Ⅰ 歸納一下高中數學選修1-1橢圓部分的知識點 。
+
=1(a>b>0),F1為左焦點,A、B是兩個頂點,P為橢圓上一點,PF1請不要開這樣的玩笑每個學校的選修都不一樣請附上課本名
Ⅱ 求高中數學選修知識點
選修課程
(一)選修1-1
本模塊包括常用邏輯用語、圓錐曲線與方程、導數及其應用。
1.常用邏輯用語
(1)命題及其關系
(2)簡單的邏輯聯結詞
通過數學實例,了解邏輯聯結詞「或」「且」「非」的含義。
(3)全稱量詞與存在量詞
2.圓錐曲線與方程
(1)了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現實世界和解決實際問題中的作用。
(2)經歷從具體情境中抽象出橢圓模型的過程,掌握橢圓的定義、標准方程、幾何圖形及簡單性質。
(3)了解拋物線、雙曲線的定義、幾何圖形和標准方程,知道它們的簡單幾何性質。
(4)通過圓錐曲線與方程的學習,進一步體會數形結合的思想。
(5)了解圓錐曲線的簡單應用。
3.導數及其應用
(1)導數概念及其幾何意義
(2)導數的運算
① 能根據導數定義
(3)導數在研究函數中的應用
(4)生活中的優化問題舉例
例如,通過使利潤最大、用料最省、效率最高等優化問題,體會導數在解決實際問題中的作用。
(5)數學文化
收集有關微積分創立的時代背景和有關人物的資料,並進行交流,體會微積分的建立在人類文化發展中的意義和價值。
微積分的創立是數學發展中的里程碑,它的發展和廣泛應用開創了向近代數學過渡的新時期,為研究變數和函數提供了重要的方法和手段。導數概念是微積分的核心概念之一,它有極其豐富的實際背景和廣泛的應用。
導數的概念應從其實際背景加以引入,教學中,可以通過研究曲線的切線、增長率、膨脹率、效率、密度、速度等反映導數應用的實例,突出幾何形象描述,引導學生經歷由平均變化率到瞬時變化率的過程,得到對導數概念抽象和形象的理解。
在教學中,要防止將導數僅僅作為一些規則和步驟來學習,而忽視它的思想和價值。應使學生認識到,任何事物的變化率都可以用導數來描述,應當避免過量的形式化運算練習。
利用導數判斷函數的單調性,是導數應用的重點,教學中應多選取具體的函數(如: ),利用它們的圖象,藉助幾何直觀,了解函數的導數與函數單調性之間的本質聯系,學會用導數研究函數的單調性,進而完成對函數的最值(極值)以及生活中的優化問題的教學。在學習利用導數研究函數性質的同時,感受導數在研究函數和解決實際問題中的作用,體會導數的思想及其內涵,幫助學生理解導數的背景、思想和作用。
本章內容的教學,整體上要貫穿用形象展示抽象,用微觀說明宏觀,注重研究問題的方法和學生認識的過程,注重培養學生的研究探索能力,注重數形結合思想的滲透。
(二)選修1-2
本模塊包括統計案例、推理與證明、數系擴充及復數的引入、框圖。
1.統計案例
通過典型案例,學習下列一些常見的統計方法,並能初步應用這些方法解決一些實際問題。
(1)通過對典型案例 (如「肺癌與吸煙有關嗎」 等)的探究,了解獨立性檢驗 (只要求2×2列聯表) 的基本思想、方法及初步應用。
(2)通過對典型案例(如「人的體重與身高的關系」等)的探究,了解回歸的基本思想、方法及其初步應用。
本部分內容是學生在初中階段和高中數學必修課程已學習統計的基礎上,通過對典型案例的討論,了解和使用一些常用的統計方法,進一步體會運用統計方法解決實際問題,認識統計方法在決策中的作用。
本部分內容的《課程標准》要求都是了解,因此教學中要注意難度的把握,宜採用案例教學的方式。本部分的內容公式多,但重點應放在通過統計案例,讓學生了解回歸分析和獨立性檢驗的基本思想及其初步應用,對於其理論基礎不做要求,避免學生單純記憶和機械套用公式。
教學中,應鼓勵學生經歷數據處理的過程,培養他們對數據的直觀感覺,認識統計方法的特點(如統計推斷可能犯錯誤,估計結果的隨機性),體會統計方法應用的廣泛性。應盡量給學生提供一定的實踐活動機會,可結合數學建模的活動,選擇一個案例,要求學生親自實踐。
教學中,應鼓勵學生使用計算器、計算機等現代技術手段來處理數據,有條件的學校還可運用一些常見的統計軟體解決實際問題。
在統計案例中,還應介紹所學統計方法在社會生活中的廣泛應用,以豐富學生對數學文化價值的認識。
2.推理與證明
(1)合情推理與演繹推理
① 結合已學過的數學實例和生活中的實例,了解合情推理的含義,能利用歸納和類比等進行簡單的推理,體會並認識合情推理在數學發現中的作用。
② 結合已學過的數學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,並能運用它們進行一些簡單推理。
③ 通過具體實例,了解合情推理和演繹推理之間的聯系和差異。
(2)直接證明與間接證明
① 結合已經學過的數學實例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。
② 結合已經學過的數學實例,了解間接證明的一種基本方法——反證法;了解反證法的思考過程、特點。
(3)數學文化
① 通過對實例的介紹(如歐幾里得《幾何原本》、馬克思《資本論》、傑弗遜《獨立宣言》、牛頓三定律),體會公理化思想。
② 介紹計算機在自動推理領域和數學證明中的作用。
「推理與證明」是數學的基本思維過程,也是人們學習和生活中經常使用的思維方式。推理一般包括合情推理和演繹推理,證明通常包括邏輯證明和實驗、實踐證明。合情推理得出的結論不一定正確,數學結論是否正確,必須通過演繹推理或邏輯證明來保證,即在前提正確的基礎上,通過正確使用推理規則得出結論。
在本部分內容中,學生將通過對已學知識的回顧,進一步體會合情推理、演繹推理以及二者之間的聯系與差異;體會數學證明的特點,了解數學證明的基本方法,包括直接證明的方法(如分析法、綜合法)和間接證明的方法(如反證法);感受邏輯證明在數學以及日常生活中的作用,養成言之有理、論證有據的習慣。
教學中應通過實例,引導學生運用合情推理去探索、猜測一些數學結論,並用演繹推理確認所得結論的正確性,或者用反例推翻錯誤的猜想。教學的重點在於通過具體實例理解合情推理與演繹推理,而不追求對概念的抽象表述。
本部分設置的證明內容是對學生已學過的基本證明方法的總結。在教學中,應通過實例,引導學生認識各種證明方法的特點,體會證明的必要性。對證明的技巧性不宜作過高的要求。
教學中,可從已學知識中的問題出發,體會兩種推理方法的應用,而在對新問題的解決過程中,自然的理解和區分兩種推理,把握兩種推理在解決問題中的協調應用。推理過程中,要注重學生信息檢索、觀察、分析、判斷等能力的培養,還要注重對學生在文字語言表達、數學語言應用,以及規范書寫證明過程等方面的要求。
為了讓學生初步體會公理化方法,在教學中一定要重視實例的作用,使學生了解數學知識的產生和發展過程,體會公理化思想的發展及對科學發現、社會進步等的作用。
3.數系擴充與復數的引入
(1)在問題情境中了解數系的擴充過程,體會實際需求與數學內部的矛盾(數的運算規則、方程理論)在數系擴充過程中的作用,感受人類理性思維的作用以及數與現實世界的聯系。
(2)理解復數的基本概念以及復數相等的充要條件。
(3)了解復數的代數表示法及其幾何意義。
(4)能進行復數代數形式的四則運算,了解復數代數形式的加減運算的幾何意義。
數系擴充的過程體現了數學的發現和創造過程,同時體現了數學發生發展的客觀需求和背景,復數的引入是中學階段數系的又一次擴充。本部分知識的教學,可結合數學文化的學習,進行數系擴充的介紹,使學生感受人類理性思維的作用以及數與現實世界的聯系。
在復數概念與運算的教學中,應注意避免繁瑣的計算與技巧訓練。對於感興趣的學生,可以安排一些引申的內容,如求 的根,介紹代數基本定理等。
4.框圖
(1)流程圖
① 通過具體實例,進一步認識程序框圖。
② 通過具體實例,了解工序流程圖(即統籌圖)。
③ 能繪制簡單實際問題的流程圖,體會流程圖在解決實際問題中的作用。
(2)結構圖
① 通過實例,了解結構圖;運用結構圖梳理已學過的知識、整理收集到的資料信息。
② 結合做出的結構圖與他人進行交流,體會結構圖在揭示事物聯系中的作用。
框圖是表示一個系統各部分和各環節之間關系的圖示,它的作用在於能夠清晰地表達比較復雜的系統各部分之間的關系。框圖已經廣泛應用於演算法、計算機程序設計、工序流程的表述、設計方案的比較等方面,也是表示數學計算與證明過程中主要邏輯步驟的工具,並將成為日常生活和各門學科中進行交流的一種常用表達方式。
框圖是新增內容,通過框圖的學習過程能夠提高學生的抽象概括能力和邏輯思維能力,能幫助學生清晰地表達和交流思想。尤其對希望在人文、社會科學方面發展的學生是十分必要的。
框圖的教學,應從分析實例入手,結合必修中的演算法,引導學生運用框圖表示數學計算與證明過程中的主要思路與步驟、實際問題中的工序流程、某一數學知識系統的結構關系等。使學生在運用框圖的過程中理解流程圖和結構圖的特徵,掌握框圖的用法,體驗用框圖表示解決問題過程的優越性。
(三)選修2-1
本模塊包括常用邏輯用語、圓錐曲線與方程、空間中的向量(簡稱空間向量)與立體幾何。
1.常用邏輯用語
(1)命題及其關系
① 了解命題的逆命題、否命題與逆否命題。
② 理解必要條件、充分條件與充要條件的意義,會分析四種命題的相互關系。
(2)簡單的邏輯聯結詞
通過數學實例,了解邏輯聯結詞「或」「且」「非」的含義。
(3)全稱量詞與存在量詞
① 通過生活和數學中的豐富實例,理解全稱量詞與存在量詞的意義。
② 能正確地對含有一個量詞的命題進行否定。
本部分教學的目的是讓學生體會邏輯用語在表述和論證中的作用,利用這些邏輯用語准確地表達數學內容,更好地進行交流,而不是進行邏輯學的教學。因此,教學中要注意把握尺度,不宜過難。
這里考慮的命題是指明確地給出條件和結論的命題,對逆命題、否命題、逆否命題的概念,只要求作一般性的了解,重點關注四種命題的相互關系和命題的必要條件、充分條件、充要條件。
教學中要多用實例,通過實例理解邏輯聯結詞及量詞的含義,避免對邏輯用語的機械記憶和抽象解釋,也不要求使用真值表。注意引導學生使用常用邏輯用語,在運用的過程中,加深對常用邏輯用語的認識,糾正出現的邏輯錯誤,體會運用常用邏輯用語表述數學內容的准確性、簡潔性,感受數學的美。
對於部分感興趣的同學,還可以引導他們進一步選修「開關電路與布爾代數」,繼續接觸有關命題的一些知識。
2.圓錐曲線與方程
(1)圓錐曲線
① 了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現實世界和解決實際問題中的作用。
② 經歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義、標准方程、幾何圖形及簡單性質。
③ 了解雙曲線的定義、幾何圖形和標准方程,知道它的有關性質。
④ 能用坐標法解決一些與圓錐曲線有關的簡單幾何問題(直線與圓錐曲線的位置關系)和實際問題。
⑤ 通過圓錐曲線的學習,進一步體會數形結合的思想。
(2)曲線與方程
結合已學過的曲線及其方程的實例,了解曲線與方程的對應關系,進一步感受數形結合的基本思想。
本部分內容所滲透的幾何直觀和數形結合的思想,對於後續的數學學習是很有幫助的,教學中要充分地重視這一點。
教學中可通過多種方式向學生介紹圓錐曲線的背景和應用,有意識地強調數學的科學價值、文化價值和美學價值,一方面引發學生學習的興趣,另一方面,也可以對曲線和方程的關系有進一步的認識。
圓錐曲線在實踐中的應用相當廣泛,是體現數學應用價值的好素材,因此,教學中可以通過豐富的實例,使學生了解其背景和應用。
在學習了橢圓之後,可引導學生運用類比的方法去研究拋物線,雙曲線的幾何性質。對於感興趣的學生,教師也可以引導學生了解圓錐曲線的離心率與統一方程。
有條件的學校,要充分發揮現代教育技術的作用,通過一些軟體演示方程中參數的變化對曲線的影響,使學生進一步理解曲線和方程的關系,把握好曲線的「幾何性質」與方程的「數量關系」之間的對應關系。
3.空間向量與立體幾何
(1)空間向量及其運算
① 經歷向量及其運算由平面向空間推廣的過程。
② 了解空間向量的概念,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標表示。
③ 掌握空間向量的線性運算及其坐標表示。
④ 掌握空間向量的數量積及其坐標表示;能運用向量的數量積判斷向量的共線與垂直。
(2)空間向量的應用
① 理解直線的方向向量與平面的法向量。
② 能用向量語言表述線線、線面、面面的垂直、平行關系。
③ 能用向量方法證明有關線、面位置關系的一些定理(包括三垂線定理)。
④ 能用向量方法解決線線、線面、面面的夾角的計算問題。
空間向量的教學應引導學生運用類比的方法,經歷向量及其運算由平面向空間推廣的過程,體會維數增加所帶來的影響。
在必修的基礎上繼續學習立體幾何,可以鼓勵學生靈活選擇運用向量方法與綜合方法,從不同角度解決立體幾何問題。
用空間向量處理立體幾何問題,關鍵在於理解直線的方向向量、平面的法向量、兩個向量的數量積的定義,以及實數與向量乘積的幾何意義——平行向量。
向量是代數的,它可以進行豐富的運算,通過這些運算可以解決很多問題;向量又是幾何的,向量可以描述、刻畫幾何中的基本研究對象:點、線、面以及它們之間的關系。向量所發揮的作用,是用代數方法處理幾何問題思想的集中反映。向量不僅僅是一個計算的工具,更重要的是,它還是連接代數與幾何的天然「橋梁」。教學中要讓學生體會向量方法在研究幾何問題中的作用,發展學生的幾何直觀和數形結合的能力,並充分挖掘向量的實際背景,如向量的物理學背景等。
(四)選修2—2
本模塊包括導數及其應用、推理與證明、數系擴充與復數的引入。
1.導數及其應用
(1)導數概念及其幾何意義
① 通過對大量實例的分析,經歷由平均變化率過渡到瞬時變化率的過程,了解導數概念的實際背景,知道瞬時變化率就是導數,體會導數的思想及其內涵。
② 通過函數圖象直觀地理解導數的幾何意義。
(2)導數的運算
① 能根據導數定義求函數 , , , , , 的導數。
② 能利用給出的基本初等函數的導數公式和導數的四則運演算法則求簡單函數的導數,能求簡單的復合函數(僅限於形如 )的導數。
③ 會使用導數公式表。
(3)導數在研究函數中的應用
① 結合實例,藉助幾何直觀探索並了解函數的單調性與導數的關系;能利用導數研究函數的單調性,會求不超過三次的多項式函數的單調區間。
② 結合函數的圖象,了解函數在某點取得極值的必要條件和充分條件;會用導數求不超過三次的多項式函數的極大值、極小值,以及閉區間上不超過三次的多項式函數最大值、最小值;體會導數方法在研究函數性質中的一般性和有效性。
(4)生活中的優化問題舉例
例如,通過使利潤最大、用料最省、效率最高等優化問題,體會導數在解決實際問題中的作用。
(5)定積分與微積分基本定理
① 通過實例(如求曲邊梯形的面積、變力做功等),從問題情境中了解定積分的實際背景;藉助幾何直觀體會定積分的基本思想,初步了解定積分的概念。
② 通過實例(如變速運動物體在某段時間內的速度與路程的關系),直觀了解微積分基本定理的含義。
(6)數學文化
收集有關微積分創立的時代背景和有關人物的資料,並進行交流;體會微積分的建立在人類文化發展中的意義和價值。
微積分的創立是數學發展中的里程碑,它的發展和廣泛應用開創了向近代數學過渡的新時期,為研究變數和函數提供了重要的方法和手段。導數概念是微積分的核心概念之一,它有極其豐富的實際背景和廣泛的應用。
導數的概念應從其實際背景加以引入,教學中可以通過研究曲線的切線、增長率、膨脹率、效率、密度、速度等反映導數應用的實例,突出幾何形象描述,引導學生經歷由平均變化率到瞬時變化率的認識過程,得到對導數概念形象的理解。
在教學中,要防止將導數僅僅作為一些規則和步驟來學習,而忽視它的思想和價值。應使學生認識到,任何事物的變化率都可以用導數來描述。
利用導數判斷函數的單調性是導數應用的重點,也是本部分內容的重點之一。教學中應選取具體的函數(如: ),利用它們的圖象,藉助幾何直觀,了解函數的導數與函數單調性之間的本質聯系,學會用導數研究函數的單調性,進而完成對函數的最值(極值)以及生活中的優化問題的教學。在學習利用導數研究函數性質的同時,感受導數在研究函數和解決實際問題中的作用,體會導數的思想及其內涵,幫助學生理解導數的背景、思想和作用。
教師應引導學生在解決具體問題的過程中,將研究函數的導數方法與初等方法作比較,以體會導數方法在研究函數性質中的一般性和有效性。
本章內容的教學,整體上要貫穿用形象展示抽象,用微觀說明宏觀,注重研究問題的方法和學生認識的過程,注重培養學生的研究探索能力,注重數形結合思想的滲透。
2.推理與證明
(1)合情推理與演繹推理
① 結合已學過的數學實例和生活中的實例,了解合情推理的含義,能利用歸納和類比等進行簡單的推理,體會並認識合情推理在數學發現中的作用。
② 結合已學過的數學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,並能運用它們進行一些簡單推理。
③ 通過具體實例,了解合情推理和演繹推理之間的聯系和差異。
(2)直接證明與間接證明
① 結合已經學過的數學實例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。
② 結合已經學過的數學實例,了解間接證明的一種基本方法——反證法;了解反證法的思考過程、特點。
(3)數學歸納法
了解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題。
(4)數學文化
① 通過對實例的介紹(如歐幾里得《幾何原本》、馬克思《資本論》、傑弗遜《獨立宣言》、牛頓三定律),體會公理化思想。
② 介紹計算機在自動推理領域和數學證明中的作用。
「推理與證明」是數學的基本思維過程,也是人們學習和生活中經常使用的思維方式。推理一般包括合情推理和演繹推理,證明通常包括邏輯證明和實驗、實踐證明。合情推理得出的結論不一定正確,數學結論是否正確,必須通過演繹推理或邏輯證明來保證,即在前提正確的基礎上,通過正確使用推理規則得出結論。
教學中應通過實例,引導學生運用合情推理去探索、猜測一些數學結論,並用演繹推理確認所得結論的正確性,或者用反例推翻錯誤的猜想。教學的重點在於通過具體實例理解合情推理與演繹推理,而不必追求對概念的抽象表述。
本部分設置的證明內容是對學生已學過的基本證明方法的總結。在教學中,應通過實例,引導學生認識各種證明方法的特點,體會證明的必要性。對證明的技巧性不宜作過高的要求。
教師應藉助具體實例讓學生了解數學歸納法的原理,對證明的問題要控制難度。
教學中,可從已學知識中的問題出發,體會兩種推理方法的應用,而在對新問題的解決過程中,自然的理解和區分兩種推理,把握兩種推理在解決問題中的協調應用。推理過程中,要注重學生信息檢索、觀察、分析、判斷等能力的培養,還要注重對學生在文字語言表達、數學語言應用,以及規范書寫證明過程等方面的要求。
為了讓學生初步體會公理化方法,在教學中一定要重視實例的作用,使學生了解數學知識的產生和發展過程,體會公理化思想的發展及對科學發現、社會進步等的作用。
3.數系擴充與復數的引入
(1)在問題情境中了解數系的擴充過程,體會實際需求與數學內部的矛盾(數的運算規則、方程理論)在數系擴充過程中的作用,感受人類理性思維的作用以及數與現實世界的聯系。
(2)理解復數的基本概念以及復數相等的充要條件。
(3)了解復數的代數表示法及其幾何意義。
(4)能進行復數代數形式的四則運算,了解復數代數形式的加減運算的幾何意義。
數系擴充的過程體現了數學的發現和創造過程,同時體現了數學發生發展的客觀需求和背景,復數的引入是中學階段數系的又一次擴充。本部分知識的教學,可結合數學文化的學習,進行數系擴充的介紹,使學生感受人類理性思維的作用以及數與現實世界的聯系。
在復數概念與運算的教學中,應注意避免繁瑣的計算與技巧訓練。對於感興趣的學生,可以安排一些引申的內容,如求 的根,介紹代數基本定理等。
(五)選修2—3
本模塊包括計數原理、統計案例、概率。
1.計數原理
(1)分類加法計數原理、分步乘法計數原理
通過實例,總結出分類加法計數原理、分步乘法計數原理;能根據具體問題的特徵,選擇分類加法計數原理或分步乘法計數原理解決一些簡單的實際問題。
(2)排列與組合
通過實例,理解排列、組合的概念;能利用計數原理推導排列數公式、組合數公式,並能解決簡單的實際問題。
(3)二項式定理
能用計數原理證明二項式定理; 會用二項式定理解決與二項展開式有關的簡單問題.
教學中要突出分類加法計數原理、分步乘法計數原理的基礎性作用。分類加法計數原理、分步乘法計數原理是處理計數問題的兩種基本方法。當面臨一個復雜問題時,通過分類或分步將它分解成為一些簡單的問題,先解決簡單問題,然後再將它們整合起來得到整個問題的解決,這是一種重要而基本的思想方法。
引導學生體會兩個計數原理在排列數公式、組合數公式和二項式定理推導中的工具性作用。以上知識的學習都是兩個計數原理的重要應用,這樣有利於避免學生單純記憶和機械套用公式進行計算。
通過學生熟悉和感興趣的實例,理解排列組合的概念,區分排列問題中元素的「有序」和組合問題中元素的「無序」,這是解決這兩類問題的關鍵,也是初學者容易犯錯誤的地方。
教學中,應避免繁瑣的、技巧性過高的計數問題。
對於有興趣和能力的學生可自主探究組合數的兩個性質,但在教學中不作統一要求。
在二項式定理的教學過程中可介紹我國古代數學成就「楊輝三角」及數學家楊輝其人其事,激發學生的學習熱情,豐富學生對數學文化價值的認識。
2.統計案例
通過典型案例,學習下列一些常見的統計方法,並能初步應用這些方法解決一些實際問題。
(1)通過對典型案例(如「肺癌與吸煙有關嗎」等)的探究,了解獨立性檢驗(只要求2×2列聯表)的基本思想、方法及初步應用。
(2)通過對典型案例(如「人的體重與身高的關系」等)的探究,了解回歸的基本思想、方法及其初步應用。
本部分內容是學生在初中階段和高中數學必修課程已學習統計的基礎上,通過對典型案例的討論,了解和使用一些常用的統計方法,進一步體會運用統計方法解決實際問題,認識統計方法在決策中的作用。
本部分內容《課程標准》規定的要求都是了解,應採用案例教學的方式,教學中要注意控制難度。本部分的內容公式多,但重點應放在通過統計案例,讓學生了解回歸分析和獨立性檢驗的基本思想及其初步應用,對於其理論基礎不做要求。
教學中,應鼓勵學生經歷數據處理的過程,培養他們對數據的直觀感覺,認識統計方法的特點(如統計推斷可能犯錯誤,估計結果的隨機性),體會統計方法應用的廣泛性。應盡量給學生提供一定的實踐活動機會,可結合數學建模的活動,選擇一個案例,要求學生親自實踐。
教學中,應鼓勵學生使用計算器、計算機等現代技術手段來處理數據,有條件的學校還可運用一些常見的統計軟體解決實際問題。
3.概率
(1)在對具體問題的分析中,理解取有限值的離散型隨機變數及其分布列的概念,認識分布列對於刻畫隨機現象的重要性。
(2)通過實例(如彩票抽獎),理解超幾何分布及其導出過程,並能進行簡單的應用。
(3)在具體情境中,了解條件概率和兩個事件相互獨立的概念,理解n次獨立重復試驗的模型及二項分布,並能解決一些簡單的實際問題。
(4)通過實例,理解取有限值的離散型隨機變數均值、方差的概念,能計算簡單離散型隨機變數的均值、方差,並能解決一些實際問題。
(5)通過實際問題,藉助直觀(如實際問題的直方圖),認識正態分布曲線的特點及曲線所表示的意義。
研究一個隨機現象,就是要了解它所有可能出現的結果和每一個結果出現的概率,分布列正是描述了離散型隨機變數取值的概率規律。因此本部分內容的重點是隨機變數的分布列。為了能正確求出隨機變數對應的概率值,教學中應適當復習必修課所學的概率知識。
在學習了離散型隨機變數的基礎上,通過實例,重點研究二項分布和超幾何分布,這些都是應用廣泛的重要的概率模型。對於這些概率模型的教學,注重通過實例引入,讓學生對這些概率模型直觀認識,不追求形式化的描述。
正態分布在自然界中大量存在,因此正態分布是一個重要的數學模型。但高中階段正態分布的教學要注意把握好教學深度。正態分布涉及到連續型隨機變數的總體密度曲線,本部分教學內容只要求簡單介紹。
結合本部分教學內容特點和教學方式,應引導學生利用所學知識解決一些實際問題。讓學生自行選擇一些實際問題,建立恰當的概率模型,培養學生實踐能力,努力提高學生分析和解決問題的能力。體會數學的實際應用價值,努力提高學生數學學習興趣。
Ⅲ 高中數學知識點總結
《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載
鏈接:
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4
資源目錄
01.集合例題講解.mp4
01.集合進階.mp4
02函數的值域.mp4
03函數的定義域與解析式.mp4
04函數的單調性.mp4
04函數的奇偶性.mp4
05指數運算與指數函數.mp4
07對數運算與對數函數.mp4
08冪函數突破.mp4
09函數零點專題.mp4
10含參二次函數與不等式專題.mp4
11二次函數根的分布專題.mp4
12空間幾何體.mp4
13點線面位置關系進階.mp4
14平行關系突破.mp4
15垂直關系突破.mp4
16空間幾何關系綜合.mp4
17直線方程突破.mp4
18圓的方程突破.mp4
19演算法初步.mp4
20演算法語句與演算法案例.mp4
21數據的收集與頻率分布.mp4
22常用統計量與相關關系.mp4
23古典概型概率.mp4
24幾何概型概率.mp4
25任意角重難點.mp4
26三角函數定義與誘導公式.mp4
27三角函數圖像及性質.mp4
28平面向量幾何運算.mp4
29平面向量代數運算.mp4
30.三角恆等變換.mp4
31.三角函數計算專題.mp4
32.正弦定理與餘弦定理.mp4
33.等差數列突破.mp4
34.等比數列突破.mp4
35.數列通項公式專題 .mp4
36.數列求和公式專題 .mp4
37.二次不等式與分式不等式.mp4
38.線性規劃問題.mp4
39.基本不等式突破.mp4
40.邏輯用語專題.mp4
41.橢圓方程及其幾何性質.mp4
42.雙曲線方程及其性質.mp4
43.拋物線方程及其性質.mp4
44.直線與圓錐曲線綜合.mp4
45.空間向量突破.mp4
46.導數的計算專題.mp4
47.導數的應用.mp4
48.導數的應用(二).mp4
49.定積分與微積分.mp4
50.復數專題.mp4
51.排列組合.mp4
52.二項式定理.mp4
53.隨機變數及其變數.mp4
54回歸分析與獨立性檢驗.mp4
Ⅳ 高中數學必修1知識點總結
馬上就要高考了,現在高中數學讓很多孩子頭疼,很多的家長還有孩子都開始著急,他們都在上一些輔導班,都在採取一對一的輔導,對於一對一的教師都是可以抓住孩子的一些弱點,然後還要了解他們的學習過程,還會幫助學生制定一些計劃,幫助他們提高學習的效率,對於高中數學,一定掌握學習的方法,才可以提高成績.高中數學都要學習什麼知識?
高中數學知識
對於高中數學的一些知識,其實還是很簡單的,只要你抓住學習的方法,從中找到樂趣,讓自己喜歡上數學,對你的學習是很有幫助的,至於一對一輔導,其實還是有用的,好的老師會給你講述好的學習方法,然後讓你考一個好成績,拿到滿意的答卷.
Ⅳ 高中數學知識點,要全的
一、《集合與函數》 內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。 復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。 指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。 函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數; 正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。 兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸; 求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。 冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數, 奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。 二、《三角函數》 三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。 同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割; 中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角, 頂點任意一函數,等於後面兩根除。誘導公式就是好,負化正後大化小, 變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變, 將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值, 餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。 計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。 逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。 萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用; 1加餘弦想餘弦,1 減餘弦想正弦,冪升一次角減半,升冪降次它為范; 三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍; 利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集; 三、《不等式》 解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。 高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。 證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。 直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。 還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。 四、《數列》 等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。 數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換, 取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考: 一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化: 首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。 五、《復數》 虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。 對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。 箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。 代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。 一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。 利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形, 減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。 三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。 輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛, 兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。 六、《排列、組合、二項式定理》 加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。 兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。 排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。 不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。 關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。 七、《立體幾何》 點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。 高中《立體幾何》
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。 方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。 立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。 異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。 八、《平面解析幾何》 有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。 笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。 兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。 三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。 四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。 解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。
Ⅵ 求高中數學所有章節知識點整理
這個你去買本高考復習指導書就行了。。。誰會在網路上整理這個呀?
我當年做了全套的五年高考三年模擬,感覺還不錯。你抽個時間去書店看看,類似的參考書籍很多的,知識點整理的都很全。
然後你根據資料梳理一遍,梳理的時候要做錯題記錄和感覺自己還不是游刃有餘的地方也做記錄,這樣第二遍第三遍復習的時候才能有的放矢提高效率。
Ⅶ 高中數學必修選修知識點全總結
第十二部分 統計與統計案例1.抽樣方法⑴簡單隨機抽樣:一般地,設一個總體的個數為N,通過逐個不放回的方法從中抽取一個容量為n的樣本,且每個個體被抽到的機會相等,就稱這種抽樣為簡單隨機抽樣。註:①每個個體被抽到的概率為 ;②常用的簡單隨機抽樣方法有:抽簽法;隨機數法。⑵系統抽樣:當總體個數較多時,可將總體均衡的分成幾個部分,然後按照預先制定的規則,從每一個部分抽取一個個體,得到所需樣本,這種抽樣方法叫系統抽樣。註:步驟:①編號;②分段;③在第一段採用簡單隨機抽樣方法確定其時個體編號 ;④按預先制定的規則抽取樣本。⑶分層抽樣:當已知總體有差異比較明顯的幾部分組成時,為使樣本更充分的反映總體的情況,將總體分成幾部分,然後按照各部分佔總體的比例進行抽樣,這種抽樣叫分層抽樣。註:每個部分所抽取的樣本個體數=該部分個體數 2.總體特徵數的估計:⑴樣本平均數 ;⑵樣本方差 ;⑶樣本標准差 = ;3.相關系數(判定兩個變數線性相關性): 註:⑴ >0時,變數 正相關; <0時,變數 負相關;⑵① 越接近於1,兩個變數的線性相關性越強;② 接近於0時,兩個變數之間幾乎不存在線性相關關系。4.回歸分析中回歸效果的判定:⑴總偏差平方和: ⑵殘差: ;⑶殘差平方和: ;⑷回歸平方和: - ;⑸相關指數 。註:① 得知越大,說明殘差平方和越小,則模型擬合效果越好;② 越接近於1,,則回歸效果越好。5.獨立性檢驗(分類變數關系):隨機變數 越大,說明兩個分類變數,關系越強,反之,越弱。十、導 數1.導數的意義:曲線在該點處的切線的斜率(幾何意義)、瞬時速度、邊際成本(成本為因變數、產量為自變數的函數的導數). , (C為常數), , .2.多項式函數的導數與函數的單調性:在一個區間上 (個別點取等號) 在此區間上為增函數.在一個區間上 (個別點取等號) 在此區間上為減函數.3.導數與極值、導數與最值:(1)函數 在 處有 且「左正右負」 在 處取極大值;函數 在 處有 且「左負右正」 在 處取極小值.注意:①在 處有 是函數 在 處取極值的必要非充分條件.②求函數極值的方法:先找定義域,再求導,找出定義域的分界點,列表求出極值.特別是給出函數極大(小)值的條件,一定要既考慮 ,又要考慮驗「左正右負」(「左負右正」)的轉化,否則條件沒有用完,這一點一定要切記.③單調性與最值(極值)的研究要注意列表!(2)函數 在一閉區間上的最大值是此函數在此區間上的極大值與其端點值中的「最大值」;函數 在一閉區間上的最小值是此函數在此區間上的極小值與其端點值中的「最小值」;注意:利用導數求最值的步驟:先找定義域 再求出導數為0及導數不存在的的點,然後比較定義域的端點值和導數為0的點對應函數值的大小,其中最大的就是最大值,最小就為最小值.4.應用導數求曲線的切線方程,要以「切點坐標」為橋梁,注意題目中是「處L」還是「過L」,對「二次拋物線」過拋物線上一點的切線 拋物線上該點處的切線,但對「三次曲線」過其上一點的切線包含兩條,其中一條是該點處的切線,另一條是與曲線相交於該點.5.注意應用函數的導數,考察函數單調性、最值(極值),研究函數的性態,數形結合解決方程不等式等相關問題.十一、概率、統計、演算法第十六部分 理科選修部分1. 排列、組合和二項式定理⑴排列數公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),當m=n時為全排列 =n(n-1)(n-2)…3.2.1=n!;⑵組合數公式: (m≤n), ;⑶組合數性質: ;⑷二項式定理: ①通項: ②注意二項式系數與系數的區別;⑸二項式系數的性質:①與首末兩端等距離的二項式系數相等;②若n為偶數,中間一項(第 +1項)二項式系數最大;若n為奇數,中間兩項(第 和 +1項)二項式系數最大;③ (6)求二項展開式各項系數和或奇(偶)數項系數和時,注意運用賦值法。2. 概率與統計⑴隨機變數的分布列:①隨機變數分布列的性質:pi≥0,i=1,2,…; p1+p2+…=1;②離散型隨機變數:X x1 X2 … xn …P P1 P2 … Pn …期望:EX= x1p1 + x2p2 + … + xnpn + … ; 方差:DX= ;註: ;③兩點分布: X 0 1 期望:EX=p;方差:DX=p(1
Ⅷ 高中數學知識點清單
高中數學基礎知識梳理(數學小飛俠)
鏈接:https://pan..com/s/1IXqAIoe__3VdXS8yHKjxOw
若資源有問題,歡迎追問~