當前位置:首頁 » 基礎知識 » 六點級數學知識點
擴展閱讀
帶角歌詞是什麼 2025-01-25 03:44:08

六點級數學知識點

發布時間: 2022-06-28 10:04:37

『壹』 小學六年級數學畢業考必考的知識點是什麼

一、整數和小數

1、最小的一位數是1,最小的自然數是0。

2、小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。

3、小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……

4、整數和小數都是按照十進制計數法寫出的數。

5、小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。

6、小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……

小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……

二、數的整除

1、倍數、因數:A÷B=C,A、B、C均為整數,我們就說A能被B整除或B能整除A。如果數a能被數b整除,a就叫做b的倍數,b就叫做a的因數。

2、一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。一個數因數的個數是有限的,最小的因數是1,最大的因數是它本身。一個數既是它本身的因數,也是它本身的倍數。

3、按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。

4、按一個數因數的個數,非0自然數可分為1、質數、合數三類。

質數:一個數,如果只有1和它本身兩個因數,這樣的數叫做質數。質數都有2個因數。合數:一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。合數至少有3個因數。最小的質數是2,最小的合數是4

5、1~20以內的質數有:2、3、5、7、11、13、17、19

1~20以內的合數有「4、6、8、9、10、12、14、15、16、18

「1」既不是質數,也不是合數。

6、2的倍數的數的特徵:個位上的數是0、2、4、6、8。

5的倍數的數的特徵:個位上的數是0或者5。

3的倍數的數的特徵:各個數位上的數的和是3的倍數。

既是3的倍數又是5的倍數的數的特徵:個位上的數是「5」。

7、公因數、公倍數:幾個數公有的因數,叫做這幾個數的公因數;其中最大的一個,叫做這幾個數的最大公因數。幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。

8、一般關系的兩個數的最大公因數、最小公倍數用短除法來求;互質關系的兩個數最大公約數是1,最小公倍數是兩數之積;倍數關系的兩個數的最大公因數是小數,最小公倍數是大數。

11、互質數:公因數只有1的兩個數叫做互質數。

12、兩數之積等於最小公倍數和最大公約數的積。

三、四則運算

1、一個加數=和—另一個加數被減數=差+減數減數=被減數-差

一個因數=積÷另一個因數被除數=商×除數除數=被除數÷商

2、在四則運算中,加、減法叫做第一級運算,乘、除法叫做第二級運算。

3、運算定律:

(1)加法交換律:a+b=b+a乘法交換律:a×b=b×a

兩個數相加,交換加數的位置,它們的和不變。

兩個數相加,交換因數的位置,它們的積不變。

(2)加法結合律:(a+b)+c=a+(b+c)乘法結合律:(a×b)×c=a×(b×c)

三個數相加,先把前兩個數相加,再同第三個數相加;或者先把後兩個數相加,再同第一個數相加,它們的和不變。

三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變。

(3)乘法分配律:(a+b)×c=a×c+b×c

兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。

(4)減法的性質:a-b-c=a-(b+c)除法的性質:a÷b÷c=a÷(b×c)

從一個數里連續減去兩個數,等於從這個數里減去兩個減數的和。

一個數連續除以兩個數,等於這個數除以兩個除數的積。

四 、兩個規律

1、除法的商不變規律:被除數和除數同時乘或除以相同的數(0除外),商不變。

2、乘法的積不變規律:如果一個因數乘幾,另一個因數則除以幾,那麼它們的積不變。

3、一個因數乘以比1大的數,積比這個數大,乘以比1小的數,積比這個數小

一個因數除以比1大的數,商比這個數小,除以比1小的數,商比這個數大

五、關系式

速度×時間=路程

路程÷時間=速度

路程÷速度=時間

工作效率×工作時間=工作總量

工作總量÷工作效率=工作時間

工作總量÷工作時間=工作效率

單價×數量=總價

總價÷數量=單價

總價÷單價=數量

『貳』 六年級下冊數學百分數知識點有哪些

六年級下冊數學百分數知識點如下:

1、百分數通常用"%"來表示。百分號是表示百分數的符號。

2、百分數的分子可以是整數,也可以是小數。

3、小數化成百分數:把小數點向右移動兩位(數位不夠用0補足),同時在後面添上百分號。

4、百分數只表示兩個數的倍比關系,不能表示具體的數量,所以不能帶單位。

5、百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。

『叄』 三到六年級數學知識點歸納有哪些

三到六年級數學知識點歸納有如下:

一、倍數與約數

最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。

最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。

二、利潤

利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)。

利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

三、小數

自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414。

四、分數的倒數

找一個分數的倒數,例如3/4把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。 則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。

五、圓周率:圓的周長與直徑的比值叫做圓周率。

圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。

『肆』 六年級數學必考知識點有哪些

一、分數

1、分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

2、分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。

3、分數乘法意義:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

4、分數乘整數:數形結合、轉化化歸5.倒數:乘積是1的兩個數叫做互為倒數。

二、百分數

1、定義:百分數是表示一個數是另一個數的百分之幾。百分數也叫做百分率或百分比。百分數通常不寫成分數的形式,而在原來的分子後面加上百分號「%」來表示。例如:百分之九十,90%;百分之一百零八點五,108.5%......百分數在工農業生產、科學技術、各種實驗中有著十分廣泛的應用,特別是在進行調查統計、分析比較時,經常要用到百分數。

2、百分數的意義:是能在生產生活中能將事物占總體的比例形容的更加完整,讓省去許多不必要的言語,簡易而恰當。

三、分數除法

1、分數除法:分數除法是分數乘法的逆運算。

2、分數除法計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數。

四、比例

1、在比例里,兩個外項的乘積等於兩個內項的乘積。比例的性質用於解比例。

2、比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。

五、數量關系

1份數量×份數=總量。

總量÷1份數量=份數。

總量÷另一份數=另一每份數量。

『伍』 六年級數學上冊必考知識點是什麼

【常用的數量關系】

1、每份數×份數=總數; 總數÷每份數=份數 ; 總數÷份數=每份數。

2、1倍數×倍數=幾倍數; 幾倍數÷1倍數=倍數; 幾倍數÷倍數=1倍數。

3、速度×時間=路程 ; 路程÷速度=時間 ; 路程÷時間=速度。

4、單價×數量=總價; 總價÷單價=數量 ; 總價÷數量=單價。

5、工作效率×工作時間=工作總量; 工作總量÷工作效率=工作時間。

工作總量÷工作時間=工作效率。

6、加數+加數=和; 和-一個加數=另一個加數。

7、被減數-減數=差; 被減數-差=減數; 差+減數=被減數。

8、因數×因數=積; 積÷一個因數=另一個因數。

9、被除數÷除數=商 ; 被除數÷商=除數; 商×除數=被除數。

【小學數學圖形計算公式】

1、正方形(C:周長, S:面積, a:邊長)。

周長=邊長×4; C=4a。

面積=邊長×邊長; S=a×a。

2、正方體(V:體積, a:棱長)。

表面積=棱長×棱長×6; S表=a×a×6。

體積=棱長×棱長×棱長; V= a×a×a。

3、長方形(C:周長, S:面積, a:邊長, b:寬 )。

周長=(長+寬)×2; C=2(a+b)。

面積=長×寬 ; S=a×b。

4、長方體(V:體積, S:面積, a:長, b:寬, h:高)。

(1)表面積=(長×寬+長×高+寬×高)×2; S=2(ab+ah+bh)。

(2)體積=長×寬×高; V=abh。

5、三角形(S:面積, a:底, h:高)。

面積=底×高÷2 ; S=ah÷2。

三角形的高=面積×2÷底 三角形的底=面積×2÷高。

6、平行四邊形(S:面積, a:底, h:高)。

面積=底×高; S=ah。

7、梯形(S:面積, a:上底, b:下底, h:高)。

面積=(上底+下底)×高÷2; S=(a+b)×h÷2。

8、圓形(S:面積, C:周長,π:圓周率, d:直徑, r:半徑 )。

(1)周長=π×直徑π=2×π×半徑; C=πd=2πr。

(2)面積=π×半徑×半徑; S= πr2。

9、圓柱體(V:體積, S:底面積, C:底面周長, h:高, r:底面半徑 )。

(1)側面積=底面周長×高=Ch=πdh=2πrh。

(2)表面積=側面積+底面積×2。

(3)體積=底面積×高。

10、圓錐體(V:體積, S:底面積, h:高, r:底面半徑 )。

體積=底面積×高÷3。

11、總數÷總份數=平均數。

12、和差問題的公式:已知兩數的和及它們的差,求這兩個數各是多少的應用題,叫做和差應用題,簡稱和差問題。

(和+差)÷2=大數; (和-差)÷2=小數。

『陸』 六年級上冊數學百分數知識點有哪些

六年級上冊百分數知識點有:

1、百分數表示兩個數之間的比率關系,不表示具體的數量,所以百分數不能帶單位。

2、與減少百分之幾相同的還有少百分之幾,降低百分之幾,節約百分之幾等。

3、與增加百分之幾相同的還有多百分之幾,提高百分之幾,增長百分之幾等。

日常生活中的百分數

1、電視里的天氣預報節目中,都會報出當天晚上和明天白天的天氣狀況、降水概率等。

如:今晚的降水概率是20%。

2、發布調查研究結果時對實驗對象宏觀的描述。

如:某實驗得出結論,經常看簡訊的人智商會下降10%。

3、計算利息,稅款,利潤時使用。

如:央行發布公告顯示,自10月24日起,將金融機構人民幣貸款和存款利率進一步下調0.25個百分點,其中,一年期貸款基準利率下調0.25個百分點至4.35%,一年期存款利率下調0.25個百分點至1.5%。

『柒』 六年級上冊數學重點知識點有哪些

六年級數學上冊必考知識點:

1、分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

2、分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。

3、分數乘法意義:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

4、分數乘整數:數形結合、轉化化歸。

5、倒數:乘積是1的兩個數叫做互為倒數。

『捌』 六年級上冊數學知識點

六年級數學上冊期末復習要點(人教版)

第1單元 分數乘法

(二)分數乘法的意義

1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。「分數乘整數」指的是第二個因數必須是整數,不能是分數。

2、一個數乘分數的意義就是求一個數的幾分之幾是多少。「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)

(二)分數乘法計演算法則

1、分數乘整數的運演算法則是:分子與整數相乘,分母不變.

(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。

2、分數乘分數的運演算法則是:用分子相乘的積做分子,分母相乘的積做分母(分子乘分子,分母乘分母)。

(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。

(2)分數化簡的方法是:分子、分母同時除以它們的最大公因數。

(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)。

(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。

(三)積與因數的關系:

一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b>1時,c>a。

一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b<1時,c<a(b<0)。

一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b=1時,c=a。

在進行因數與積的大小比較時,要注意因數為0時的特殊情況。

(四)分數乘法混合運算

1、分數乘法混合運算順序與整數相同,先乘、除後加、減,有括弧的先算括弧裡面的,再算括弧外面的。

2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。

乘法交換律:a×b=bXa乘法結合律:(a×b)Xc=a×(b×c)

乘法分配律:a×(b±c)=a×b土a×c

(五)倒數的意義:乘積為1的兩個數互為倒數。

1、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。(必須說清誰是誰的倒數)

2、判斷兩個數是否互為倒數的唯一標準是:兩數相乘的積是否為「1」。例如:a×b=1則a、b互為倒數。

3、求倒數的方法:

①求分數的倒數:交換分子、分母的位置。

②求整數的倒數:整數分之1。

③求帶分數的倒數:先化成假分數,再求倒數。

④求小數的倒數:先化成分數再求倒數。

內容比較多,完整列印版請見網路文庫:人教版六年級上冊數學期末知識要點

『玖』 六年級數學下冊重要知識點有哪些

六年級數學下冊重要知識點有:

1、數的認識:在復習數的認識相關知識的時候,一定要幫助孩子構建一個完成的知識體系,在構建完成之後還需要幫助孩子理解運用。

2、整數和分數的意義和分類。我們需要了解並記住整數和分數的定義是什麼,他們表示的意義是什麼,分數整數又有哪些分類,比如整數有奇數偶數合數質數等等,還有自然數、負數等等。再比如分數有真分數、假分數、帶分數等等,還有負分數等等。

3、數位和計數單位。這一塊的內容考查的不算太多,但是需要掌握數位之間的進率和計數單位的分類。在考試中有時候會涉及到利用數位來解決問題。

4、數的讀寫和改寫。數包括整數分數小數和負數等等,我們必須掌握所有數的讀法和寫法,讀的時候需要注意什麼,寫的時候需要注意什麼。在進行改寫的時候,需要注意哪些方面,一定要看清楚後邊的單位再利用四捨五入進行改寫。

5、分數和小數的基本性質。分數的性質和小數的性質這是經常考查的內容,學生們首先需要知道這兩個性質分別是什麼,注意的是什麼。小數點後末尾的0可以去掉,為何前邊的不能去掉呢?同乘或者除以相同的數,分數大小不變,那麼同加或者同減會怎麼樣呢。另外還需要注意小數點的移動導致數的變化規律。

6、因數與倍數。因數與倍數是五年級下冊的內容,內容雖然不算很多,但是非常難理解,所以這一塊內容一定要多下功夫,畢竟這塊內容還是初中學習的基礎。利用最大公因數和最小公倍數做題,也是有一定難度和技巧的。

『拾』 六年級數學下冊必考知識點是什麼

六年級數學下冊必考知識點如下:

1、圓柱的表面積=圓柱的側面積+底面積×2即S表=S側+S底×2或2πr×h+2×π。

2、圓錐只有一個底面,底面是個圓。圓錐的側面是個曲面。

3、把圓錐的側面展開得到一個扇形。

4、把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。

5、約分的方法:用分子和分母的公因數(1除外)去除分子、分母;通常要除到得出最簡分數為止。