當前位置:首頁 » 基礎知識 » 高中數學知識講解數列
擴展閱讀
動漫有哪些不同類型 2024-11-17 05:17:58

高中數學知識講解數列

發布時間: 2022-06-28 03:29:32

1. 高中數學數列知識點歸納有哪些

高中數學數列知識點歸納有:

1、數列是一種特殊的函數。其特殊性主要表現在其定義域和值域上。數列可以看作一個定義域為正整數集N*或其有限子集{1,2,3,…,n}的函數,其中的{1,2,3,…,n}不能省略。

2、用函數的觀點認識數列是重要的思想方法,一般情況下函數有三種表示方法,數列也不例外,通常也有三種表示方法:列表法、圖像法、解析法。其中解析法包括以通項公式給出數列和以遞推公式給出數列。

3、等差數列通項公式:an=a1+(n-1)d,n=1時a1=S1,n≥2時an=Sn-Sn-1,an=kn+b(k,b為常數)推導過程:an=dn+a1-d令d=k,a1-d=b,則得到an=kn+b。

4、等差中項:由三個數a,A,b組成的等差數列可以堪稱最簡單的等差數列。這時,A叫做a與b的等差中項(arithmeticmean)。

5、等差數列性質:任意兩項am,an的關系為:an=am+(n-m)d。它可以看作等差數列廣義的通項公式。

6、等比中項:如果在a與b中間插入一個數G,使a,G,b成等比數列,那麼G叫做a與b的等比中項。

7、等比數列性質:若m、n、p、q∈N*,且m+n=p+q,則am·an=ap·aq;在等比數列中,依次每k項之和仍成等比數列。

8、在等比數列中,首項a1與公比q都不為零.注意:上述公式中an表示等比數列的第n項。

2. 高中數學數列的相關內容

數列
本章是高考命題的主體內容之一,應切實進行全面、深入地復習,並在此基礎上,突出解決下述幾個問題:(1)等差、等比數列的證明須用定義證明,值得注意的是,若給出一個數列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數列計算是本章的中心內容,利用等差數列和等比數列的通項公式、前 項和公式及其性質熟練地進行計算,是高考命題重點考查的內容.(3)解答有關數列問題時,經常要運用各種數學思想.善於使用各種數學思想解答數列題,是我們復習應達到的目標. ①函數思想:等差等比數列的通項公式求和公式都可以看作是 的函數,所以等差等比數列的某些問題可以化為函數問題求解.
②分類討論思想:用等比數列求和公式應分為 及 ;已知 求 時,也要進行分類;
③整體思想:在解數列問題時,應注意擺脫呆板使用公式求解的思維定勢,運用整
體思想求解.
(4)在解答有關的數列應用題時,要認真地進行分析,將實際問題抽象化,轉化為數學問題,再利用有關數列知識和方法來解決.解答此類應用題是數學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關的等比數列的第幾項不要弄錯.
一、基本概念:
1、 數列的定義及表示方法:
2、 數列的項與項數:
3、 有窮數列與無窮數列:
4、 遞增(減)、擺動、循環數列:
5、 數列{an}的通項公式an:
6、 數列的前n項和公式Sn:
7、 等差數列、公差d、等差數列的結構:
8、 等比數列、公比q、等比數列的結構:
二、基本公式:
9、一般數列的通項an與前n項和Sn的關系:an= Sn-Sn-1
10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。
11、等差數列的前n項和公式:Sn=na1+[n(n-1)/2]d
當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。

12、等比數列的通項公式: an= a1 q^(n-1),an= ak q^(n-k)
(其中a1為首項、ak為已知的第k項,an≠0)
13、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關於n的正比例式);
當q≠1時,Sn=a1(q^n-1)/(q-1)
三、有關等差、等比數列的結論
14、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數列。
15、等差數列{an}中,若m+n=p+q,則
16、等比數列{an}中,若m+n=p+q,則
17、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數列。
18、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
19、兩個等比數列{an}與{bn}的積、商、倒數組成的數列
{an bn}、 、 仍為等比數列。
20、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
21、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數成等比的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什麼?)
24、{an}為等差數列,則 (c>0)是等比數列。
25、{bn}(bn>0)是等比數列,則{logcbn} (c>0且c 1) 是等差數列。
四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。
26、分組法求數列的和:如an=2n+3n
27、錯位相減法求和:如an=(2n-1)2n
28、裂項法求和:如an=1/n(n+1)
29、倒序相加法求和:如an=
30、求數列{an}的最大、最小項的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函數f(n)的增減性
31、在等差數列 中,有關Sn 的最值問題——常用鄰項變號法求解:
(1)當 >0,d<0時,滿足 的項數m使得 取最大值.
(2)當 <0,d>0時,滿足 的項數m使得 取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。

3. 求高中數學基礎知識提綱

希望能幫到你、、、、、、、、、、、、
高中數學知識點總結
高中數學立體幾何初步知識點總結:
立體幾何初步:①柱、錐、台、球及其簡單組合體等內容是立體幾何的基礎,也是研究空間問題的基本載體,是高考考查的重要方面,在學習中應注意這些幾何體的概念、性質以及對面積、體積公式的理解和運用。②三視圖和直觀圖是認知幾何體的基本內容,在高考中,對這兩個知識點的考查集中在兩個方面,一是考查三視圖與直觀圖的基本知識和基本的視圖能力,二是根據三視圖與直觀圖進行簡單的計算,常以選擇題、填空題的形式出現。③幾何體的表面積和體積,在高考中有所加強,一般以選擇題、填空、簡答等形式出現,難度不大,但是常與其他問題一起考查④平面的基本性質與推理主要包括平面的有關概念,四個公理,等角定理以及異面直線的有關知識,是整個立體幾何的基礎,學習時應加強對有關概念、定理的理解。⑤平行關系和垂直關系是立體幾何中的兩種重要關系,也是解決立體幾何的重要關系,要重點掌握。
高中數學平面解析幾何初步知識點總結:
平面解析幾何初步:①直線與方程是解析幾何的基礎,是高考重點考查的內容,單獨考查多以選擇題、填空題出現;間接考查則以直線與圓、橢圓、雙曲線、拋物線等知識綜合為主,多為中、高難度試題,往往作為把關題出現在高考題目中。直接考查主要考查直線的傾斜角、直線方程,兩直
高中數學集合知識點總結:
作為高中數學的一種基本語言及工具,幾乎為每年高考的必考內容,多以選擇題出現,分值約占總分的3%-5%,多與函數、不等式、數列等知識聯系而命制小型綜合題,根據新課標考試大綱的要求,集合關系與集合運算為考試重點,因此既要牢固掌握集合基本概念與運算,又要加強集合與其他數學知識的聯系,突出集合的工具性,尤其是熟練進行集合的自然語言、圖形語言、符號語言的相互轉化。
線的位置關系,點到直線的距離,對稱問題等,間接考查一定會出現在高考試卷中,主要考查直線與圓錐曲線的綜合問題。②圓的問題主要涉及圓的方程、直線與圓的位置關系、圓與圓的位置關系以及圓的集合性質的討論,難度中等或偏易,多以選擇題、填空題的形式出現,其中熱點為圓的切線問題。③空間直角坐標系是平面直角坐標系在空間的推廣,在解決空間問題中具有重要的作業,空間向量的坐標運算就是在空間直角坐標系下實現的。空間直角坐標系也是解答立體幾何問題的重要工具,一般是與空間向量在坐標運算結合起來運用,也不排除出現考查基礎知識的選擇題和填空題。
高中數學函數概念與基本初等函數ⅰ知識點總結:
函數概念與基本初等函數ⅰ:①函數是高中數學最重要、最基礎的內容,函數的思想方法貫穿於各章的知識中,函數問題在每年的高考中,不但以
高中數學演算法初步知識點總結:
演算法初步:①演算法是新課標增加的內容,以選擇題或填空題的形式考查,應該注意理解演算法的基本概念與特徵,注意演算法的本質是解決問題的一種程序性方法,學會演算法的自然語言。框圖程序設計語言等的相互轉化。②基本演算法語句也是新課標增加的內容,是數學及其應用的重要組成部分,預計高考對本部分的考查可能與代數、幾何中的有關知識結合,以選擇題、填空題的形式考查對幾種基本演算法語句的理解和應用。
選擇題、填空題的形式出現,而且幾乎每年都有一道解答題,考查內容重點涉及函數的概念、圖像、性質等各個方面,難度在低、中、高檔方面均有體現。②函數和方程為新課標新增添內容,要求結合二次函數的圖像,了解函數的零點與方程根的聯系,能判斷一元二次方程的根的存在性及根的個數;根據具體函數的圖像,能夠用二分法求相應方程的近似解,本部分知識蘊含著數形結合的思想、函數與方程的思想,在學習時注意體會。③學習數學是為了應用數學,指數函數、對數函數以及冪函數等都是重要的基本初等函數,是函數概念的具體體現於綜合應用,和其他函數一樣,對於它們的定義、圖像以及性質等是高考考查的重點,與其他函數、方程、不等式以及數列相融合的知識也是考查的熱點。
高中數學統計知識點總結:
統計:①隨機抽樣在高考中主要是選擇題或填空題,考查學生對各種抽樣方法的理解,一次學習時應加強對這三種抽樣飛的理解,搞清三種抽樣法的區別和聯系。②樣本估計法也是以小題為主,考查排列分布直方圖、平均數、標准差等的概念的理解和應用,學習時應結合實例理解樣本估計總體的思想,加深對;頻率分布直方圖的理解與應用,能從數據中抽取基本的數字特徵,並記准相應的公式。③變數的相關性的重點是變數間的線性相關及兩個變數的線性相關、最小二法思想、回歸方程的建立以及對回歸直線與觀測數據的理解。
高中數學概率知識點總結:
概率:①隨機事件的概率為近幾年新增添的內容,高考中主要以選擇題、填空題的形式出現,與其他知識綜合考查其應用,學習時,應通過基礎知識的學習理解其基本概念、基本原理,然後在此基礎上解決生活中的有關問題,還要理解隨機事件發生的不確定性和頻率的穩定性等知識。②古典概型是概率中最基本的一個概率模型,高考中,主要是利用古典概型的概率公式解決一些古典概型的應用題,考查形式可以是選擇題、填空題、解答題。③幾何概型是新增添內容,高考可能會有所側重,主要以選擇題、填空題出現,應注意基本概念的理解。
高中數學基本初等函數ⅱ(三角函數)知識點總結:

高中數學平面向量 知識點總結:
平面向量:在近幾年的高考中,平面向量每年都考,而且有加強的趨勢,在學習中應抓住兩個方面:一是向量的概念、性質、運算;二是應用向量解決距離、夾角、垂直、模的問題。學會運用向量處理三角函數、解析幾何、平面幾何、實際應用等綜合問題,以發展運算求解能力和解析、解決
高中數學三角恆等變形知識點總結:
三角恆等變形:①兩角和與差的三角函數公式是歷年高考的重要內容,而且有進一步加強的趨勢。因此公式應用講究一個活字,深刻理解各個公式之間的聯系,掌握公式應用的通性通法是學習的關鍵。②三角恆等變形中的三角函數求值、化簡及恆等證明是高考是熱點,需要掌握的公式有兩角和差、倍角的三角函數公式。學習的重點是掌握變換的基本思想方法,不是盲目地訓練繁難 偏題、怪題,應注重通性、通法的運用。
實際問題的能力。
本初等函數ⅱ(三角函數):①三角函數是中學中重要的初等函數之一,它的定義和性質有十分明顯的特徵和規律性,它和代數、幾何有著密切的聯系,是研究其他部分知識的重要工具,在實際問題中也有重要的應用,是高考對基礎知識和基本技能考查的重要內容之一。②在高考中主要有四類問題:一是與三角函數單調性有關的問題,二是與三角函數圖像有關的問題,三是應用同角變換和誘導公式,求三角函數及化簡和等式證明的問題,四是與周期和奇偶性有關的問題。③高考中多以選擇題、填空題形式出現,但也不排除在解答題中單獨出現,其難度為中、低檔。
高中數學解三角形知識點總結:
解三角形:在高考試題中,有關解三角形的問題主要考查正弦定理、餘弦定理及利用三角公式進行恆等變形的能力,以化簡、求值或判斷三角形的形狀為主,也與其他知識結合,考查解決綜合問題的能力。有關解三角形的題型主要是選擇題、填空題、解答題等,一般為簡單題或中檔題。
高中數學數列知識點總結:
數列:數列是高中數學的重要內容,是中學數學聯系實際的主要渠道之一,數列與數、式、函數、方程、不等式、三角函數、解析幾何的關系十分密切。數列中的遞推思想、函數思想、分類討論思想以及數列求和、求通向公式的各種方法和技巧在中學數學中有著十分重要的地位,因此數列知識可以命綜合性強的試題。每年高考中與數列有關的試題約佔全卷的10%-15%,基因數列內容的客觀題,也有數列與相關內容結合的綜合題與實際應用題。
高中數學不等式知識點總結:
不等式:①不等關系是客觀世界中量與量之間的一種主要關系,而不等式則是反映這種關系的基本形式,一直是高考考查的重點內容,尤其以實際問題、函數為背景的綜合題較多。不等式的定義域性質是不等式的基礎,許多不等式的定理、公式都是在此基礎上推理、拓展而成的,因此學校時要抓住基本概念和性質,熟練掌握性質的變形及其應用,不斷提升思維的深度和廣度,才能在解決與不等式有關的綜合題上有備無患、得心應手。②一元二次不等式是歷年考查的重點,因為其與一元二次函數、一元二次方程等聯系密切,內容交融,經常考查含參數的不等式的求解、恆成立問題、一元二次不等式的實際應用、綜合推理題等。因此學習時應該通過圖像了解一元二次不等式與相應的二次函數、二次方程的聯系。③線性規劃問題是眾多知識的交匯點,在實際生活、實際生產中的應用十分廣泛,而且在線性規劃問題的解決中,需要用到多種數學思想方法。所以線性規劃也是高考命題的熱點內容。高考中主要考查平面區域的表示。線性目標函數的最值等問題,主要以選擇題、填空題的形式出現,有時也以解答題的形式出現。

4. 高中數學里有數列的講解嗎

數列是高中數學重要學習內容之一,主要是等差數列和等比數列的講解。

5. 高中數學知識點整理

下面,我分章節講一下數學的主幹內容:那些雖然課本上沒有,但是必須講也必須學會的東西。

目錄(未完待更新):
零,總論與試卷分析(就是上文內容)
一,函數
1.1 集合
1.2 函數的定義域
1.3 函數的值域
1.4 單調性
1.5 奇偶性,對稱性,周期性
1.6 指數函數,對數函數
1.7 復合函數
1.8 含參函數
二,三角函數(僅函數部分,解三角形部分等講完平面向量和平面幾何再說)
2.1 正弦,餘弦,正切
2.2 三角函數線
2.3 三角函數的基本形式與伸縮
2.4 三角變換公式和萬能公式
2.5 三角函數最值問題
三,平面幾何,平面向量,與直線與圓的方程
3.1 平行線和相交線
3.2 三角形
3.3 圓
3.4 基向量,正交基,和坐標系
3.5 平面向量與基本幾何圖形
3.6 向量運算律與推論
3.7 直線方程
3.8 圓的方程
3.9 用向量解決平面幾何問題
四,解三角形
4.1 正弦定理
4.2 餘弦定理
4.3 正弦定理和餘弦定理的應用
4.4 解三角形中的多解問題
4.5 解三角形中的最值問題
五,立體幾何
5.1 基本幾何體:柱,錐,台,球
5.2 三視圖與直觀圖
一,函數
1.1 集合。
集合的元素必須是確定的,並且是唯一的。比如,一個集合里不能有兩個「1」。
1.2 函數的定義域。
除了最常見的幾個:分母不為零,對數函數的真數大於零,偶數次方的被開方數不為負(注意我前面幾個表述,其中暗含了區間的開閉),正切餘切函數不能恰好取定義中分母為零的角度(正切餘切都是用比值定義的) 還一定要注意一個容易被忽略的易錯點: 無定義。
1.3 函數的值域
分離常數法 判別式法 換元法 基本不等式法 等等幾種方法,看起來方法非常繁多,似乎挺難總結,但是,我們如果按題目的形式進行總結,每種只需要掌握一種,或者兩種就可以了

6. 高中數學數列的知識

1.遞推公式有的可以先列出An和An-1,兩式進行轉化。有的可以直接根據條件轉化,但是不同的題型不同做法,關鍵題目多做,你就會了。
2.裂項相消是比較難,但是理解了就可以得心應手。
如果1/(n(n+1))可以轉化→1/n -1/(n+1) (理由是你要進行通分,然後分母必須是1或者是其他常數。如果是其他常數則要在整個式子外乘上那個常數進行抵消)
這是最簡單的一種。關鍵是題目多做。