❶ 高中數學知識點有哪些
01高中數學是全國高中生學習的一門學科。包括《集合與函數》《三角函數》《不等式》《數列》《立體幾何》《平面解析幾何》等部分, 高中數學主要分為代數和幾何兩大部分。代數主要是一次函數,二次函數,反比例函數和三角函數。幾何又分為平面解析幾何和立體幾何兩大部分。
平面解析幾何初步:
(1)直線與方程
1在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。
2理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。
3能根據斜率判定兩條直線平行或垂直。
4根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系。
5能用解方程組的方法求兩直線的交點坐標。
6探索並掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。
(2)圓與方程
1回顧確定圓的幾何要素,在平面直角坐標系中,探索並掌握圓的標准方程與一般方程。
2能根據給定直線、圓的方程,判斷直線與圓、圓與圓的位置關系。
3能用直線和圓的方程解決一些簡單的問題。
(3)在平面解析幾何初步的學習過程中,體會用代數方法處理幾何問題的思想。
(4)空間直角坐標系
1通過具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會用空間直角坐標系刻畫點的位置。
2通過表示特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索並得出空間兩點間的距離公式。
❷ 數學有哪些知識
加減乘除,小數分數,單位換算,太多了
❸ 數學小知識內容有哪些
數學小知識內容如下:
1、最早使用小圓點作為小數點的是德國的數學家,叫克拉維斯。
2、中國是最早使用四捨五入法進行計算的國家。
3、數字系統是一種處理「多少」的方法。不同的文化在不同的時代採用了各種不同的方法,從基本的「1,2,3,很多」延伸到我們今天所使用的高度復雜的十進製表示方法。
4、π是數學中最著名的數。忘記自然界中的所有其他常數也不會忘記它,π總是出現在名單中的第一個位置。如果數字也有奧斯卡獎,那麼π肯定每年都會得獎。
5、e是近似值為2.71828的數,是一個無理數,因此,我們無法知道它的精確數值。
❹ 生活中的數學知識有哪些
1、風扇的扇葉繞著中心旋轉:過一點有無數條直線。
2、三角形的支架:三角形具有穩定性。
3、四邊形的推拉門:四邊形具有不穩定性。
4、速度、時間、路程三者的函數關系。
5、用坐標表示地理位置。
6、買彩票是否能中獎,概率問題。
7、風箏飛翔平穩是軸對稱圖形的性質的應用。
❺ 日常生活中的數學知識有哪些
日常生活中的數學知識有如下:
1、抽屜原理:
如果我們去參加一場婚禮,人數超過367人,那麼其中必然有生日相同的人(並非同年)。
這就是抽屜原理。
把m個東西任意分放進n個空抽屜里(m>n),那麼一定有一個抽屜中放進了至少2個東西。
由於一年最多有366天,因此在367人中至少有2人出生在同月同日。這相當於把367個東西放入366個抽屜,至少有2個東西在同一抽屜里。
運用到了數學的抽屜原理。
2、貓的面積:
冬天,貓睡覺時總是把身體抱成一個球形,是因為這樣身體散發的熱量最少。
在數學中,體積一定,表面積最小的物體是球體。
貓縮成一個球體,可以減小和外界接觸的面積,降低熱交換的速度,減少熱量損失的速度,節省能量,保持體溫。
運用到了數學的面積學。
3、四葉草叫「幸運草 」:
三葉草,學名苜蓿草,是多年生草本植物,一般只有三片小葉子,葉形呈心形狀,葉心較深色的部分亦是心形。
四葉草是由三葉草基因突變而產生的,它只佔其中的十萬分之一。也就說在十萬株苜蓿草中,你可能只會發現一株是『四葉草』,因為機率太小。因此「四葉草」是國際公認為幸運的象徵。
運用到了數學的概率學。
4、車輪都是圓的而不是其他形狀:
圓的中心叫圓心,圓上任何一點到圓心的距離都是相等的。把車輪做成圓形,車軸在圓心上,當車輪在地面滾動時,車軸離地面的距離,總是等於車輪半徑。
因此,車里坐的人,就能平穩地被車子拉著走。假如車輪變了形,不成圓形了,輪上高一塊低一塊,到軸的距離不相等了,車就不會再平穩。
運用到了數學的圓心知識。
5、風扇的葉片都是奇數:
這是因為奇數的葉片組合能比偶數的葉片組合帶來更多的性能優勢。
如果一旦葉片數量為偶數片設計,並形成對稱的排列方式的話,那麼不但使得風扇自身的平衡性難以調整,而且容易使風扇在高速轉時產生更多的共振,從而導致葉片無法長時間承受共振產生的疲勞,最終出現葉片斷裂等情況。
因此,軸流風扇的設計多為不對稱的奇數片葉片設計。
同樣的設計理念在日常使用的電風扇或螺旋槳直升飛機的設計中都有體現。如果風扇是三葉結構,葉片製作較寬且葉片根部較強,各個部位的密度的等需均勻;如果為五葉結構,葉片較窄一些,厚度、強度也相對較低。
運用到了數學的奇偶數概念。
❻ 數學初中全部重要知識點有哪些
數學初中重要知識點有:
1、過兩點有且只有一條直線。
2、兩點之間線段最短。
3、同角或等角的補角相等。
4、同角或等角的餘角相等。
5、過一點有且只有一條直線和已知直線垂直。
6、直線外一點與直線上各點連接的所有線段中,垂線段最短。
7、平行公理經過直線外一點,有且只有一條直線與這條直線平行。
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行。
9、同位角相等,兩直線平行。
10、內錯角相等,兩直線平行。
11、同旁內角互補,兩直線平行。
12、兩直線平行,同位角相等。
13、性質定理:在垂直平分線上的點到該線段兩端點的距離相等。
14、判定定理:到線段2端點距離相等的點在這線段的垂直平分線上。
15、角平分線:把一個角平分的射線叫該角的角平分線。
❼ 初中數學所有知識點歸納有哪些
初中數學所有知識點如下:
1、在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。2、異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。
3、如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。
4、利用配方,使方程變為完全平方公式,在用直接開平方法去求出解。
5、單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。
❽ 關於數學的知識有哪些
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 0除以任何不是0的數都得0。
7、簡便乘法:被乘數、乘數末尾有0的乘法,可以先把0前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
❾ 數學知識都有哪些
數學知識包羅萬象,上到天文地理,下至雞毛蒜皮都涉及數學知識,不過最基本的不外是幼兒園、小學所教內容:認識數字大小、加減乘除四則運算,最多加上分數、小數的知識,基本上就是日常都要用到的數學知識,熟練掌握運算以及所謂「應用題」的解決,再掌握一點關於面積、體積的計算更好。至於其他「數學知識」,即使頂尖數學家恐怕難以說清楚「數學」最終包括哪些內容,因為科學技術就是一個不斷探索、不斷發展的過程。
❿ 有趣的數學知識有哪些
有趣的數學知識有如下:
1、沒有最大的質數。歐幾里得給出了優美而簡單的證明。
2、哥德巴赫猜想:任何一個偶數都能表示成兩個質數之和。陳景潤的成果為:任何一個偶數都能表示成一個質數和不多於兩個質數的乘積之和。
3、費馬大定理:x的n次方+y的n次方=z的n次方,n>2時沒有整數解。歐拉證明了3和4,1995年被英國數學家 安德魯*懷爾斯 證明。
4、黃金分割提出者是畢達哥拉斯。有一次,畢達哥拉斯路過鐵匠作坊,被叮叮當當的打鐵聲迷住了。為了揭開這些聲音的秘密,他測量了鐵錘和鐵砧的尺寸,發現它們存在著十分和諧的比例關系。回家後,他取出一根線,分為兩段,反復比較,最後認定1:0.618的比例最為優美。這個比例被公認為是最能引起美感的比例,因此被稱為黃金分割。
5、假如一條線段兩端加上向外的兩條斜線,另一條線段兩端加上向內的兩條斜線,則前者要顯得比後者長得多。對於這種錯覺有一種理論,叫神經抑製作用理論。
它認為當兩個輪廓彼此貼近時,視網膜上相鄰的神經團會相互抑制,結果輪廓發生了位移,產生錯覺。