❶ 初二數學一次函數知識點歸納是什麼
1、函數概念。
在一個變化過程中有兩個變數x、y,如果對於x的每一個值,y都有惟一的值與它對應,那麼就說x是自變數,y是x的函數。
2、一次函數和正比例函數的概念。
若兩個變數x,y間的關系式可以表示成y=kx+b(k,b為常數,k≠0)的形式,則稱y是x的一次函數(x為自變數),特別地,當b=0時,稱y是x的正比例函數。
說明:
(1)一次函數的自變數的取值范圍是一切實數,但在實際問題中要根據函數的實際意義來確定。
(2)一次函數y=kx+b(k,b為常數,b≠0)中的「一次」和一元一次方程、一元一次不等式中的「一次」意義相同,即自變數x的次數為1,一次項系數k必須是不為零的常數,b可為任意常數。
(3)當b=0,k≠0時,y=b仍是一次函數。
(4)當b=0,k=0時,它不是一次函數。
❷ 初中數學函數知識點
1.常量和變數
在某變化過程中可以取不同數值的量,叫做變數.在某變化過程中保持同一數值的量或數,叫常量或常數.
2.函數
設在一個變化過程中有兩個變數x與y,如果對於x在某一范圍的每一個值,y都有唯一的值與它對應,那麼就說x是自變數,y是x的函數.
3.自變數的取值范圍
(1)整式:自變數取一切實數.
(2)分式:分母不為零.
(3)偶次方根:被開方數為非負數.
(4)零指數與負整數指數冪:底數不為零.
4.函數值
對於自變數在取值范圍內的一個確定的值,如當x=a時,函數有唯一確定的對應值,這個對應值,叫做x=a時的函數值.
5.函數的表示法
(1)解析法;(2)列表法;(3)圖象法.
6.函數的圖象
把自變數x的一個值和函數y的對應值分別作為點的橫坐標和縱坐標,可以在平面直角坐標系內描出一個點,所有這些點的集合,叫做這個函數的圖象.
由函數解析式畫函數圖象的步驟:
(1)寫出函數解析式及自變數的取值范圍;
(2)列表:列表給出自變數與函數的一些對應值;
(3)描點:以表中對應值為坐標,在坐標平面內描出相應的點;
(4)連線:用平滑曲線,按照自變數由小到大的順序,把所描各點連接起來.
7.一次函數
(1)一次函數
如果y=kx+b(k、b是常數,k≠0),那麼y叫做x的一次函數.
特別地,當b=0時,一次函數y=kx+b成為y=kx(k是常數,k≠0),這時,y叫做x的正比例函數.
(2)一次函數的圖象
一次函數y=kx+b的圖象是一條經過(0,b)點和 點的直線.
特別地,正比例函數圖象是一條經過原點的直線.
需要說明的是,在平面直角坐標系中,「直線」並不等價於「一次函數y=kx+b(k≠0)的圖象」,因為還有直線y=m(此時k=0)和直線x=n(此時k不存在),它們不是一次函數圖象.
(3)一次函數的性質
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.
直線y=kx+b與y軸的交點坐標為(0,b),與x軸的交點坐標為 .
(4)用函數觀點看方程(組)與不等式
①任何一元一次方程都可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:一次函數y=kx+b(k,b為常數,k≠0),當y=0時,求相應的自變數的值,從圖象上看,相當於已知直線y=kx+b,確定它與x軸交點的橫坐標.
②二元一次方程組 對應兩個一次函數,於是也對應兩條直線,從「數」的角度看,解方程組相當於考慮自變數為何值時兩個函數值相等,以及這兩個函數值是何值;從「形」的角度看,解方程組相當於確定兩條直線的交點的坐標.
③任何一元一次不等式都可以轉化ax+b>0或ax+b<0(a、b為常數,a≠0)的形式,解一元一次不等式可以看做:當一次函數值大於0或小於0時,求自變數相應的取值范圍.
8.反比例函數
(1)反比例函數
如果 (k是常數,k≠0),那麼y叫做x的反比例函數.
(2)反比例函數的圖象
反比例函數的圖象是雙曲線.
(3)反比例函數的性質
①當k>0時,圖象的兩個分支分別在第一、三象限內,在各自的象限內,y隨x的增大而減小.
②當k<0時,圖象的兩個分支分別在第二、四象限內,在各自的象限內,y隨x的增大而增大.
③反比例函數圖象關於直線y=±x對稱,關於原點對稱.
(4)k的兩種求法
①若點(x0,y0)在雙曲線 上,則k=x0y0.
②k的幾何意義:
若雙曲線 上任一點A(x,y),AB⊥x軸於B,則S△AOB
(5)正比例函數和反比例函數的交點問題
若正比例函數y=k1x(k1≠0),反比例函數 ,則
當k1k2<0時,兩函數圖象無交點;
當k1k2>0時,兩函數圖象有兩個交點,坐標分別為 由此可知,正反比例函數的圖象若有交點,兩交點一定關於原點對稱.
1.二次函數
如果y=ax2+bx+c(a,b,c為常數,a≠0),那麼y叫做x的二次函數.
幾種特殊的二次函數:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).
2.二次函數的圖象
二次函數y=ax2+bx+c的圖象是對稱軸平行於y軸的一條拋物線.
由y=ax2(a≠0)的圖象,通過平移可得到y=a(x-h)2+k(a≠0)的圖象.
3.二次函數的性質
二次函數y=ax2+bx+c的性質對應在它的圖象上,有如下性質:
(1)拋物線y=ax2+bx+c的頂點是 ,對稱軸是直線 ,頂點必在對稱軸上;
(2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對於拋物線上的任意一點(x,y),當x< 時,y隨x的增大而減小;當x> 時,y隨x的增大而增大;當x= ,y有最小值 ;
若a<0,拋物線y=ax2+bx+c的開口向下,因此,對於拋物線上的任意一點(x,y),當x< ,y隨x的增大而增大;當 時,y隨x的增大而減小;當x= 時,y有最大值 ;
(3)拋物線y=ax2+bx+c與y軸的交點為(0,c);
(4)在二次函數y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點的情況:
當=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個不同的公共點,它們的坐標分別是 和 ,這兩點的距離為 ;當=0時,拋物線y=ax2+bx+c與x軸只有一個公共點,即為此拋物線的頂點 ;當<0時,拋物線y=ax2+bx+c與x軸沒有公共點.
4.拋物線的平移
拋物線y=a(x-h)2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h)2+k.平移的方向、距離要根據h、k的值來決定.
初中數學知識點歸納(口訣)——函數
正比例函數的鑒別
判斷正比例函數,檢驗當分兩步走。
一量表示另一量, 有沒有。
若有再去看取值,全體實數都需要。
區分正比例函數,衡量可分兩步走。
一量表示另一量, 是與否。
若有還要看取值,全體實數都要有。
正比例函數的圖象與性質
正比函數圖直線,經過 和原點。
K正一三負二四,變化趨勢記心間。
K正左低右邊高,同大同小向爬山。
K負左高右邊低,一大另小下山巒。
一次函數
一次函數圖直線,經過 點。
K正左低右邊高,越走越高向爬山。
K負左高右邊低,越來越低很明顯。
K稱斜率b截距,截距為零變正函。
反比例函數
反比函數雙曲線,經過 點。
K正一三負二四,兩軸是它漸近線。
K正左高右邊低,一三象限滑下山。
K負左低右邊高,二四象限如爬山。
二次函數
二次方程零換y,二次函數便出現。
全體實數定義域,圖像叫做拋物線。
拋物線有對稱軸,兩邊單調正相反。
A定開口及大小,線軸交點叫頂點。
頂點非高即最低。上低下高很顯眼。
如果要畫拋物線,平移也可去描點,
提取配方定頂點,兩條途徑再挑選。
列表描點後連線,平移規律記心間。
左加右減括弧內,號外上加下要減。
二次方程零換y,就得到二次函數。
圖像叫做拋物線,定義域全體實數。
A定開口及大小,開口向上是正數。
絕對值大開口小,開口向下A負數。
拋物線有對稱軸,增減特性可看圖。
線軸交點叫頂點,頂點縱標最值出。
如果要畫拋物線,描點平移兩條路。
提取配方定頂點,平移描點皆成圖。
列表描點後連線,三點大致定全圖。
若要平移也不難,先畫基礎拋物線,
頂點移到新位置,開口大小隨基礎。
【注】基礎拋物線
❸ 初二數學函數知識點
初二數學《函數》知識點總結
(一)平面直角坐標系
1、定義:平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系
2、已知點的坐標找出該點的方法:
分別以點的橫坐標、縱坐標在數軸上表示的點為垂足,作x軸y軸的的垂線,兩垂線的交點即為要找的點。
3、已知點求出其坐標的方法:
由該點分別向x軸y軸作垂線,垂足在x軸上的坐標是改點的橫坐標,垂足在y軸上的坐標是該點的縱坐標。
4、各個象限內點的特徵:
第一象限:(+,+) 點P(x,y),則x>0,y>0;
第二象限:(-,+) 點P(x,y),則x<0,y>0;
第三象限:(-, -) 點P(x,y),則x<0,y<0;
第四象限:(+,-) 點P(x,y),則x>0,y<0;
5、坐標軸上點的坐標特徵:
x軸上的點,縱坐標為零;y軸上的點,橫坐標為零;原點的坐標為(0 , 0)。兩坐標軸的點不屬於任何象限。
6、點的對稱特徵:已知點P(m,n),
關於x軸的對稱點坐標是(m,-n), 橫坐標相同,縱坐標反號
關於y軸的對稱點坐標是(-m,n) 縱坐標相同,橫坐標反號
關於原點的對稱點坐標是(-m,-n) 橫,縱坐標都反號
7、平行於坐標軸的直線上的點的坐標特徵:
平行於x軸的直線上的任意兩點:縱坐標相等;
平行於y軸的直線上的任意兩點:橫坐標相等。
8、各象限角平分線上的點的坐標特徵:
第一、三象限角平分線上的點橫、縱坐標相等。
點P(a,b)關於第一、三象限坐標軸夾角平分線的對稱點坐標是(b, a)
第二、四象限角平分線上的點橫縱坐標互為相反數。
點P(a,b)關於第二、四象限坐標軸夾角平分線的對稱點坐標是(-b,-a)
9、點P(x,y)的幾何意義:
點P(x,y)到x軸的距離為 |y|,
點P(x,y)到y軸的距離為 |x|。
點P(x,y)到坐標原點的距離為
10、兩點之間的距離:
X軸上兩點為A 、B |AB|
Y軸上兩點為C 、D |CD|
已知A 、B AB|=
11、中點坐標公式:已知A 、B M為AB的中點
則:M=( , )
12、點的平移特徵: 在平面直角坐標系中,
將點(x,y)向右平移a個單位長度,可以得到對應點( x-a,y);
將點(x,y)向左平移a個單位長度,可以得到對應點(x+a ,y);
將點(x,y)向上平移b個單位長度,可以得到對應點(x,y+b);
將點(x,y)向下平移b個單位長度,可以得到對應點(x,y-b)。
注意:對一個圖形進行平移,這個圖形上所有點的坐標都要發生相應的變化;反過來,從圖形上點的坐標的加減變化,我們也可以看出對這個圖形進行了怎樣的平移。
(二)函數的基本知識:
知識網路圖
基本概念
1、變數:在一個變化過程中可以取不同數值的量。
常量:在一個變化過程中只能取同一數值的量。
2、函數:一般的,在一個變化過程中,如果有兩個變數x和y,並且對於x的每一個確定的值,y都有唯一確定的值與其對應,那麼我們就把x稱為自變數,把y稱為因變數,y是x的函數。
*判斷A是否為B的函數,只要看B取值確定的時候,A是否有唯一確定的值與之對應
3、定義域:一般的,一個函數的自變數允許取值的范圍,叫做這個函數的定義域。
4、確定函數定義域的方法:
(1)關系式為整式時,函數定義域為全體實數;
(2)關系式含有分式時,分式的分母不等於零;
(3)關系式含有二次根式時,被開放方數大於等於零;
(4)關系式中含有指數為零的式子時,底數不等於零;
(5)實際問題中,函數定義域還要和實際情況相符合,使之有意義。
5、函數的圖像
一般來說,對於一個函數,如果把自變數與函數的每對對應值分別作為點的橫、縱坐標,那麼坐標平面內由這些點組成的圖形,就是這個函數的圖象.
6、函數解析式:用含有表示自變數的字母的代數式表示因變數的式子叫做解析式。
7、描點法畫函數圖形的一般步驟
第一步:列表(表中給出一些自變數的值及其對應的函數值);
第二步:描點(在直角坐標系中,以自變數的值為橫坐標,相應的函數值為縱坐標,描出表格中數值對應的各點);
第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。
8、函數的表示方法
列表法:一目瞭然,使用起來方便,但列出的對應值是有限的,不易看出自變數與函數之間的對應規律。
解析式法:簡單明了,能夠准確地反映整個變化過程中自變數與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達兩個變數之間的函數關系。
(三)正比例函數和一次函數
1、正比例函數及性質
一般地,形如y=kx(k是常數,k≠0)的函數叫做正比例函數,其中k叫做比例系數.
註:正比例函數一般形式 y=kx (k不為零) ① k不為零 ② x指數為1 ③ b取零
當k>0時,直線y=kx經過三、一象限,從左向右上升,即隨x的增大y也增大;當k<0時,直線y=kx經過二、四象限,從左向右下降,即隨x增大y反而減小.
(1) 解析式:y=kx(k是常數,k≠0)
(2) 必過點:(0,0)、(1,k)
(3) 走向:k>0時,圖像經過一、三象限;k<0時,圖像經過二、四象限
(4) 增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小
(5) 傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸
2、一次函數及性質
一般地,形如y=kx+b(k,b是常數,k≠0),那麼y叫做x的一次函數.當b=0時,y=kx+b即y=kx,所以說正比例函數是一種特殊的一次函數.
註:一次函數一般形式 y=kx+b (k不為零) ① k不為零 ②x指數為1 ③ b取任意實數
一次函數y=kx+b的圖象是經過(0,b)和(- ,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個單位長度得到.(當b>0時,向上平移;當b<0時,向下平移)
(1)解析式:y=kx+b(k、b是常數,k 0)
(2)必過點:(0,b)和(- ,0)
(3)走向: k>0,圖象經過第一、三象限;k<0,圖象經過第二、四象限
b>0,圖象經過第一、二象限;b<0,圖象經過第三、四象限
直線經過第一、二、三象限 直線經過第一、三、四象限
直線經過第一、二、四象限 直線經過第二、三、四象限
註:y=kx+b中的k,b的作用:
1、k決定著直線的變化趨勢
① k>0 直線從左向右是向上的 ② k<0 直線從左向右是向下的
2、b決定著直線與y軸的交點位置
① b>0 直線與y軸的正半軸相交 ② b<0 直線與y軸的負半軸相交
(4)增減性: k>0,y隨x的增大而增大;k<0,y隨x增大而減小.
(5)傾斜度:|k|越大,圖象越接近於y軸;|k|越小,圖象越接近於x軸.
(6)圖像的平移: 當b>0時,將直線y=kx的圖象向上平移b個單位;
當b<0時,將直線y=kx的圖象向下平移b個單位.
3、一次函數y=kx+b的圖象的畫法.
根據幾何知識:經過兩點能畫出一條直線,並且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b), .即橫坐標或縱坐標為0的點.
註:對於y=kx+b 而言,圖象共有以下四種情況:
1、k>0,b>0 2、k>0,b<0 3、k<0,b<0 4、k<0,b>0
b>0 b<0 b=0
k>0 經過第一、二、三象限 經過第一、三、四象限 經過第一、三象限
圖象從左到右上升,y隨x的增大而增大
k<0 經過第一、二、四象限 經過第二、三、四象限 經過第二、四象限
圖象從左到右下降,y隨x的增大而減小
4、直線y=kx+b(k≠0)與坐標軸的交點.
(1)直線y=kx與x軸、y軸的交點都是(0,0);
(2)直線y=kx+b與x軸交點坐標為 與 y軸交點坐標為(0,b).
5、用待定系數法確定函數解析式的一般步驟:
(1)根據已知條件寫出含有待定系數的函數關系式;
(2)將x、y的幾對值或圖象上的幾個點的坐標代入上述函數關系式中得到以待定系數為未知數的方程;
(3)解方程得出未知系數的值;
(4)將求出的待定系數代回所求的函數關系式中得出所求函數的解析式.
6、兩條直線交點坐標的求法:
方法:聯立方程組求x、y
例題:已知兩直線y=x+6 與y=2x-4交於點P,求P點的坐標?
7、直線y=k1x+b1與y=k2x+b2的位置關系
(1)兩直線平行:k1=k2且b1 b2
(2)兩直線相交:k1 k2
(3)兩直線重合:k1=k2且b1=b2
8、正比例函數與一次函數圖象之間的關系
一次函數y=kx+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個單位長度而得到(當b>0時,向上平移;當b<0時,向下平移).
9、一元一次方程與一次函數的關系
任何一元一次方程到可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變數的值. 從圖象上看,相當於已知直線y=ax+b確定它與x軸的交點的橫坐標的值.
10、一次函數與一元一次不等式的關系
任何一個一元一次不等式都可以轉化為ax+b>0或ax+b<0(a,b為常數,a≠0)的形式,所以解一元一次不等式可以看作:當一次函數值大(小)於0時,求自變數的取值范圍.
11、一次函數與二元一次方程組
(1)以二元一次方程ax+by=c的解為坐標的點組成的圖象與一次函數y= 的圖象相同.
(2)二元一次方程組 的解可以看作是兩個一次函數y= 和y= 的圖象交點.
12、函數應用問題 (理論應用 實際應用)
(1)利用圖象解題 通過函數圖象獲取信息,並利用所獲取的信息解決簡單的實際問題.
(2)經營決策問題 函數建模的關鍵是將實際問題數學化,從而解決最佳方案,最佳策略等問題.建立一次函數模型解決實際問題,就是要從實際問題中抽象出兩個變數,再尋求出兩個變數之間的關系,構建函數模型,從而利用數學知識解決實際問題.
❹ 八上數學函數知識點有什麼
一次函數解析式,圖形特徵,函數解析式與一元一次方程的關系
❺ 初中數學函數有哪些知識點
有理數 整式 一元一次方程 一元二次方程(組)不等式 實數 分式 一次函數 反比例函數 因式分解 二次函數 一元二次方程 四邊形 相似 解三角函數 圓 概率 統計 等等
❻ 初中數學函數知識點是什麼
充分運用函數圖像,理解和運用性質,再利用數形結合思想,解決問題。
不要怕麻煩,多畫圖像(一定要注意實際問題中自變數取值范圍),能很直觀的幫助你解決問題。
❼ 初中數學函數知識點。
以下是一些知識點供你參考,如果想要一些題得話,你可以在網路文庫裡面搜索初中函數知識點,裡面有不少呢~! 祝學習進步~! 函數及其圖像 一、平面直角坐標系 在平面內畫兩條互相垂直且有公共原點的數軸,就組成了平面直角坐標系。 坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。 注意:x軸和y軸上的點,不屬於任何象限。 二、不同位置的點的坐標的特徵 1、各象限內點的坐標的特徵 第一象限(+,+) 第二象限(-,+) 第三象限(-,-) 第四象限(+,-) 2、坐標軸上的點的特徵 在x軸上縱坐標為0 , 在y軸上橫坐標為, 原點坐標為(0,0) 3、兩條坐標軸夾角平分線上點的坐標的特徵 點P(x,y)在第一、三象限夾角平分線上 x與y相等 點P(x,y)在第二、四象限夾角平分線上 x與y互為相反數 4、和坐標軸平行的直線上點的坐標的特徵 位於平行於x軸的直線上的各點的縱坐標相同。 位於平行於y軸的直線上的各點的橫坐標相同。 5、關於x軸、y軸或遠點對稱的點的坐標的特徵 點P與點p』關於x軸對稱 橫坐標相等,縱坐標互為相反數 點P與點p』關於y軸對稱 縱坐標相等,橫坐標互為相反數 點P與點p』關於原點對稱 橫、縱坐標均互為相反數 6、點到坐標軸及原點的距離 點P(x,y)到坐標軸及原點的距離: (1)到x軸的距離等於 (2)到y軸的距離等於 (3)到原點的距離等於 三、函數及其相關概念 1、變數與常量 在某一變化過程中,可以取不同數值的量叫做變數,數值保持不變的量叫做常量。 一般地,在某一變化過程中有兩個變數x與y,如果對於x的每一個值,y都有唯一確定的值與它對應,那麼就說x是自變數,y是x的函數。 2、函數的三種表示法(1)解析法(2)列表法(3)圖像法 3、由函數解析式畫其圖像的一般步驟(1)列表(2)描點(3)連線 4、自變數取值范圍 四、正比例函數和一次函數 1、正比例函數和一次函數的概念 一般地,如果 (k,b是常數,k 0),那麼y叫做x的一次函數。 特別地,當一次函數 中的b為0時, (k為常數,k 0)。這時,y叫做x的正比例函數。 2、一次函數的圖像:是一條直線 3、正比例函數的性質,,一般地,正比例函數 有下列性質: (1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大; (2)當k0時,y隨x的增大而增大 (2)當k0時,函數圖像的兩個分支分別在第一、三象限。在每個象限內,y隨x 的增大而減小。 (2)當k0拋物線開口向上,對稱軸是x= ,頂點坐標是( , );在對稱軸的左側,即當x 時,y隨x的增大而增大;拋物線有最低點,當x= 時,y有最小值, (2) a 時,y隨x的增大而減小,; 拋物線有最高點,當x= 時,y有最大值, 4、.二次函數的解析式有三種形式: (1)一般式: (2)頂點式: (3)兩根式: 5、拋物線 中, 的作用: 表示開口方向: >0時,拋物線開口向上,,, 0時,圖像與x軸有兩個交點; 當 =0時,圖像與x軸有一個交點; 當
❽ 八年級上冊數學知識點歸納、總結 人教版、
一.整式
1.1:加減
1.2:乘法
1.3:公式:1.平方差
2.完全平方
1.4:除法
1.5:因式分解
二.分式
2.1:定義
2.2:運算
2.3:方程
三.反比例函數
3.1:定義
3.2:利用反比例函數解決實際問題
四.軸對稱
4.1:定義
4.2:軸對稱變換
4.3:等腰三角形
五.總復習
回答者: 鄭長春123 - 門吏 二級 2-15 14:09
=======================================================
知 識 點 能力要求 了解 理解 掌握 應用 軸對稱圖形、軸對稱的概念 √ 軸對稱圖形的對稱軸及軸對稱的對稱軸、對稱點 √ 軸對稱圖形與軸對稱的區別和聯系 √ 線段垂直平分線的定義和性質 √ 成軸對稱的兩個圖形的性質 √ 利用軸對稱的性質作簡單的軸對稱 √ 利用軸對稱進行圖案設計 √ 對稱圖案中顏色的對稱 √ 利用網格設計軸對稱圖案 √ 線段是軸對稱圖形 √ 線段的垂直平分線的性質 √ 角是軸對稱圖形 √ 角平分線的性質 √ 等腰三角形的軸對稱性 √ 等腰三角形的性質 √ √ 等腰三角形三線合一的性質 √ 運用等腰三角形的性質解決問題 √ 等邊三角形及直角三角形的性質 √ 梯形及等腰梯形的概念 √ 梯形及等腰梯形的性質 √ 梯形輔助線的幾種作法 √ 等腰梯形同一底上的兩個內角相等、兩條對角線相等 √ 等腰梯形是軸對稱圖形 √ 等腰梯形的判定 √ 蘇科版八年級數學(上)知識點系目表 2008.9 勾股定理 √ 面積法證明勾股定理 √ 直角三角形的判定條件 √ 利用直角三角形的判定條件判定三角形 √ 勾股定理的實際應用 √ 勾股數的概念 √ 平方根的概念 √ 求一個非負數的平方根 √ 平方根的性質 √ 開平方的概念 √ , √ 立方根的概念 √ 求一個實數的立方根 √ 立方根的性質 √ 開立方的概念 √ 無理數、實數的概念 √ 實數的分類 √ 實數的大小比較 √ 用計算器計算 √ 實數范圍內的運算 √ 近似數的概念 √ 根據要求取近似數 √ 有效數字的概念 √ 1.旋轉的基本性質。 √ 2.按要求作出簡單的平面圖形通過旋轉後的形 √ 3.中心對稱及中心對稱圖形的有關概念和性質 √ 4.畫出已知圖形成中心對稱,會設計中心對稱案 √ 5.平行四邊形的性質; √ 6.運用平行四邊形的性質解決實際問題 √ 7.平行四邊形的判定方法 √ 8.運用平行四邊形的判定和性質解決實際問題; √ 9矩形、菱形、正方形的概念及其特殊的性質。 √ 10.矩形、菱形、正方形的判斷方法,運用矩形、菱形、正方形的判定和性質解決實際問題 √ 11.三角形中位線概念、性質. √ 12.會利用三角形的中位線的性質解決有關問題. √ 13.梯形的中位線的概念和性質; √ 14.能應用梯形的中位線的性質解決有關問題 √ 15.理解鑲嵌的意義,進行簡單的鑲嵌設計 √ 1、感受可以用多種方法記錄、描繪後表示變化的數量及變化規律 √ 2、能根據圖表所提供的信息,探索數量變化的某些聯系 √ 3、會描述物體運動的路徑 √ 4、能根據經緯度確定移動物體位置變化的路徑 √ 5、會用變化的數量描繪物體位置的變化 √ 6、領會實際模型中確定位置的方法,會正確畫出平面直角坐標系 √ 7、在給定的直角坐標系中,根據點的坐標描出點的位置 √ 8、在給定的直角坐標系中,會由點的位置寫出點的坐標 √ 9、在同一直角坐標系中,探索位置變化與數量變化的關系 √ 10、在同一直角坐標系中,探索圖形位置的變化與點的坐標變化的關系 √ 11、能建立適當直角坐標系,將實際問題數學化,並會用直角坐標系解決問題 √ 常量、變數意義 √ 函數概念和三種表示方法 √ 結合圖象分析實際問題中的函數關系 √ 確定自變數的取值范圍 √ 求函數值 √ 正比例函數概念 √ 一次函數概念 √ 根據已知條件確定一次函數解析式 √ 會畫一次函數圖象 √ 正比例函數圖象性質 √ 一次函數圖象性質 √ 一次函數圖象的性質(k>0或k<0圖象的變化) √ 直線在平面直角坐標系中的平移 √ 直線與直線的對稱 √ 直線的旋轉 √ 平面直角坐標系中的面積 √ 一次函數解決實際問題 √ 對變數的變化規律進行初步預測 √ 圖象發求二元一次方程組的解 √ 1.算術平均數和加權平均數的意義。 √ 2.求一組數據的算術平均數和加權平均數。 √ 3.權的差異對平均數的影響。 √ 4.算術平均數與加權平均數的聯系與區別。 √ 5.利用算術平均數和加權平均數解決實際問題。 √ 6.中位數和眾數代表的概念。 √ 7.根據所給的信息求出一組數據的中位數、眾數。 √ 8.平均數、中位數、眾數的區別與聯系。 √ 9選擇合適的統計量表示數據的集中程度。 √ 10.利用計算器求一組數據的平均數。 √ 11.經歷數據的收集、加工、整理和描述的統計過程,提高數據處理能力,發展統計意識。 (去買本老師用書)
給些例題
小結
例題:
1、一次函數:若兩個變數x,y存在關系為y=kx+b (k≠0, k,b為常數)的形式,則稱y是x的函數。
注意:(1)k≠0,否則自變數x的最高次項的系數不為1;
(2)當b=0時,y=kx,y叫x的正比例函數。
2、圖象:一次函數的圖象是一條直線
(1)兩個常有的特殊點:與y軸交於(0,b);與x軸交於(- ,0)。
(2)正比例函數y=kx(k≠0)的圖象是經過(0,0)和(1,k)的一條直線;一次函數y=kx+b(k≠0)的圖象是經過(- ,0)和(0,b)的一條直線。
(3)由圖象可以知道,直線y=kx+b與直線y=kx平行,例如直線:y=2x+3與直線y=2x-5都與直線y=2x平行。
3、一次函數圖象的性質:
(1)圖象在平面直角坐標系中的位置:
(2)增減性:
k>0時,y隨x增大而增大;
k<0時,y隨x增大而減小。
4、求一次函數解析式的方法
求函數解析式的方法主要有三種:
一是由已知函數推導,如例題1;
二是由實際問題列出兩個未知數的方程,再轉化為函數解析式,如例題4的第一問。
三是用待定系數法求函數解析式,如例2的第二小題、例7。
其步驟是:①根據題給條件寫出含有待定系數的解析式;②將x、y的幾對值或圖象上幾個點的坐標代入上述的解析式中,得到以待定系數為未知數的方程或方程組;③解方程,得到待定系數的具體數值;④將求出的待定系數代入要求的函數解析式中。
二、例題舉例:
例1、已知變數y與y1的關系為y=2y1,變數y1與x的關系為y1=3x+2,求變數y與x的函數關系。
分析:已知兩組函數關系,其中共同的變數是y1,所以通過y1可以找到y與x的關系。
解:∵ y=2y1
y1=3x+2,
∴ y=2(3x+2)=6x+4,
即變數y與x的關系為:y=6x+4。
例2、解答下列題目
(1)(甘肅省中考題)已知直線 與y軸交於點A,那麼點A的坐標是( )。
(A)(0,–3) (B) (C) (D)(0,3)
(2)(杭州市中考題)已知正比例函數 ,當x=–3時,y=6.那麼該正比例函數應為( )。
(A) (B) (C) (D)
(3)(福州市中考題)一次函數y=x+1的圖象,不經過的象限是( )。
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
分析與答案:
(1) 直線與y軸交點坐標,特點是橫坐標是0,縱坐標可代入函數關系求得。
或者直接利用直線和y軸交點為(0,b),得到交點(0,3),答案為D。
(2) 求解析式的關鍵是確定系數k,本題已知x=-3時,y=6,代入到y=kx中,解析式可確定。答案D: y=-2x。
(3) 由一次函數y=kx+b的圖象性質,有以下結論:
,
題目中y=x+1,k=1>0,則函數圖象必過一、三象限;b=1>0,則直線和y軸交於正半軸,可以判定直線位置,也可以畫草圖,或取兩個點畫草圖判斷,圖像不過第四象限。
答案:D。
例3、(遼寧省中考題)某單位急需用車;但又不準備買車,他們准備和一個體車主或一國營計程車公司其中的一家簽訂月租車合同。設汽車每月行駛x千米,應付給個體車主的月費用是y1元,應付給計程車公司的月費用是y2元,y1、y2分別與x之間的函數關系圖象(兩條射線)如圖,觀察圖象回答下列問題:
(1)每月行駛的路程在什麼范圍內時,租國營公司的車合算?
(2)每月行駛的路程等於多少時,租兩家車的費用相同?
(3)如果這個單位估計每月行駛的路程為2300千米,那麼這個單位租哪家的車合算?
分析:因給出了兩個函數的圖象可知一個是一次函數,一個是一次函數的特殊形式正比例函數,兩條直線交點的橫坐標為1500,表明當x=1500時,兩條直線的函數值y相等,並且根據圖像可以知道x>1500時,y2在y1上方;0<x<1500時,y2在y1下方。利用圖象,三個問題很容易解答。
答:(1)每月行駛的路程小於1500千米時,租國營公司的車合算。
[或答:當0≤x<1500(千米)時,租國營公司的車合算]。
(2)每月行駛的路程等於1500千米時,租兩家車的費用相同。
(3)如果每月行駛的路程為2300千米,那麼這個單位租個體車主的車合算。
例4、(河北省中考題)某工廠有甲、乙兩條生產線先後投產。在乙生產線投產以前,甲生產線已生產了200噸成品;從乙生產線投產開始,甲、乙兩條生產線每天分別生產20噸和30噸成品。
(1)分別求出甲、乙兩條生產線投產後,各自總產量y(噸)與從乙開始投產以來所用時間x(天)之間的函數關系式,並求出第幾天結束時,甲、乙兩條生產線的總產量相同;
(2)在如圖所示的直角坐標系中,作出上述兩個函數在第一象限內的圖象;觀察圖象,分別指出第15天和第25天結束時,哪條生產線的總產量高?
分析:(1)根據給出的條件先列出y與x的函數式, =20x+200, =30x,當 = 時,求出x。
(2)在給出的直角坐標系中畫出兩個函數的圖象,根據點的坐標可以看出第15天和25天結束時,甲、乙兩條生產線的總產量的高低。
解:(1)由題意可得:
甲生產線生產時對應的函數關系式是:y=20x+200,
乙生產線生產時對應的函數關系式是:y=30x,
令20x+200=30x,解得x=20,即第20天結束時,兩條生產線的產量相同。
(2)由(1)可知,甲生產線所對應的生產函數圖象一定經過兩點A(0,200)和
B(20,600);
乙生產線所對應的生產函數圖象一定經過兩點O(0,0)和B(20,600)。
因此圖象如右圖所示,由圖象可知:第15天結束時,甲生產線的總產量高;第25天結束時,乙生產線的總產量高。
例5.直線y=kx+b與直線y=5-4x平行,且與直線y=-3(x-6)相交,交點在y軸上,求此直線解析式。
分析:直線y=kx+b的位置由系數k、b來決定:由k來定方向,由b來定與y軸的交點,若兩直線平行,則解析式的一次項系數k相等。例如y=2x,y=2x+3的圖象平行。
解:∵ y=kx+b與y=5-4x平行,
∴ k=-4,
∵ y=kx+b與y=-3(x-6)=-3x+18相交於y軸,
∴ b=18,
∴ y=-4x+18。
說明:一次函數y=kx+b圖象的位置由系數k、b來決定:由k來定方向,由b來定點,即函數圖象平行於直線y=kx,經過(0,b)點,反之亦成立,即由函數圖象方向定k,由與y軸交點定b。
例6.直線與x軸交於點A(-4,0),與y軸交於點B,若點B到x軸的距離為2,求直線的解析式。
解:∵ 點B到x軸的距離為2,
∴ 點B的坐標為(0,±2),
設直線的解析式為y=kx±2,
∵ 直線過點A(-4,0),
∴ 0=-4k±2,
解得:k=± ,
∴直線AB的解析式為y= x+2或y=- x-2。
說明:此例看起來很簡單,但實際上隱含了很多推理過程,而這些推理是求一次函數解析式必備的。
(1)圖象是直線的函數是一次函數;
(2)直線與y軸交於B點,則點B(0,yB);
(3)點B到x軸距離為2,則|yB|=2;
(4)點B的縱坐標等於直線解析式的常數項,即b=yB;
(5)已知直線與y軸交點的縱坐標yB,可設y=kx+yB;
下面只需待定k即可。
三、提高與思考
例1.已知一次函數y1=(n-2)x+n的圖象與y軸交點的縱坐標為-1,判斷y2=(3- )xn+2是什麼函數,寫出兩個函數的解析式,並指出兩個函數在直角坐標系中的位置及增減性。
解:依題意,得
解得n=-1,
∴ y1=-3x-1,
y2=(3- )x, y2是正比例函數;
y1=-3x-1的圖象經過第二、三、四象限,y1隨x的增大而減小;
y2=(3- )x的圖象經過第一、三象限,y2隨x的增大而增大。
說明:由於一次函數的解析式含有待定系數n,故求解析式的關鍵是構造關於n的方程,此題利用「一次函數解析式的常數項就是圖象與y軸交點縱坐標」來構造方程。
例2.已知一次函數的圖象,交x軸於A(-6,0),交正比例函數的圖象於點B,且點B在第三象限,它的橫坐標為-2,△AOB的面積為6平方單位,求正比例函數和一次函數的解析式。
分析:自畫草圖如下:
解:設正比例函數y=kx,
一次函數y=ax+b,
∵ 點B在第三象限,橫坐標為-2,
設B(-2,yB),其中yB<0,
∵ =6,
∴ AO•|yB|=6,
∴ yB=-2,
把點B(-2,-2)代入正比例函數y=kx,得k=1,
把點A(-6,0)、B(-2,-2)代入y=ax+b,
得
解得:
∴ y=x, y=- x-3即所求。
說明:(1)此例需要利用正比例函數、一次函數定義寫出含待定系數的結構式,注意兩個函數中的系數要用不同字母表示;
(2)此例需要把條件(面積)轉化為點B的坐標。這個轉化實質含有兩步:一是利用面積公式 AO•
BD=6(過點B作BD⊥AO於D)計算出線段長BD=2,再利用|yB|=BD及點B在第三象限計算出yB=-2。若去掉第三象限的條件,想一想點B的位置有幾種可能,結果會有什麼變化?(答:有兩種可能,點B可能在第二象限(-2,2),結果增加一組y=-x, y= (x+3)。 (有答案,自己去看吧)
1 全等三角形的對應邊、對應角相等
2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
7 定理1 在角的平分線上的點到這個角的兩邊的距離相等
8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
9 角的平分線是到角的兩邊距離相等的所有點的集合
10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
21 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
23 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
25 推論1 三個角都相等的三角形是等邊三角形
26 推論 2 有一個角等於60°的等腰三角形是等邊三角形
27 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
28 直角三角形斜邊上的中線等於斜邊上的一半
29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
32 定理1 關於某條直線對稱的兩個圖形是全等形
33 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
34定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
36勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
38定理 四邊形的內角和等於360°
39四邊形的外角和等於360°
40多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
41推論 任意多邊的外角和等於360°
42平行四邊形性質定理1 平行四邊形的對角相等
43平行四邊形性質定理2 平行四邊形的對邊相等
44推論 夾在兩條平行線間的平行線段相等
45平行四邊形性質定理3 平行四邊形的對角線互相平分
46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
50矩形性質定理1 矩形的四個角都是直角
51矩形性質定理2 矩形的對角線相等
52矩形判定定理1 有三個角是直角的四邊形是矩形
53矩形判定定理2 對角線相等的平行四邊形是矩形
54菱形性質定理1 菱形的四條邊都相等
55菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
56菱形面積=對角線乘積的一半,即S=(a×b)÷2
57菱形判定定理1 四邊都相等的四邊形是菱形
58菱形判定定理2 對角線互相垂直的平行四邊形是菱形
59正方形性質定理1 正方形的四個角都是直角,四條邊都相等
60正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
61定理1 關於中心對稱的兩個圖形是全等的
62定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
63逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
64等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
65等腰梯形的兩條對角線相等
66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
67對角線相等的梯形是等腰梯形
68平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
69 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
70 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
71 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它
的一半
72 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的
一半 L=(a+b)÷2 S=L×h