當前位置:首頁 » 基礎知識 » 小學六年數學知識總結
擴展閱讀
如何偷同學鞋子不被發現 2025-01-11 12:05:08

小學六年數學知識總結

發布時間: 2022-03-12 08:42:43

⑴ 1至6年級數學知識總結

小學1至6年級數學主要學習基礎的計算和幾何代數的初步認識。數與代數裡面的基礎概念,如數位、自然數、正數、負數等;圖形與幾何部分的基礎概念,如角、角的定點、角的邊、三角形、四邊形等。

小學一年級:九九乘法口訣表,學會基礎加減乘:背誦好九九乘法口訣表,做到熟悉個位數的相乘;

小學二年級:完善乘法口訣表,牢固一年級知識,學會除混合運算,基礎幾何圖形;

小學三年級:學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數;

小學四年級:線角自然數整數,素因數梯形對稱,分數小數計算;

小學五年級:分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積;

小學六年級:比例百分比概率,圓扇圓柱及圓錐。

⑵ 小學六年級數學必考知識點有哪些

小學六年級數學必考知識點:

一、分數

1.分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。

2.分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。

3.分數乘法意義:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

4.分數乘整數:數形結合、轉化化歸5.倒數:乘積是1的兩個數叫做互為倒數。

二、百分數

1、定義:百分數是表示一個數是另一個數的百分之幾。百分數也叫做百分率或百分比。百分數通常不寫成分數的形式,而在原來的分子後面加上百分號「%」來表示。例如:百分之九十,90%;百分之一百零八點五,108.5%......百分數在工農業生產、科學技術、各種實驗中有著十分廣泛的應用,特別是在進行調查統計、分析比較時,經常要用到百分數。

2、百分數的意義:是能在生產生活中能將事物占總體的比例形容的更加完整,讓省去許多不必要的言語,簡易而恰當。

三、分數除法

1、分數除法:分數除法是分數乘法的逆運算。

2、分數除法計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數。

四。比例

1、在比例里,兩個外項的乘積等於兩個內項的乘積。比例的性質用於解比例。

2、比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。

⑶ 小學六年級數學畢業考必考的知識點是什麼

一、整數和小數

1、最小的一位數是1,最小的自然數是0。

2、小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。

3、小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……

4、整數和小數都是按照十進制計數法寫出的數。

5、小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。

6、小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……

小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……

二、數的整除

1、倍數、因數:A÷B=C,A、B、C均為整數,我們就說A能被B整除或B能整除A。如果數a能被數b整除,a就叫做b的倍數,b就叫做a的因數。

2、一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。一個數因數的個數是有限的,最小的因數是1,最大的因數是它本身。一個數既是它本身的因數,也是它本身的倍數。

3、按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。

4、按一個數因數的個數,非0自然數可分為1、質數、合數三類。

質數:一個數,如果只有1和它本身兩個因數,這樣的數叫做質數。質數都有2個因數。合數:一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。合數至少有3個因數。最小的質數是2,最小的合數是4

5、1~20以內的質數有:2、3、5、7、11、13、17、19

1~20以內的合數有「4、6、8、9、10、12、14、15、16、18

「1」既不是質數,也不是合數。

6、2的倍數的數的特徵:個位上的數是0、2、4、6、8。

5的倍數的數的特徵:個位上的數是0或者5。

3的倍數的數的特徵:各個數位上的數的和是3的倍數。

既是3的倍數又是5的倍數的數的特徵:個位上的數是「5」。

7、公因數、公倍數:幾個數公有的因數,叫做這幾個數的公因數;其中最大的一個,叫做這幾個數的最大公因數。幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。

8、一般關系的兩個數的最大公因數、最小公倍數用短除法來求;互質關系的兩個數最大公約數是1,最小公倍數是兩數之積;倍數關系的兩個數的最大公因數是小數,最小公倍數是大數。

11、互質數:公因數只有1的兩個數叫做互質數。

12、兩數之積等於最小公倍數和最大公約數的積。

三、四則運算

1、一個加數=和—另一個加數被減數=差+減數減數=被減數-差

一個因數=積÷另一個因數被除數=商×除數除數=被除數÷商

2、在四則運算中,加、減法叫做第一級運算,乘、除法叫做第二級運算。

3、運算定律:

(1)加法交換律:a+b=b+a乘法交換律:a×b=b×a

兩個數相加,交換加數的位置,它們的和不變。

兩個數相加,交換因數的位置,它們的積不變。

(2)加法結合律:(a+b)+c=a+(b+c)乘法結合律:(a×b)×c=a×(b×c)

三個數相加,先把前兩個數相加,再同第三個數相加;或者先把後兩個數相加,再同第一個數相加,它們的和不變。

三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變。

(3)乘法分配律:(a+b)×c=a×c+b×c

兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。

(4)減法的性質:a-b-c=a-(b+c)除法的性質:a÷b÷c=a÷(b×c)

從一個數里連續減去兩個數,等於從這個數里減去兩個減數的和。

一個數連續除以兩個數,等於這個數除以兩個除數的積。

四 、兩個規律

1、除法的商不變規律:被除數和除數同時乘或除以相同的數(0除外),商不變。

2、乘法的積不變規律:如果一個因數乘幾,另一個因數則除以幾,那麼它們的積不變。

3、一個因數乘以比1大的數,積比這個數大,乘以比1小的數,積比這個數小

一個因數除以比1大的數,商比這個數小,除以比1小的數,商比這個數大

五、關系式

速度×時間=路程

路程÷時間=速度

路程÷速度=時間

工作效率×工作時間=工作總量

工作總量÷工作效率=工作時間

工作總量÷工作時間=工作效率

單價×數量=總價

總價÷數量=單價

總價÷單價=數量

⑷ 把小學六年的數學知識整理成知識網

小學畢業班總復習概念整理

一、整數和小數

1.最小的一位數是1,最小的自然數是0

2.小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。

3.小數點左邊是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……

4.小數的分類:

有限小數

小數 無限循環小數

無限小數 無限不循環小數

5.整數和小數都是按照十進制計數法寫出的數。

6.小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。

7.小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……

小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……

二、數的整除

1.整除:整數a除以整數b(b≠0),除得的商正好是整數而且沒有餘數,我們就說a能被b整除,或者說b能整除a。

2.約數、倍數:如果數a能被數b整除,a就叫做b的倍數,b就叫做a的約數。

3.一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。

一個數約數的個數是有限的,最小的約數是1,最大的約數是它本身。

4.按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。

5.按一個數約數的個數,非0自然數可分為1、質數、合數三類。

質數:一個數,如果只有1和它本身兩個約數,這樣的數叫做質數。

質數都有2個約數。

合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。

合數至少有3個約數。

最小的質數是2,最小的合數是4

1~20以內的質數有:2、3、5、7、11、13、17、19

1~20以內的合數有:4、6、8、9、10、12、14、15、16、18

6.能被2整除的數的特徵:個位上是0、2、4、6、8的數,都能被2整除。

能被5整除的數的特徵:個位上是0或者5的數,都能被5整除。

能被3整除的數的特徵:一個數的各位上數的和能被3整除,這個數就能被3整除。

7.質因數:如果一個自然數的因數是質數,這個因數就叫做這個自然數的質因數。

8.分解質因數:把一個合數用質因數相乘的形式表示出來,叫做分解質因數。

9.公約數、公倍數:幾個數公有的約數,叫做這幾個數的公約數;其中最大的一個,叫做這幾個數的最大公約數。

幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。

10.一般關系的兩個數的最大公約數、最小公倍數用短除法來求;互質關系的兩個數最大公約數是1,最小公倍數是兩數之積;倍數關系的兩個數的最大公約數是小數,最小公倍數是大數。

11.互質數:公約數只有1的兩個數叫做互質數。

12.兩數之積等於最小公倍數和最大公約數的積。
........
http://hi..com/ququpingping/blog/item/db4698300986deaf5fdf0e36.html
http://hi..com/ququpingping/blog/item/179896fab2f087254e4aea37.html
http://hi..com/ququpingping/blog/item/975a92012c19d080e850cd32.html

⑸ 小學六年級數學知識點總結(下冊)

負數:像-1,-2,-3。。。。叫負數,1,2,3。。。。。是正數,也可寫成+1,+2,+3。。。。。。0不是負數也不是正數。
數軸上,負數在0的左邊,正數在0的右邊。
圓柱與圓錐:圓柱的兩個圓面叫做底面,周圍的面叫側面,兩個底面之間的距離叫高,長方形的長等於圓柱底面的周長,寬等於圓柱的高。
公式:圓柱表面積=圓柱側面積+兩個底面的面積
圓柱的側面積=底面周長*高
圓柱的體積=底面積*高
圓錐的體積=等底等高的圓柱的體積*三分之一
比例:表示兩比相等的式子叫比例。
組成比例的四個數,叫做比例的項,兩端的兩項叫做比例的外項,中間的兩項叫做比例的內項。
在比例里,兩個外項的積等於兩個內項的積,這叫做比例的基本性質。
求比例中的未知項,叫做解比例。
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系叫做反比例關系。
圖上距離:實際距離=比例尺,數值比例尺是1:10000或一萬分之一,線段比例尺是一個線段,圖上幾厘米表示實際多少。
統計沒什麼,記住三個統計圖,折線,扇形,條形的就行了。
數學廣角很簡單,只用記住方法。

⑹ 小學六年級數學知識

1)生活中可以將物品放大的工具有( 顯微鏡).(放大鏡 ).

(2)生活中可以將物品縮小的工具有(照相機 ).( 汽車上的反光鏡).

(3)圖形通過一定的比例放大後,( 形狀)沒有發生變化,( 大小)和(長短 )都發生了變化.

⑺ 小學六年級數學的知識點總結

小學六年級教材共分上下兩冊,在這兩冊中,最重要的是下冊的總復習,這里包括了小學數學全部的知識點及其知識間的相互聯系,必須在老師的指導下切實掌握好這些知識及其知識間的聯系。其次是上冊的第三單元「分數四則混合運算和應用題」這一部分,每年的小學畢業考試試卷上有60分至80分的題目都來自於這個單元。再次是比例、圓柱與圓錐。最後是數學廣角(雞兔同籠和抽屜原理)與統計。這只是大范圍的介紹六年級的知識點,細說太麻煩,可以找個六年級的數學教師(老教六年級的更好)問一問。

⑻ 小學六年的數學知識=.=

到這里看看,已經整理好的小學數學總復習。

http://wenku..com/view/e45f46fc700abb68a982fb5b.html

⑼ 小學六年級的數學知識點~~急求!!

小學六年級數學知識點總結小學六年級數學知識點總結小學六年級數學知識點總結小學六年級數學知識點總結 1. 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數 2 、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數 3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度 4 、單價×數量=總價 總價÷單價=數量 總價÷數量=單價 5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 6、 加數+加數=和 和-一個加數=另一個加數 7 、被減數-減數=差 被減數-差=減數 差+減數=被減數 8、 因數×因數=積 積÷一個因數=另一個因數 9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數 小學數學圖形計算公式小學數學圖形計算公式小學數學圖形計算公式小學數學圖形計算公式 1 正方形正方形正方形正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a 2 正方體正方體正方體正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a 3 長方形長方形長方形長方形 C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab 4 長方體長方體長方體長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5 三角形三角形三角形三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6 平行四邊形平行四邊形平行四邊形平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7 梯形梯形梯形梯形 s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圓形圓形圓形圓形 S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏ S=∏rr 9 圓柱體圓柱體圓柱體圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑 10 圓錐體圓錐體圓錐體圓錐體 v:體積 h:高 s;底面積 r:底面半徑 體積=底面積×高÷3 總數÷總份數=平均數 和差問題的公式和差問題的公式和差問題的公式和差問題的公式 (和+差)÷2=大數 (和-差)÷2=小數 和倍問題和倍問題和倍問題和倍問題 和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數) 差倍問題差倍問題差倍問題差倍問題 差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)小學奧數公式 和差問題的公式和差問題的公式和差問題的公式和差問題的公式 (和+差)÷2=大數 (和-差)÷2=小數 和倍問題的公式和倍問題的公式和倍問題的公式和倍問題的公式 和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數) 差倍問題的公式差倍問題的公式差倍問題的公式差倍問題的公式 差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數) 植樹問題的公式植樹問題的公式植樹問題的公式植樹問題的公式 1 非封閉線路上的植樹問題主要可分為以下三種情形: ⑴如果在非封閉線路的兩端都要植樹,那麼: 株數=段數+1=全長÷株距-1 全長=株距×(株數-1) 株距=全長÷(株數-1) ⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼: 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數 ⑶如果在非封閉線路的兩端都不要植樹,那麼: 株數=段數-1=全長÷株距-1 全長=株距×(株數+1) 株距=全長÷(株數+1) 2 封閉線路上的植樹問題的數量關系如下 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數 盈虧問題的公式盈虧問題的公式盈虧問題的公式盈虧問題的公式 (盈+虧)÷兩次分配量之差=參加分配的份數 (大盈-小盈)÷兩次分配量之差=參加分配的份數 (大虧-小虧)÷兩次分配量之差=參加分配的份數 相遇問題的公式相遇問題的公式相遇問題的公式相遇問題的公式 相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間 追及問題的公式追及問題的公式追及問題的公式追及問題的公式 追及距離=速度差×追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間 流水問題流水問題流水問題流水問題 順流速度=靜水速度+水流速度 靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2 濃度問題的公式濃度問題的公式濃度問題的公式濃度問題的公式 溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷濃度=溶液的重量 溶質的重量÷溶液的重量×100%=濃度 溶液的重量×濃度=溶質的重量 利潤與折扣問題的公式利潤與折扣問題的公式利潤與折扣問題的公式利潤與折扣問題的公式 利潤=售出價-成本 漲跌金額=本金×漲跌百分比 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100% 折扣=實際售價÷原售價×100%(折扣<1) 利息=本金×利率×時間 稅後利息=本金×利率×時間×(1-20%) ((((一一一一))))數的讀法和寫法數的讀法和寫法數的讀法和寫法數的讀法和寫法 1. 整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個「億」或「萬」字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。 2. 整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。 3、小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作「點」,小數部分從左向右順次讀出每一位數位上的數字。 4、小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。 5、分數的讀法:讀分數時,先讀分母再讀「分之」然後讀分子,分子和分母按照整數的讀法來讀。 6. 分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。 7. 百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。 8. 百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。 ((((二二二二))))數的改寫數的改寫數的改寫數的改寫 一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。 1. 准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。 例如把 1254300000 改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。 2. 近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。 3. 四捨五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略 345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。 4. 大小比較 1. 比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。 2. 比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大…… 3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。 ((((三三三三))))數的互化數的互化數的互化數的互化 1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。 2. 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。 3. 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。 4. 小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。 5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。 6. 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。 7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。 ((((四四四四))))數的整除數的整除數的整除數的整除 1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。 2. 求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數 。 3. 求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。 4. 成為互質關系的兩個數:1和任何自然數互質 ; 相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質; 兩個合數的公約數只有1時,這兩個合數互質。 ((((五五五五)))) 約分和通分約分和通分約分和通分約分和通分 1、約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。 2、通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。 小數 1 、小數的意義 把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。

⑽ 小學六年級數學知識要點

小學數學是學習生涯的關鍵階段,為了能夠使同學們在數學方面有所建樹,小編特此整理了小學六年級數學重要知識點 梳理以供大家參考。
一、常用的數量關系式
1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數
二、小學數學圖形計算公式
1、正方形 (C:周長 S:面積 a:邊長)
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2、正方體 (V:體積 a:棱長 )
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3、長方形( C:周長 S:面積 a:邊長 )
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)
(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
(2)體積=長×寬×高 V=abh
5、三角形 (s:面積 a:底 h:高)
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6、平行四邊形 (s:面積 a:底 h:高)
面積=底×高 s=ah
7、梯形 (s:面積 a:上底 b:下底 h:高)
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圓形 (S:面積 C:周長 л d=直徑 r=半徑)
(1)周長=直徑×л=2×л×半徑 C=лd=2лr
(2)面積=半徑×半徑×л
9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)
(1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2
(3)體積=底面積×高 (4)體積=側面積÷2×半徑
10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)
體積=底面積×高÷3
11、總數÷總份數=平均數
12、和差問題的公式
(和+差)÷2=大數 (和-差)÷2=小數
13、和倍問題
和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
14、差倍問題
差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
15、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16、濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
17、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
三、常用單位換算
1、長度單位換算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面積單位換算
1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
2、體(容)積單位換算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量單位換算
1噸=1000 千克 1千克=1000克 1千克=1公斤
人民幣單位換算
1元=10角 1角=10分 1元=100分
3、時間單位換算
1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時
1時=60分 1分=60秒 1時=3600秒