當前位置:首頁 » 基礎知識 » 人教版初一數學上冊知識點下載
擴展閱讀
同學集會說些什麼 2025-01-11 12:53:23

人教版初一數學上冊知識點下載

發布時間: 2022-03-12 06:39:15

❶ 人教版初一數學知識

抓住兩個主要環節:一是緊緊抓住這一道題和一類題之間的共性,想想這一類題的一般思路和一般解法;二是緊緊抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。選擇一個或幾個條件作為解題的突破口,看由這些條件能得出什麼過渡結論,得出的越多越好,然後篩選出有用的結論,進一步進行推理或演算。這就是老師常給同學們講的:「聰明的同學是一類一類地學,不聰明的同學是一道一道地學」。要知道,題海無邊,只有舉一反三,觸類旁通,才能跳出題海,領會數學學習的奧妙。
二、記住
三、講「方法」聯系「思想」,以「思想」指導「方法」,兩者相得益彰。必要的基礎知識是熟練解題的關鍵。
四、形成良好的思維品質是理解數學問題的基礎數學,作為培養人的思維能力的一門學科,以其理性的思考而引人入勝。它不像游山觀景,以其迷人的景色讓人賞心悅目,流連忘返。數學學習,是通過思考與反思去研究事物的空間形式和數量關系,讓事物的空間形式與數量關系呈現出來。只有形成良好的思維品質,以良好的思維品質這把利刃拔開事物的表象,才能「看」到事物的本質。
那麼什麼是良好的思維品質呢?我們以生活中「串門」這種現象為例來說明。許多人都有這樣的生活體驗,讓別人帶著去某人家串門,去了一次,兩次,也可能是多次。有一天你不得不自己去某人家串門。當你走到某人家附近時,面對林立的整齊劃一的建築群,你茫然失措了,不知道某人家到底在哪兒。
在學習過程中,我們就經常出現這樣的現象。在課堂上,老師講得頭頭是道,同學們聽得只點頭,感覺明白至極。而一讓同學們自己做題,又不知從何入手了。主要原因就在於同學們沒有對所學的知識進行深入的思考,去理解所學知識的本質。就像串門,每次去某人家的時候,我們就應該對某人家周圍的地理環境,特別是有什麼特殊的標志進行記憶一樣。要理解我們所學的知識有什麼特點,有哪些內容是需要記住的,特別是這一節知識涉及到哪些數學思想和方法是需要及時掌握的。該記憶的內容要注意用心去記,只有記住必要的知識,思維才有依據。另外,要注意作好筆記。培根在《論求知》中說:「作筆記能使知識精確。如果一個人不願做筆記,他的記憶力就必須強而可靠」。要注意把老師講的重點,特別是老師總結的一些經驗性、規律性的知識記下來,便於課後及時復習。課後復習,要思考有哪些問題已經搞會了,有哪些問題還沒有搞會,並及時做好查漏補缺的工作。
以上從四個方面談了如何學好初中數學的問題。要學好初中數學,除了要做到上邊所談外,勤奮刻苦的學習精神,認真仔細的學習態度,培養良好的學習習慣也是學好數學的關鍵。在課堂上,不僅是學習新知識,還要潛移默化地學習老師解決問題的思維方式,面對一個問題,最後是提前思考,找出自己的思維方式,然後把自己的思維方式與老師的思維方式作比較,取長補短,進而形成自己的思維方式。由「要我學」轉變為「我要學」,培養學習的主動性,克服被動學習的局面。真正掌握數學學習的要領。檢驗數學學得好不好的標准就是會不會解題。聽懂並記憶有關的數學基礎知識,掌握學習數學的思想與方法,只是學好數學的前提,能獨立解題、解對題才是學好數學的標志。 很不錯哦,你可以試下
jvrgНa恭ぇe』Кu蔻cn(li02345678012011/8/9 17:58:45

❷ 人教版七年級數學上下冊知識點

只有上冊,不好意思啊~
第一章 有理數
1.1 正數和負數
正數和負數的概念
用正,負數表示具有相反意義的量
1.2 有理數
有理數的有關概念
有理數的分類
數集的概念
數軸的概念
數軸上的點與有理數之間的關系
相反數
絕對值
有理數的大小比較
1.3有理數的加減法
有理數的加法法則
有理數的加法運算律
有理數的減法法則
有理數的加減混合運算
用計算器對有理數加減混合運算進行計算
1.4有理數的乘除法
有理數的乘法法則
倒數的概念
有理數的乘法運算律
項,項的系數,合並含有相同字母的項
有理數的除法法則
1.5有理數的乘方
乘方的意義
乘方的法則
有理數的混合運算順序
科學記數法
科學記數法中的負指數
近似數和有效數字
(沒有不等式那一章哦~以上是我自己打的,後面的你進http://www..com/s?wd=%C8%CB%BD%CC%B0%E6%C6%DF%C4%EA%BC%B6%CA%FD%D1%A7%C9%CF&lm=0&si=&rn=10&ie=gb2312&ct=0&cl=3&f=1&rsp=2看看,燒腿哦~我實在打到手酸了~)

❸ 人教版初一數學上下冊知識點總結

初一數學(上)應知應會的知識點
代數初步知識
1. 代數式:用運算符號「+ - × ÷ …… 」連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式.
2.列代數式的幾個注意事項:
(1)數與字母相乘,或字母與字母相乘通常使用「· 」 乘,或省略不寫;
(2)數與數相乘,仍應使用「×」乘,不用「· 」乘,也不能省略乘號;
(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;
(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;
(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a .
3.幾個重要的代數式:(m、n表示整數)
(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;
(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數是:2n ,奇數是:2n+1;三個連續整數是: n-1、n、n+1 ;
(4)若b>0,則正數是:a2+b ,負數是: -a2-b ,非負數是: a2 ,非正數是:-a2 .
有理數
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
(2)有理數的分類: ① ②
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
(4)自然數 0和正整數;a>0 a是正數;a<0 a是負數;
a≥0 a是正數或0 a是非負數;a≤ 0 a是負數或0 a是非正數.
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)注意: a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;
(3)相反數的和為0 a+b=0 a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2) 絕對值可表示為:或 ;絕對值的問題經常分類討論;
(3) ; ;
(4) |a|是重要的非負數,即|a|≥0;注意:|a|·|b|=|a·b|, .
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那麼的倒數是;倒數是本身的數是±1;若ab=1 a、b互為倒數;若ab=-1 a、b互為負倒數.
7. 有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
10 有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11 有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,.
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
(3)a2是重要的非負數,即a2≥0;若a2+|b|=0 a=0,b=0;

(4)據規律 底數的小數點移動一位,平方數的小數點移動二位.

15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運演算法則:先乘方,後乘除,最後加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則.
19.特殊值法:是用符合題目要求的數代入,並驗證題設成立而進行猜想的一種方法,但不能用於證明.
整式的加減
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.
2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.
3.多項式:幾個單項式的和叫多項式.
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.
5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.
整式分類為: .
6.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項.
7.合並同類項法則:系數相加,字母與字母的指數不變.
8.去(添)括弧法則:去(添)括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號.
9.整式的加減:整式的加減,實際上是在去括弧的基礎上,把多項式的同類項合並.
10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最後結果一般應該進行升冪(或降冪)排列.
一元一次方程
1.等式與等量:用「=」號連接而成的式子叫等式.注意:「等量就能代入」!
2.等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;
等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.
3.方程:含未知數的等式,叫方程.
4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:「方程的解就能代入」!
5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.
6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程.
7.一元一次方程的標准形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).
8.一元一次方程的最簡形式: ax=b(x是未知數,a、b是已知數,且a≠0).
9.一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括弧 …… 移項 …… 合並同類項 …… 系數化為1 …… (檢驗方程的解).
10.列一元一次方程解應用題:
(1)讀題分析法:………… 多用於「和,差,倍,分問題」
仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套-----」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程.
(2)畫圖分析法: ………… 多用於「行程問題」
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
11.列方程解應用題的常用公式:
(1)行程問題: 距離=速度·時間 ;
(2)工程問題: 工作量=工效·工時 ;
(3)比率問題: 部分=全體·比率 ;
(4)順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(5)商品價格問題: 售價=定價·折· ,利潤=售價-成本, ;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,
S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐=πR2h

❹ 初一數學語文上冊知識點(人教版)

你是哪裡的?教材什麼版本呀?
語文是沒有什麼好准備的,你最好就先把課文大概瀏覽一遍,不用太詳細,因為上課要講,你如果太實習了就容易不聽。需要你背的就最好提前背過,大概都是古詩之類的。還有生字詞,掌握字音和字形,意思了解即可。
數學版本不同的不一樣,但是大概都是要掌握好公理、定理那些的,提前看看書,把不會的畫出來就行。

其實初一挺簡單的,跟得上老師講課就沒問題。

❺ 人教版初一數學上冊知識點

第一章 有理數
1.1 正數和負數
閱讀與思考 用正負數表示加工允許誤差
1.2 有理數
1.3 有理數的加減法
實驗與探究 填幻方
閱讀與思考 中國人最先使用負數
1.4 有理數的乘除法
觀察與思考 翻牌游戲中的數學道理
1.5 有理數的乘方
數學活動
小結
復習題1
第二章 整式的加減
2.1 整式
閱讀與思考 數字1與字母X的對話
2.2 整式的加減
信息技術應用 電子表格與數據計算
數學活動
小結
復習題2
第三章 一元一次方程
3.1 從算式到方程
閱讀與思考 「方程」史話
3.2 解一元一次方程(一)——合並同類項與移項
實驗與探究 無限循環小數化分數
3.3 解一元一次方程(二)——去括弧與去分母
3.4 實際問題與一元一次方程
數學活動
小結
復習題3
第四章 圖形認識初步
4.1 多姿多彩的圖形
閱讀與思考 幾何學的起源
4.2 直線、射線、線段
閱讀與思考 長度的測量
4.3 角
4.4 課題學習 設計製作長方體形狀的包裝紙盒

❻ 初一上冊數學人教版知識要點歸納總結

初一數學上冊復習教學知識點歸納總結

一:有理數
知識網路:
概念、定義:
1、大於0的數叫做正數(positive number)。
2、在正數前面加上負號「-」的數叫做負數(negative number)。
3、整數和分數統稱為有理數(rational number)。
4、人們通常用一條直線上的點表示數,這條直線叫做數軸(number axis)。
5、在直線上任取一個點表示數0,這個點叫做原點(origin)。
6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value)。
7、 由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。
8、正數大於0,0大於負數,正數大於負數。
9、兩個負數,絕對值大的反而小。
10、有理數加法法則
(1)同號兩數相加,取相同的符號,並把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
13、有理數減法法則
減去一個數,等於加上這個數的相反數。
14、有理數乘法法則
兩數相乘,同號得正,異號得負,並把絕對值向乘。
任何數同0相乘,都得0。
15、有理數中仍然有:乘積是1的兩個數互為倒數。
16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。
17、 三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。
18、 一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。
19、有理數除法法則
除以一個不等於0的數,等於乘這個數的倒數。
20、兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。
21、 求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an 中,a叫做底數(basenumber),n叫做指數(exponeht)
22、根據有理數的乘法法則可以得出
負數的奇次冪是負數,負數的偶次冪是正數。
顯然,正數的任何次冪都是正數,0的任何次冪都是0。
23、做有理數混合運算時,應注意以下運算順序:
(1)先乘方,再乘除,最後加減;
(2) 同級運算,從左到右進行;
(3) 如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
24、把一個大於10數表示成a×10n 的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。
25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximate number)。
26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significant digit)

註:黑體字為重要部分
二:整式的加減
知識網路:
概念、定義:
1、都是數或字母的積的式子叫做單項式(monomial),單獨的一個數或一個字母也是單項式。
2、單項式中的數字因數叫做這個單項式的系數(coefficient)。
3、 一個單項式中,所有字母的指數的和叫做這個單項式的次數(degree of a monomial)。
4、幾個單項的和叫做多項式(polynomial),其中,每個單項式叫做多項式的項(term),不含字母的項叫做常數項(constantly
term)。
5、多項式里次數最高項的次數,叫做這個多項式的次數(degree of a polynomial)。
6、把多項式中的同類項合並成一項,叫做合並同類項。
合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變。
7、如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同;
8、如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
9、一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。
三:一元一次方程
知識網路:
概念、定義:
1、列方程時,要先設字母表示未知數,然後根據問題中的相等關系,寫出還有未知數的等式——方程(equation)。
2、含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程(linear equation withone unknown)。
3、分析實際問題中的數量關系,利用其中的等量關系列出方程,是用數學解決實際問題的一種方法。
4、等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。
5、等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。
6、把等式一邊的某項變號後移到另一邊,叫做移項。
7、應用:行程問題:s=v×t 工程問題:工作總量=工作效率×時間
盈虧問題:利潤=售價-成本 利率=利潤÷成本×100%
售價=標價×折扣數×10% 儲蓄利潤問題:利息=本金×利率×時間
本息和=本金+利息
三:圖形初步認識
知識網路:
概念、定義:
1、 我們把實物中抽象的各種圖形統稱為幾何圖形(geometric figure)。
2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內,它們是立體圖形(solidfigure)。
3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形(planefigure)。
4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖(net)。
5、幾何體簡稱為體(solid)。
6、包圍著體的是面(surface),面有平的面和曲的面兩種。
7、面與面相交的地方形成線(line),線和線相交的地方是點(point)。
8、點動成面,面動成線,線動成體。
9、經過探究可以得到一個基本事實:經過兩點有一條直線,並且只有一條直線。
簡述為:兩點確定一條直線(公理)。
10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointof intersection)。
11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center)。
12、經過比較,我們可以得到一個關於線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)
13、連接兩點間的線段的長度,叫做這兩點的距離(distance)。
14、角∠(angle)也是一種基本的幾何圖形。
15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。
16、從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線(angular bisector)。
17、如果兩個角的和等於90°(直角),就是說這兩個叫互為餘角(complementary
angle),即其中的每一個角是另一個角的餘角。
18、如果兩個角的和等於180°(平角),就說這兩個角互為補角(supplementary
angle),即其中一個角是另一個角的補角
19、等角的補角相等,等角的餘角相等。

❼ 人教版七年級數學上知識點歸納

七年級數學(下)期末復習知識點整理
5.1相交線

1、鄰補角與對頂角

兩直線相交所成的四個角中存在幾種不同關系的角,它們的概念及性質如下表:

圖形

頂點

邊的關系

大小關系



對頂角



∠1與∠2

有公共頂點

∠1的兩邊與∠2的兩邊互為反向延長線

對頂角相等

即∠1=∠2



鄰補角



∠3與∠4

有公共頂點

∠3與∠4有一條邊公共,另一邊互為反向延長線。

∠3+∠4=180°



注意點:⑴對頂角是成對出現的,對頂角是具有特殊位置關系的兩個角;

⑵如果∠α與∠β是對頂角,那麼一定有∠α=∠β;反之如果∠α=∠β,那麼∠α與∠β不一定是對頂角

⑶如果∠α與∠β互為鄰補角,則一定有∠α+∠β=180°;反之如果∠α+∠β=180°,則∠α與∠β不一定是鄰補角。

⑶兩直線相交形成的四個角中,每一個角的鄰補角有兩個,而對頂角只有一個。

2、垂線

⑴定義,當兩條直線相交所成的四個角中,有一個角是直角時,就說這兩條直線互相垂直,其中的一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

符號語言記作:

如圖所示:AB⊥CD,垂足為O

⑵垂線性質1:過一點有且只有一條直線與已知直線垂直 (與平行公理相比較記)

⑶垂線性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。簡稱:垂線段最短。

3、垂線的畫法:

⑴過直線上一點畫已知直線的垂線;⑵過直線外一點畫已知直線的垂線。

注意:①畫一條線段或射線的垂線,就是畫它們所在直線的垂線;②過一點作線段的垂線,垂足可在線段上,也可以在線段的延長線上。

畫法:⑴一靠:用三角尺一條直角邊靠在已知直線上,⑵二移:移動三角尺使一點落在它的另一邊直角邊上,⑶三畫:沿著這條直角邊畫線,不要畫成給人的印象是線段的線。

4、點到直線的距離

直線外一點到這條直線的垂線段的長度,叫做點到直線的距離

記得時候應該結合圖形進行記憶。

如圖,PO⊥AB,同P到直線AB的距離是PO的長。PO是垂線段。PO是點P到直線AB所有線段中最短的一條。

現實生活中開溝引水,牽牛喝水都是「垂線段最短」性質的應用。

5、如何理解「垂線」、「垂線段」、「兩點間距離」、「點到直線的距離」這些相近而又相異的概念

分析它們的聯系與區別

⑴垂線與垂線段 區別:垂線是一條直線,不可度量長度;垂線段是一條線段,可以度量長度。 聯系:具有垂直於已知直線的共同特徵。(垂直的性質)

⑵兩點間距離與點到直線的距離 區別:兩點間的距離是點與點之間,點到直線的距離是點與直線之間。 聯系:都是線段的長度;點到直線的距離是特殊的兩點(即已知點與垂足)間距離。

⑶線段與距離 距離是線段的長度,是一個量;線段是一種圖形,它們之間不能等同。

5.2平行線

1、平行線的概念:

在同一平面內,不相交的兩條直線叫做平行線,直線與直線互相平行,記作‖。

2、兩條直線的位置關系

在同一平面內,兩條直線的位置關系只有兩種:⑴相交;⑵平行。

因此當我們得知在同一平面內兩直線不相交時,就可以肯定它們平行;反過來也一樣(這里,我們把重合的兩直線看成一條直線)

判斷同一平面內兩直線的位置關系時,可以根據它們的公共點的個數來確定:

①有且只有一個公共點,兩直線相交;

②無公共點,則兩直線平行;

③兩個或兩個以上公共點,則兩直線重合(因為兩點確定一條直線)

3、平行公理――平行線的存在性與惟一性

經過直線外一點,有且只有一條直線與這條直線平行

4、平行公理的推論:

如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行

如左圖所示,∵‖,‖

∴‖

注意符號語言書寫,前提條件是兩直線都平行於第三條直線,才會結論,這兩條直線都平行。

5、三線八角

兩條直線被第三條直線所截形成八個角,它們構成了同位角、內錯角與同旁內角。

如圖,直線被直線所截

①∠1與∠5在截線的同側,同在被截直線的上方,

叫做同位角(位置相同)

②∠5與∠3在截線的兩旁(交錯),在被截直線之間(內),叫做內錯角(位置在內且交錯)

③∠5與∠4在截線的同側,在被截直線之間(內),叫做同旁內角。

④三線八角也可以成模型中看出。同位角是「A」型;內錯角是「Z」型;同旁內角是「U」型。

6、如何判別三線八角

判別同位角、內錯角或同旁內角的關鍵是找到構成這兩個角的「三線」,有時需要將有關的部分「抽出」或把無關的線略去不看,有時又需要把圖形補全。

例如:

如圖,判斷下列各對角的位置關系:⑴∠1與∠2;⑵∠1與∠7;⑶∠1與∠BAD;⑷∠2與∠6;⑸∠5與∠8。

我們將各對角從圖形中抽出來(或者說略去與有關角無關的線),得到下列各圖。

如圖所示,不難看出∠1與∠2是同旁內角;∠1與∠7是同位角;∠1與∠BAD是同旁內角;∠2與∠6是內錯角;∠5與∠8對頂角。

注意:圖中∠2與∠9,它們是同位角嗎?

不是,因為∠2與∠9的各邊分別在四條不同直線上,不是兩直線被第三條直線所截而成。

7、兩直線平行的判定方法

方法一 兩條直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行

簡稱:同位角相等,兩直線平行

方法二 兩條直線被第三條直線所截,如果內錯角相等,那麼這兩條直線平行

簡稱:內錯角相等,兩直線平行

方法三 兩條直線被第三條直線所截,如果同旁內角互補,那麼這兩條直線平行

簡稱:同旁內角互補,兩直線平行

幾何符號語言:

∵ ∠3=∠2

∴ AB‖CD(同位角相等,兩直線平行)

∵ ∠1=∠2

∴ AB‖CD(內錯角相等,兩直線平行)

❽ 人教版初一數學上冊復習資料

《有理數》總復習(一) 教案
一、內容分析
小結與復習分作兩個部分。第一部分概述了正數與負數、有理數、相反數、絕對值等概念,以及有理數的加、減、乘、除、乘方的運算方法與運算律,從而給出全章內容的大致輪廓,第二部分針對這一章新出現的內容、方法等提出了一些個問題;通過這些問題引發學生的思考,主動進行新的知識的建構。
二、課時安排:
小節與復習的要求是要把這一章內容系統化,從而進一步鞏固和加深理解學習內容。本章的主要內容可以概括為有理數的概念與有理數的運算兩部分。因此,本章總復習的二課時這樣安排(測驗課除外):
第一課時復習有理數的意義及其有關概念;
第二課時復習有理數的運算。
三、教學方法的確定:
回顧有理數這一章涉及的概念,檢測學生知識掌握程度,科學地進行小結與歸納。
四、教學安排:

第一課時

一、教學目標:
1.知識與技能:
①理解八個重要概念:有理數、數軸、相反數、絕對值、倒數、科學計數法、近似數、有效數字.
②使學生提高辨別概念能力,能正確地使用這些概念解決問題.
③能正確比較兩個有理數的大小.
2.過程與方法
在教學過程中,應利用數軸來認識、理解有理數的有關概念,藉助數軸,把這些概念串在一起形成一個用以描述有理數特徵的系統。另外,
3.情感態度和價值觀
在運用有理數概念的同時,還應注意糾正可能出現的錯誤認識,使學生在學習中學會發現錯誤和改正錯誤。
二、教學重點:
對有理數的八個概念:有理數、數軸、相反數、絕對值、倒數、科學計數法、近似數、有效數字的理解與運用。
三、教學難點:
對絕對值概念的理解與應用。
四、教學過程:
(一)知識梳理與鞏固練習:
1、正數與負數:在正數前面加「—」的數叫做負數;(給出負數的概念,然後出一些判斷題和應用文字題,讓學生了解負數的概念和負數在生產、生活中的應用.)

[基礎練習]
1.判斷
1)a一定是正數;
2)-a一定是負數;
3)-(-a)一定大於0;
2.加-20%,實際的意思是.
3.乙大-3表示的意思是.
2.有理數的分類:(通過下面概括讓學生掌握有理數的兩種分類方法)

[基礎練習]:
1.把下列各數填在相應額大括弧內:
1,-0.1,-789,25,0,-20,-3.14,-590,6/7
正整數集 { }; 正有理數集{ };
負有理數集{ };
自然數集{ };正分數集 { };
負分數集{ }.
2. 某種食用油的價格隨著市場經濟的變化漲落,規定上漲記為正,則-5.8元的意義是 ;如果這種油的原價是76元,那麼現在的賣價是 .
3.數軸:規定了原點、正方向和單位長度的直線.
-3 –2 –1 0 1 2 3

1)在數軸上表示的兩個數,右邊的數總比左邊的數大
2)正數都大於0,負數都小於0;正數大於一切負數;
3)所有有理數都可以用數軸上的點表示.
[基礎練習]
1.如圖所示的圖形為四位同學畫的數軸,其中正確的是( )

2.比-3大的負整數是_______; ②已知m是整數且-4<m<3,則m為_______________.③有理數中,最大的負整數是__,最小的正整數是__.最大的非正數是__.
3.軸上點A表示-4,如果把原點O向負方向移動1個單位,那麼在新數軸上點A表示的數是( )
A.-5, B.-4 C.-3 D.-2
4.相反數:只有符號不同的兩個數,其中一個是另一個的相反數. (給出相反數的定義以及要注意的結論.)
1)數a的相反數是-a(a是任意一個有理數);
2)0的相反數是0. 3)若a、b互為相反數,則a+b=0.
[基礎練習]
1.-5的相反數是 ;-(-8)的相反數是 ;0的相反數是 ; a的相反數是 ;
2用-a表示的數一定是( )
A .負數 B. 正數
C .正數或負數 D.正數或負數或0
3一個數的相反數是最小的正整數,那麼這個數是( )
A .–1 B. 1 C .±1 D. 0
4①互為相反的兩個數在數軸上位於原點兩旁( )
②只要符號不同,這兩個數就是相反數( )
5.倒數:乘積是1的兩個數互為倒數.(給出倒數的概念,以及要主要的結論)
1)a的倒數是 (a≠0);
2)0沒有倒數 ;
3)若a與b互為倒數,則ab=1.
4)倒數是它本身的是______.
6.絕對值:一個數a的絕對值就是數軸上表示數a的點與原點的距離.(讓學生注意理解絕對值的定義及其的值為非負數的特點.)
1)數a的絕對值記作︱a︱;
若a>0,則︱a︱= ;
2) 若a<0,則︱a︱= ;
若a =0,則︱a︱= ;
3) 對任何有理數a,總有︱a︱≥0.
[基礎練習]
1.—2的絕對值表示它離開原點的距離是 個單位.
2.絕對值等於其相反數的數一定是( )
A.負數 B.正數 C.負數或零 D.正數或零
3.計算

7.有理數大小的比較:(有理數的比較方法總結).
1)可通過數軸比較:在數軸上的兩個數,右邊的數總比左邊的數大;
正數都大於0,負數都小於0;正數大於一切負數;
2)兩個負數,絕對值大的反而小.
即:若a<0,b<0,且︱a︱>︱b︱,則a < b.
8.科學記數法、近似數與有效數字(給出科學記數法的定義,近似數和有效數字的等的定義)
1).把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數(即1≤a<10),這種記數法叫做科學記數法 .
2).一個近似數,從左邊第一個不是0的數字起到,到精確到的數位止,所有的數字,都叫做這個數的有效數字.
[基礎練習]
1.一隻蒼蠅的腹內細菌多達2800萬個,你能用科學記數法表示嗎?
2. 1.03×106有幾位整數?
3. 3.0×10n(n是正整數)有幾位整數?
4:下列由四捨五入得到的近似數,各精確到哪一位,各有幾位有效數字?
(1)43.8(2)0.03086(3)2.4萬(4)6×104 (5)6.0×104
(二)課堂小結:
要注意的幾個問題
1.有理數的兩種分類經常用到,應注意它們的區別;
2.數軸的三要素缺一不可,利用數軸可直觀地比較有理數的大小;
3.相反數指的是兩個僅符號不同的數,數軸上表示一對相反數的兩個點到原點的距離相等,它們的和為0;而倒數指的是兩個乘積為1的數;
4.一個數的絕對值總是非負數,數a的絕對值是數軸上表示數a的點到原點的距離;
(三)布置作業:

❾ 初一上下冊數學人教版知識點

  1. 有理數: (1)凡能寫成 )0pq,p(p q 為整數且形式的數,都是有理數,整數和分數統稱有理數. 注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數; (2)有理數的分類: ① 負分數負整數負有理數零正分數正整數正有理數有理數 ②    負分數正分數分數負整數零 正整數 整數有理數 (3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性; (4)自然數 0和正整數; a>0  a是正數; a<0  a是負數; a≥0  a是正數或0  a是非負數; a≤ 0  a是負數或0  a是非正數. 2.數軸:數軸是規定了原點、正方向、單位長度的一條直線. 3.相反數: (1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0; (2)注意: a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b; (3)相反數的和為0  a+b=0  a、b互為相反數. (4)相反數的商為-1. (5)相反數的絕對值相等 4.絕對值: (1)正數的絕對值等於它本身,0的絕對值是0,負數的絕對值等於它的相反數; 注意:絕對值的意義是數軸上表示某數的點離開原點的距離; (2) 絕對值可表示為: ) 0a(a)0a(0)0a(aa 或 )0()0(aaaaa ; (3) 0a1a a ; 0a1a a; (4) |a|是重要的非負數,即|a|≥0; 5.有理數比大小: (1)正數永遠比0大,負數永遠比0小; (2)正數大於一切負數; (3)兩個負數比較,絕對值大的反而小; (4)數軸上的兩個數,右邊的數總比左邊的數大; (5)-1,-2,+1,+4,-0.5,以上數據表示與標准質量的差, 絕對值越小,越接近標准。 6.倒數:乘積為1的兩個數互為倒數; 注意:0沒有倒數; 若ab=1 a、b互為倒數; 若ab=-1 a、b互為負倒數. 等於本身的數匯總: 相反數等於本身的數:0 倒數等於本身的數:1,-1 絕對值等於本身的數:正數和0 平方等於本身的數:0,1 立方等於本身的數:0,1,-1. 7. 有理數加法法則: (1)同號兩數相加,取相同的符號,並把絕對值相加; (2)異號兩數相加,取絕對值較大加數的符號,並用較大的絕對值減去較小的絕對值; (3)一個數與0相加,仍得這個數. 8.有理數加法的運算律: (1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c). 9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b). 10 有理數乘法法則: (1)兩數相乘,同號得正,異號得負,並把絕對值相乘; (2)任何數同零相乘都得零; (3)幾個因式都不為零,積的符號由負因式的個數決定.奇數個負數為負,偶數個負數為正。 11 有理數乘法的運算律: (1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac .(簡便運算) 12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數, 無意義即0 a . 13.有理數乘方的法則: (1)正數的任何次冪都是正數; (2)負數的奇次冪是負數;負數的偶次冪是正數; 14.乘方的定義: (1)求相同因式積的運算,叫做乘方; (2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪; (3)a2 是重要的非負數,即a2 ≥0;若a2 +|b|=0  a=0,b=0;(4)據規律   100101101.01.022 2底數的小數點移動一位,平方數的小數點移動二位. 15.科學記數法:把一個大於10的數記成a×10n 的形式,其中a是整數數位只有一位的數, 這種記數法叫科學記數法. 16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位. 17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字. 18.混合運演算法則:先乘方,後乘除,最後加減; 注意:不省過程,不跳步驟。 19.特殊值法:是用符合題目要求的數代入,並驗證題設成立而進行猜想的一種方法,但不能用於證明.常用於填空,選擇。 整式的加減 1.單項式:表示數字或字母乘積的式子,單獨的一個數字或字母也叫單項式。 2.單項式的系數與次數:單項式中的數字因數,稱單項式的系數; 單項式中所有字母指數的和,叫單項式的次數. 3.多項式:幾個單項式的和叫多項式. 4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數; 5. 多項式 單項式整式 . 6.同類項: 所含字母相同,並且相同字母的指數也相同的單項式是同類項. 7.合並同類項法則: 系數相加,字母與字母的指數不變. 8.去(添)括弧法則: 去(添)括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號. 9.整式的加減:一找:(劃線);二「+」(務必用+號開始合並)三合:(合並) 10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列). 一元一次方程 1.等式:用「=」號連接而成的式子叫等式. 2.等式的性質: 等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式. 3.方程:含未知數的等式,叫方程. 4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:「方程的解就能代入」! 5.移項:改變符號後,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1. 6.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程. 7.一元一次方程的標准形式: ax+b=0(x是未知數,a、b是已知數,且a≠0). 8.一元一次方程解法的一般步驟: 化簡方程----------分數基本性質 去 分母----------同乘(不漏乘)最簡公分母 去 括弧----------注意符號變化 移 項----------變號(留下靠前) 合並同類項--------合並後符號 系數化為1---------除前面 10.列一元一次方程解應用題: (1)讀題分析法:„„„„ 多用於「和,差,倍,分問題」 仔細讀題,找出表示相等關系的關鍵字,例如:「大,小,多,少,是,共,合,為,完成,增加,減少,配套-----」,利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關系填入代數式,得到方程. (2)畫圖分析法: „„„„ 多用於「行程問題」 利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最後利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎. 11.列方程解應用題的常用公式: (1)行程問題: 距離=速度·時間 時間距離速度 速度 距離時間; (2)工程問題: 工作量=工效·工時 工時工作量工效 工效工作量 工時; 工程問題常用等量關系: 先做的+後做的=完成量 (3)順水逆水問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;水流速度=(順水速度-逆水速度)÷2 順水逆水問題常用等量關系: 順水路程=逆水路程(4)商品利潤問題: 售價=定價 10 幾折 , %100 成本成本 售價利潤率; 利潤問題常用等量關系: 售價-進價=利潤 (5)配套問題: (6)分配問題: