當前位置:首頁 » 基礎知識 » 集合數學知識講解
擴展閱讀
女同學有什麼病 2025-01-24 17:15:11

集合數學知識講解

發布時間: 2022-06-28 03:17:25

Ⅰ 高一數學集合知識點歸納有哪些

高一數學集合知識點歸納有:

1、集合是指具有某種特定性質的具體的或抽象的對象匯總而成的集體。其中,構成集合的這些對象則稱為該集合的元素。

2、一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次。

3、一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關系,定義了序關系後,元素之間就可以按照序關系排序。但就集合本身的特性而言,元素之間沒有必然的序。

4、集合的確定性是指組成集合的元素的性質必須明確,不允許有模稜兩可、含混不清的情況。

5、凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件。

Ⅱ 集合的概念知識點歸納有哪些

集合的概念和知識點歸納如下:

1、概念:

集合是指具有某種特定性質的具體的或抽象的對象匯總而成的集體。其中,構成集合的這些對象則稱為該集合的元素。

2、地位:

集合在數學領域具有無可比擬的特殊重要性。集合論的基礎是由德國數學家康托爾在19世紀70年代奠定的,經過一大批科學家半個世紀的努力,到20世紀20年代已確立了其在現代數學理論體系中的基礎地位,可以說,現代數學各個分支的幾乎所有成果都構築在嚴格的集合理論上。

3、特性:

(1)確定性:

給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現。

(2)互異性:

一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次。

(3)無序性:

一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關系,定義了序關系後,元素之間就可以按照序關系排序。但就集合本身的特性而言,元素之間沒有必然的序。

4、表示方法:

表示集合的方法通常有四種,即列舉法、描述法、圖像法和符號法。

5、運算定律:

(1)交換律:A∩B=B∩A;A∪B=B∪A。

(2)結合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C。

(3)分配對偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。

(4)對偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C。

(5)同一律:A∪∅=A;A∩U=A。

(6)求補律:A∪A'=U;A∩A'=∅。

(7)對合律:A''=A。

(8)等冪律:A∪A=A;A∩A=A。

(9)零一律:A∪U=U;A∩∅=∅。

(10)吸收律:A∪(A∩B)=A;A∩(A∪B)=A。

集合的容斥原理(特殊情況):

card(A∪B)=card(A)+card(B)-card(A∩B)

card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)。

以上內容參考:網路-集合

Ⅲ 高一數學第一章集合的知識點

高一數學集合知識點:集合的概念、關於集合的元素的特徵、元素與集合的關系、常用數集及其記法、集合的分類、集合的表示方法(自然語言法、列舉法、描述法)、集合間的基本關系、集合的基本運算(交集、並集、全集、補集)。

集合運算時的基本概念:

1、並集:一般的由屬於集合A或屬於集合B的所有元素組成的集合稱為集合A與B的並集,記作A∪B。

2、交集:一般的有屬於集合A且屬於集合B的所有元素組成的集合,稱為集合A與B的交集,記作A∩B。

3、全集:一般的如果一個集合,還有我們所研究問題中涉及的所有元素,那麼就稱這個集合為全集,通常記作U。

4、補集:對於一個集合A由全集U中不屬於集合A的所有元素組成的集合,稱為集合A相對於全集U的補集,簡稱為集合A的補集。

Ⅳ 集合數學知識點有哪些

集合數學知識點有如下:

一、集合的含義與表示

1、通過實例了解集合的含義,體會元素與集合的「屬於」關系。

2、能選擇然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。

二、集合間的基本關系

1、理解集合之間包含與相等的含義,能識別給定集合的子集。

2、在具體情境中,了解全集與空集的含義。

有限集:含有有限個元素的集合

無限集:含有無限個元素的集合

空集:不含任何元素的集合 例:{x|x2=-5}

概念:

集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素。例如全中國人的集合,它的元素就是每一個中國人。

我們通常用大寫字母如A,B,S,T,...表示集合,而用小寫字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,則稱x屬於S,記為x∈S。若y不是集合S的元素,則稱y不屬於S,記為y∉S。

Ⅳ 高一集合數學知識點內容有哪些

集合數學知識點有如下:

一、某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那麼所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。

二、通常用大寫字母表示集合,用小寫字母表示元素。

三、一個集合中,每個元素的地位都是相同的,元素之間是無序的。

四、集合論的基礎是由德國數學家康托爾在19世紀70年代奠定的,經過一大批科學家半個世紀的努力,到20世紀20年代已確立了其在現代數學理論體系中的基礎地位,可以說,現代數學各個分支的幾乎所有成果都構築在嚴格的集合理論上。

五、集合中元素的數目稱為集合的基數,集合A的基數記作card(A)。當其為有限大時,集合A稱為有限集,反之則為無限集。一般的,把含有有限個元素的集合叫做有限集,含無限個元素的集合叫做無限集。

Ⅵ 高一集合數學知識點有哪些

高一集合數學知識點:

1、集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

2、集合中的元素具有確定性、互異性和無序性。

3、集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件。

4、集合,在數學上是一個基礎概念。什麼叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下「定義」。

5、集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

Ⅶ 高一數學集合知識點歸納有哪些

如下:

1、給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現。

2、一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次。

3、作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

4、對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

5、含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

Ⅷ 數學集合中的所有符號及其意義

集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素.,集合可以用符號來表示,集合中的符號和意義如下:

∪ 並集

∩ 交集

⊂ A⊂B, A屬於B

⊃ A⊃B, A包括B

∈ a∈A,a是A的元素

⊆ A⊆B,A不大於B

⊇ A⊇B,A不小於B

Φ 空集

R 實數

N 自然數

Z 整數

Z+正整數

Z- 負整數

Ⅸ 集合數學知識點是什麼

集合數學知識點是:

1、集合的含義

某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那麼所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。

2、集合的表示

通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬於集合A。

3、集合的三個特性

(1)無序性

指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

(2)互異性

指集合中的元素不能重復,A={2,2}只能表示為{2}

(3)確定性

集合的確定性是指組成集合的元素的性質必須明確,不允許有模稜兩可、含混不清的情況。

4、子集的定義

A包含於B,有兩種可能:A是B的一部分;A與B是同一集合,A=B,A、B兩集合中元素都相同。反之,集合A不包含於集合B。不含任何元素的集合叫做空集,空集是任何集合的子集。

5、子集規律

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。