Ⅰ 成人高考高等數學二,什麼都不會,有沒有得分竅門,怎樣復習150分能得30分我就知足。。
現在很多的同學數學的分數都不是很高,這拉低的整體的平均分,所以很多的學生都會是做很多的練習題來改善這種問題,那麼初中數學練習題做的越多分數就會越高嗎?
數學習題
在做初中數學練習題的時候,家長不可以讓孩子做的過於多,需要給孩子一定的休息時間,以防止孩子出現過度勞累的情況,這樣只會讓分數出現下降並不會有上升的情況,所以只有詳細的制定計劃之後才可以在一定的程度上改善孩子的分數問題,還可以改善孩子的學習習慣,這對於孩子的以後有非常大的影響.
Ⅱ 成人高考的高數二是什麼內容
高等數學二是微積分和概率 沒有線性代數 你要是考高等數學二的話,你就買一本最新的就行,哪一年報的就買哪一年的書
Ⅲ 成考高數二拿分技巧
成人高考高數二如何拿高分
在做題的過程中,你要熟練地運用那些公式。做完題了,有時間就多看看課本的公式。(可六十五分以上)如果想高分,就買相關配套的練習並將它也弄懂。一般地,這么多的問題都做完的話,而且是正確地熟練地完成的話,八十五分以上是沒問題。
基本概念要一個字一個字理解並記憶,要准確掌握基本概念的內涵外延。只有思維鑽進去才能了解內涵,思維要發散才能了解外延。只有概念過關,做題才能又快又准。盡管工作和學習都很忙碌繁瑣,但相關教材上的習題都應該抽取一定的時間認真完成,不要為節省時間而省略做題步驟。每次作業都是一次檢驗的機會,越早發現問題,就能越早制定相應計劃去完善。
成考高數二知識點筆記整理
(一)函數
1、知識范圍
(1)函數的概念
函數的定義、函數的表示法、分段函數、隱函數
(2)函數的性質
單調性、奇偶性、有界性、周期性
(3)反函數
反函數的定義、反函數的圖像
(4)基本初等函數
冪函數、指數函數、對數函數、三角函數、反三角函數
(5)函數的四則運算與復合運算
(6)初等函數
2、要求
(1)理解函數的概念,會求函數的表達式、定義域及函數值,會求分段函數的定義域、函數值,會作出簡單的分段函數的圖像。
(2)理解函數的單調性、奇偶性、有界性和周期性。
(3)了解函數與其反函數之間的關系(定義域、值域、圖像),會求單調函數的反函數。
(4)熟練掌握函數的四則運算與復合運算。
(5)掌握基本初等函數的性質及其圖像。
(6)了解初等函數的概念。
(7)會建立簡單實際問題的函數關系式。
(二)極限
1、知識范圍
(1)數列極限的概念
數列、數列極限的定義
(2)數列極限的性質
唯一性、有界性、四則運演算法則、夾通定理、單調有界數列極限存在定理
(3)函數極限的概念
函數在一點處極限的定義、左、右極限及其與極限的關系趨於無窮時函數的極限、函數極限的幾何意義
(4)函數極限的性質
唯一性、四則運演算法則、夾通定理
(5)無窮小量與無窮大量
無窮小量與無窮大量的定義、無窮小量與無窮大量的關系、無窮小量的性質、無窮小量的階
(6)兩個重要極限
2、要求
(1)理解極限的概念,會求函數在一點處的左極限與右極限,了解函數在一點處極限存在的充分必要條件。
(2)了解極限的有關性質,掌握極限的四則運演算法則。
(3)理解無窮小量、無窮大量的概念,掌握無窮小量的性質、無窮小量與無窮大量的關系。會進行無窮小量階的比較(高階、低階、同階和等價)。會運用等價無窮小量代換求極限。
(4)熟練掌握用兩個重要極限求極限的方法。
Ⅳ 成人高考里高數二的復習內容
餓。這里發太多的話網路不讓發。給你地址也可
Ⅳ 成人高考上的高數一和高數二怎麼分的,什麼人要考高數一,什麼人要考高數二
注意以《大綱》為依據,弄清《高等數學》(一)和《高等數學》(二)在知識內容及相關考核要求上的區別。
這種區別主要體現在兩個方面:其一是在共有知識內容方面,同一章中要求掌握的知識點,或同一知識點要求掌握的程度不盡相同。如在一元函數微分學中,《高等數學》(一)要求掌握求反函數的導數、掌握求由參數方程所確定的函數的求導方法,會求簡單函數的n階導數,理解羅爾定理、拉格朗日中值定理,但上述知識點對《高等數學》(二)並不做要求;又如在一元函數積分學中,《高等數學》(一)要求掌握三角換元求不定積分,其中包括正弦變換、正切變換和正割變換,而《高等數學》(二)對正割變換不做考核要求。其二是在不同的知識內容方面,《高等數學》(一)考核內容中有二重積分,而《高等數學》(二)對二重積分並不做考核要求;再有《高等數學》(一)有無窮級數、常微分方程,高數(二)均不做要求。從試卷中可以看出,高等數學(一)比《高等數學》(二)多出來的這部分知識點,在考題中大約能佔到30%的比例。共計45分左右。所以理科、工科類考生應按照《大綱》的要求全面認真復習。
Ⅵ 成人高考高等數學二如何復習
一般地,你對高等數學二課本的例題會懂,會做,並且課本後面的練習題會做及章後的練習題會做,就差不多了。
在做題的過程中,你要熟練地運用那些公式。
做完題了,有時間就多看看課本的公式。。(可六十五分以上)
如果想高分,就買相關配套的練習並將它也弄懂。
一般地,這么多的問題都做完的話,而且是正確地熟練地完成的話,八十五分以上是沒問題。
Ⅶ 求成人高考高數(二)的復習資料和公式
(1)拋物線
y = ax^2 + bx + c (a≠0)
就是y等於a乘以x 的平方加上 b乘以x再加上 c
置於平面直角坐標系中
a > 0時開口向上
a < 0時開口向下
(a=0時為一元一次函數)
c>0時函數圖像與y軸正方向相交
c< 0時函數圖像與y軸負方向相交
c = 0時拋物線經過原點
b = 0時拋物線對稱軸為y軸
(當然a=0且b≠0時該函數為一次函數)
還有頂點公式y = a(x+h)* 2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))
就是y等於a乘以(x+h)的平方+k
-h是頂點坐標的x
k是頂點坐標的y
一般用於求最大值與最小值和對稱軸
拋物線標准方程:y^2=2px
它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0) 准線方程為x=-p/2
由於拋物線的焦點可在任意半軸,故共有標准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
(2)圓
球體積=(4/3)π(r^3)
面積=π(r^2)
周長=2πr =πd
圓的標准方程 (x-a)^2+(y-b)^2=r^2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D^2+E^2-4F>0
(一)橢圓周長計算公式
橢圓周長公式:L=2πb+4(a-b)
橢圓周長定理:橢圓的周長等於該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。
(二)橢圓面積計算公式
橢圓面積公式: S=πab
橢圓面積定理:橢圓的面積等於圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
以上橢圓周長、面積公式中雖然沒有出現橢圓周率T,但這兩個公式都是通過橢圓周率T推導演變而來。常數為體,公式為用。
橢球物體 體積計算公式橢圓 的 長半徑*短半徑*π*高
(3)三角函數
和差角公式
sin(A+B)=sinAcosB+cosAsinB ;sin(A-B)=sinAcosB - sinBcosA ;
cos(A+B)=cosAcosB - sinAsinB ;cos(A-B)=cosAcosB + sinAsinB ;
tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB) ;
cot(A+B)=(cosAcotB-1)/(cosB+cotA) ;cot(A-B)=(cosAcotB+1)/(cosB-cotA) ;
倍角公式
tan2A=2tanA/(1-tan^2A) ;cot2A=(cot^2A-1)/2cota ;
cos2a=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a ;
sin2A=2sinAcosA=2/(tanA+cotA);
另:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 ;
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 ;
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0;
四倍角公式:
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
五倍角公式:
sin5A=16sinA^5-20sinA^3+5sinA
cos5A=16cosA^5-20cosA^3+5cosA
tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)
六倍角公式:
sin6A=2*(cosA*sinA)*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))
cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))
tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)
七倍角公式:
sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))
cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))
tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)
八倍角公式:
sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))
cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)
tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)
九倍角公式:
sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))
cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))
tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)
十倍角公式:
sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))
cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))
tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)
萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B); 2cosAsinB=sin(A+B)-sin(A-B) ;
2cosAcosB=cos(A+B)+cos(A-B) ;-2sinAsinB=cos(A+B)-cos(A-B) ;
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 ;cosA+cosB=2cos((A+B)/2)sin((A-B)/2) ;
tanA+tanB=sin(A+B)/cosAcosB; tanA-tanB=sin(A-B)/cosAcosB ;
cotA+cotB=sin(A+B)/sinAsinB; -cotA+cotB=sin(A+B)/sinAsinB ;
降冪公式
sin²(A)=(1-cos(2A))/2=versin(2A)/2;
cos²(α)=(1+cos(2A))/2=covers(2A)/2;
tan²(α)=(1-cos(2A))/(1+cos(2A));
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b^2=a^2+c^2-2accosB 註:角B是邊a和邊c的夾角
(4)反三角函數
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
(5)數列
等差數列通項公式:an=a1+(n-1)d
等差數列前n項和:Sn=[n(A1+An)]/2 =nA1+[n(n-1)d]/2
等比數列通項公式:an=a1*q^(n-1);
等比數列前n項和:Sn=a1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =a1/(1-q)-a1/(1-q)*q^n (n≠1)
某些數列前n項和:
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n^2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
(6)乘法與因式分解
因式分解
a^2-b^2=(a+b)(a-b)
a^2±2ab+b^2=(a±b)^2
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b)(a^2+ab+b^2)
a^3±3a^2b+3ab^2±b^3=(a±b)^3
乘法公式
把上面的因式分解公式左邊和右邊顛倒過來就是乘法公式
(7)三角不等式
-|a|≤a≤|a|
|a|≤b<=>-b≤a≤b
|a|≤b<=>-b≤a≤b
|a|-|b|≤|a+b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a|-|b|≤|a-b|≤|a|+|b|
|z1|-|z2|-...-|zn|≤|z1+z2+...+zn|≤|z1|+|z2|+...+|zn|
|z1|-|z2|-...-|zn|≤|z1-z2-...-zn|≤|z1|+|z2|+...+|zn|
|z1|-|z2|-...-|zn|≤|z1±z2±...±zn|≤|z1|+|z2|+...+|zn|
(8)一元二次方程
一元二次方程的解wx1= -b+√(b^2-4ac)/2a x2= -b-√(b^2-4ac)/2a
根與系數的關系(韋達定理) x1+x2=-b/a ; x1*x2=c/a
判別式△= b^2-4ac=0 則方d程有相等的個實根
△>0 則方程有兩個不相等的兩實根
△<0 則方程有兩共軛復數根d(沒有實根)
Ⅷ 成考高數二如何去學習 只要60~70分即可 該把重點放在哪些部分
大一多參加活動 大二注重專業知識 大三多多實習