立了割圓術,認為圓內接正多連形邊數無限增加時,周長就越逼近圓周長。他算到圓內接正3072邊形的圓周率,π= 3927/1250。劉徽已經把極限的概念運用於解決實際的數學問題之中,這在世界數學史上也是一項重大的成就。
祖沖之(公元429-500年)在前人的計算基礎上繼續推算,求出圓周率在3.1415926與3.1415927之間,是世界上最早的七位小數精確值,他還用兩個分數值來表示圓周率:22/7稱為約率,355/113稱為密率。
在歐洲,直到1000年後的十六世紀,德國人鄂圖(公元1573年)和安托尼茲才得到這個數值。
現在有了電子計算機,圓周率已經算到了小數點後一千萬以上了。
從一加到一百
七歲時高斯進了 St. Catherine小學。大約在十歲時,老師在算數課上出了一道難題:"把 1到 100的整數寫下來,然後把它們加起來!"每當有考試時他們有如下的習慣:第一個做完的就把石板﹝當時通行,寫字用﹞面朝下地放在老師的桌子上,第二個做完的就把石板擺在第一張石板上,就這樣一個一個落起來。這個難題當然難不倒學過算數級數的人,但這些孩子才剛開始學算數呢!老師心想他可以休息一下了。但他錯了,因為還不到幾秒鍾,高斯已經把石板放在講桌上了,同時說道:「答案在這兒!」其他的學生把數字一個個加起來,額頭都出了汗水,但高斯卻靜靜坐著,對老師投來的,輕蔑的、懷疑的眼光毫不在意。考完後,老師一張張地檢查著石板。大部分都做錯了,學生就吃了一頓鞭打。最後,高斯的石板被翻了過來,只見上面只有一個數字:5050(用不著說,這是正確的答案。)老師吃了一驚,高斯就解釋他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50對和為 101的數目,所以答案是 50×101=5050。由此可見高斯找到了算術級數的對稱性,然後就像求得一般算術級數合的過程一樣,把數目一對對地湊在一起。
勾股定理
勾股定理:在任何一個直角三角形中,兩條直角邊的平方之和一定等於斜邊的平方。
這個定理在中國又稱為"商高定理",在外國稱為"畢達哥拉斯定理"。為什麼一個定理有這么多名稱呢?商高是公元前十一世紀的中國人。當時中國的朝代是西周,是奴隸社會時期。在中國古代大約是戰國時期西漢的數學著作《周髀算經》中記錄著商高同周公的一段對話。商高說:"…故折矩,勾廣三,股修四,經隅五。"什麼是"勾、股"呢?在中國古代,人們把彎曲成直角的手臂的上半部分稱為"勾",下半部分稱為"股"。商高那段話的意思就是說:當直角三角形的兩條直角邊分別為3(短邊)和4(長邊)時,徑隅(就是弦)則為5。以後人們就簡單地把這個事實說成"勾三股四弦五"。由於勾股定理的內容最早見於商高的話中,所以人們就把這個定理叫作"商高定理"。 畢達哥拉斯(Pythagoras)是古希臘數學家,他是公元前五世紀的人,比商高晚出生五百多年。希臘另一位數學家歐幾里德(Euclid,是公元前三百年左右的人)在編著《幾何原本》時,認為這個定理是畢達哥達斯最早發現的,所以他就把這個定理稱為"畢達哥拉斯定理",以後就流傳開了。
關於勾股定理的發現,《周髀算經》上說:"故禹之所以治天下者,此數之所由生也。""此數"指的是"勾三股四弦五",這句話的意思就是說:勾三股四弦五這種關系是在大禹治水時發現的。
勾股定理的應用非常廣泛。我國戰國時期另一部古籍《路史後記十二注》中就有這樣的記載:"禹治洪水決流江河,望山川之形,定高下之勢,除滔天之災,使注東海,無漫溺之患,此勾股之所系生也。"這段話的意思是說:大禹為了治理洪水,使不決流江河,根據地勢高低,決定水流走向,因勢利導,使洪水注入海中,不再有大水漫溺的災害,是應用勾股定理的結果。
無聲勝有聲
在數學上也不乏無聲勝有聲這種意境。1903年,在紐約的一次數學報告會上,數學家科樂上了講台,他沒有說一句話,只是用粉筆在黑板上寫了兩數的演算結果,一個是2的67次方-1,另一個是193707721×761838257287,兩個算式的結果完全相同,這時,全場爆發出經久不息的掌聲。這是為什麼呢?
因為科樂解決了兩百年來一直沒弄清的問題,即2是67次方-1是不是質數?現在既然它等於兩個數的乘積,可以分解成兩個因數,因此證明了2是67次方-1不是質數,而是合數。
科爾只做了一個簡短的無聲的報告,可這是他花了3年中全部星期天的時間,才得出的結論。在這簡單算式中所蘊含的勇氣,毅力和努力,比洋洋灑灑的萬言報告更具魅力。
為什麼時間和角度的單位用六十進位制 時間的單位是小時,角度的單位是度,從表面上看,它們完全沒有關系。可是,為什麼它們都分成分、秒等名稱相同的小單位呢?為什麼又都用六十進位制呢? 我們仔細研究一下,就知道這兩種量是緊密聯系著的。原來,古代人由於生產勞動的需要,要研究天文和歷法,就牽涉到時間和角度了。譬如研究晝夜的變化,就要觀察地球的自轉,這里自轉的角度和時間是緊密地聯系在一起的。因為歷法需要的精確度較高,時間的單位"小時"、角度的單位"度"都嫌太大,必須進一步研究它們的小數。時間和角度都要求它們的小數單位具有這樣的性質:使1/2、1/3、1/4、1/5、1/6等都能成為它的整數倍。以1/60作為單位,就正好具有這個性質。譬如:1/2等於30個1/60,1/3等於20個1/60,1/4等於15個1/60…… 數學上習慣把這個1/60的單位叫做"分",用符號"′"來表示;把1分的1/60的單位叫做"秒",用符號"″"來表示。時間和角度都用分、秒作小數單位。 這個小數的進位制在表示有些數字時很方便。例如常遇到的1/3,在十進位制里要變成無限小數,但在這種進位制中就是一個整數。 這種六十進位制(嚴格地說是六十退位制)的小數記數法,在天文歷法方面已長久地為全世界的科學家們所習慣,所以也就一直沿用到今天。
哥德巴赫猜想 哥德巴赫(Goldbach C.,1690.3.18~1764.11.20)是德國數學家; 在1742年6月7日給歐拉的信中,哥德巴赫提出了一個命題:任何大於5的奇數都是三個素數之和。 但這怎樣證明呢?雖然做過的每一次試驗都得到了上述結果,但是不可能把所有的奇數都拿來檢驗,需要的是一般的證明,而不是個別的檢驗。" 歐拉回信又提出了另一個命題:任何一個大於2的偶數都是兩個素數之和。但是這個命題他也沒能給予證明。現在通常把這兩個命題統稱為哥德巴赫猜想 二百多年來,盡管許許多多的數學家為解決這個猜想付出了艱辛的勞動,迄今為止它仍然是一個既沒有得到正面證明也沒有被推翻的命題。
夠了吧,自己選擇吧
回答人的補充 2009-08-15 10:10
一次只能一萬字,而且要審核,比較慢,所以第二部分放這里
H. 四下數學手抄報
四年級下冊數學的手抄報就可以根據課文的內容去編寫一些信息,根據課文的一個條件,他的要求根據老師的一個要求,將一些信息整理好,具備一定的邏輯
I. 關於圓的手抄報要姿料或圖片
在這里說一下圓的面積不包含圓柱計算,只算圓的表面積
π---園周率 S---面積 L---周長 r---圓半徑 d----圓直徑
圓的面積計算公式:S = π×r2 =3.1416×r2
圓周長計算公式:L = 2×π×r
(圓的面積說白了一點就是:半徑乘於半徑乘於3.14)
已知圓的面積求直徑:直徑:2√(面積÷園周率)
求面積例:一個單根直徑為80毫米的電纜線,求其截面積
3.14×(40×40)或3.14×402
= 3.14×1600 = 5024(平方毫米)
求球的體積計算公式:4.18879×半徑×半徑×半徑