1. 初三數學圓知識點有哪些
一、圓的概念
集合形式的概念:
1、圓可以看作是到定點的距離等於定長的點的集合。
2、圓的外部:可以看作是到定點的距離大於定長的點的集合。
3、圓的內部:可以看作是到定點的距離小於定長的點的集合。
軌跡形式的概念:
1、圓:到定點的距離等於定長的點的軌跡就是以定點為圓心,定長為半徑的圓。
固定的端點O為圓心。連接圓上任意兩點的線段叫做弦,經過圓心的弦叫直徑。圓上任意兩點之間的部分叫做圓弧,簡稱弧。
2、垂直平分線:到線段兩端距離相等的點的軌跡是這條線段的垂直平分線。
3、角的平分線:到角兩邊距離相等的點的軌跡是這個角的平分線。
4、到直線的距離相等的點的軌跡是:平行於這條直線且到這條直線的距離等於定長的兩條直線。
5、到兩條平行線距離相等的點的軌跡是:平行於這兩條平行線且到兩條直線距離都相等的一條直線。
二、點、直線、圓和圓的位置關系
1、點和圓的位置關系
①點在圓內<=>點到圓心的距離小於半徑。
②點在圓上<=>點到圓心的距離等於半徑。
③點在圓外<=>點到圓心的距離大於半徑。
2、過三點的圓不在同一直線上的三個點確定一個圓。
3、外接圓和外心經過三角形的三個頂點可以做一個圓,這個圓叫做三角形的外接圓。外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心。
4、直線和圓的位置關系
相交:直線和圓有兩個公共點叫這條直線和圓相交,這條直線叫做圓的割線。
相切:直線和圓有一個公共點叫這條直線和圓相切,這條直線叫做圓的切線,這個點叫做切點。
相離:直線和圓沒有公共點叫這條直線和圓相離。
5、直線和圓位置關系的性質和判定
如果⊙O的半徑為r,圓心O到直線l的距離為d,那麼:
①直線l和⊙O相交<=>d<>;
②直線l和⊙O相切<=>d=r;
③直線l和⊙O相離<=>d>r。
三、正多邊形和圓
1、正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2、正多邊形與圓的關系:
(1)將一個圓n(n≥3)等分(可以藉助量角器),依次連結各等分點所得的多邊形是這個圓的內接正多邊形。
(2)這個圓是這個正多邊形的外接圓。
3、正多邊形的有關概念:
(1)正多邊形的中心——正多邊形的外接圓的圓心。
(2)正多邊形的半徑——正多邊形的外接圓的半徑。
(3)正多邊形的邊心距——正多邊形中心到正多邊形各邊的距離。
(4)正多邊形的中心角——正多邊形每一邊所對的外接圓的圓心角。
4、正多邊形性質:
(1)任何正多邊形都有一個外接圓。
(2)正多邊形都是軸對稱圖形,當邊數是偶數時,它又是中心對稱圖形,正n邊形的對稱軸有n條。(3)邊數相同的正多邊形相似。
四、有關圓的公式
(1)給直徑求圓的周長:c=πd。
(2)給半徑求圓的周長:c=2πr。
(3)給直徑求圓的半徑:r=d÷2。
(4)給周長求圓的半徑:r=c÷π÷2。
(5)給半徑求圓的直徑:d=2r。
(6)給周長求圓的直徑:d=c÷π。
(7)給直徑求半圓周長:c=πr+d。
(8)給半徑求半圓周長:c=πr+2r。
(9)給半徑求圓的面積:s=πr²。
(10)給直徑求圓的面積:s=π(d÷2)²。
(11)給周長求圓的面積:s=π(c÷π÷2)²。
(12)給半徑求半圓面積:s=πr²÷2。
(13)給直徑求半圓面積:s=π(d÷2)²÷2。
(14)給大圓和小圓半徑求圓環面積:s=π(R²-r²)。
(15)給大圓和小圓半徑求圓環面積:s=πR²-πr²。
2. 小學數學圓的知識點
數學圓也是一個很重要的知識點,今天就來總結一下小學階段圓的一些知識點~
π是一個無限不循環小數,范圍在3.1415926~3.1415927之間,一般計算取3.14。圓還有一些易錯的知識點,要將概念記憶清楚,比如:任意倆條半徑都能組成一條直徑,這說法是錯誤的。通過圓心並且兩端都在圓上的線段叫做直徑。
3. 高中數學圓的知識點有哪些
https://wenku..com/view/87ce9f7331b765ce050814ec.html
網路文庫中 有許多整理好的
4. 小學五年級數學關於圓的知識點
、圓:平面上到定點的距離等於定長的所有點組成的圖形叫做圓。
2、圓心:圓任意兩條對稱軸的交點為圓心。 註:圓心一般符號O表示
3、直徑:通過圓心,並且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
4、半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
5、圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸
6、在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。
7、圓的半徑或直徑決定圓的大小,圓心決定圓的位置。
8、圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。
9、圓周率:圓的周長與直徑的比值叫做圓周率。
10、圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。
11、直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。
12、圓的面積公式:圓所佔平面的大小叫做圓的面積。πr^2;,用字母S表示。
13、在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
14、在同圓或等圓中,如果兩條弧相等,那麼他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。
二、周長計算公式
(1)已知直徑:C=πd
(2)已知半徑:C=2πr
(3)已知周長:D=c/π
(4)圓周長的一半:1/2周長(曲線)
(5)半圓的周長:1/2周長+直徑(π÷2+1)
三、面積計算公式:
(1)已知半徑:S=πr2
(2)已知直徑:S=π(d/2)2
(3)已知周長:S=π[c÷(2π)]2
5. 六年級數學圓的知識歸納
1、圓:圓是由一條曲線圍成的平面圖形。
(長方形、梯形等都是由幾條線段圍成的平面圖形)
2、半徑:一端在圓心,一端在圓上的線段叫半徑。在同一圓里,半徑有無數條,條條都相等。
3、直徑:通過圓心,兩端都在圓上的線段叫直徑。在同一圓里,直徑有無數條,條條都相等。
在同一圓里,直徑長是半徑長的2倍。(d=2r, r=d÷2)
4、圓是軸對稱圖形,有無數條對稱軸,對稱軸就是直徑。
5、圓心決定圓的位置,半徑決定圓的大小。
6、正方形里最大的圓。兩者聯系:邊長=直徑
7、長方形里最大的圓。兩者聯系:寬=直徑
8、直徑是圓里最長的線段
11、半圓的周長等於圓周長的一半加一條直徑。
14、半圓的面積是圓面積的一半。S半=πX r的平方÷2
15、大小兩個圓比較,半徑的倍數=直徑的倍數=周長的倍數,面積的倍數=半徑的倍數2倍
16、周長相等的平面圖形中,圓的面積最大;面積相等的平面圖形中,圓的周長最短。
17、三個頂點都在圓上,且有一條邊是直徑的三角形一定是直角三角形。
應用這條規律可以找出圓的直徑和圓心。
(1)以圓上的一個點為頂點畫一個直角
(2)連接角的兩邊與圓的兩個交點,這條就是直徑
6. 高中數學關於圓的所有知識總結
在「普及的基礎上不斷提高」的方針指引下,全國數學競賽活動方興未艾,特別是連續幾年我國選手在國際數學奧林匹克中取得了可喜的成績,使廣大中小學師生和數學工作者為之振奮,熱忱不斷高漲,數學競賽活動進入了一個新的階段。為了使全國數學競賽活動持久、健康、逐步深入地開展,應廣大中學師生和各級數學奧林匹克教練員的要求,特製定《數學競賽大綱》以適應當前形勢的需要。 本大綱是在國家教委制定的全日制中學「數學教學大綱」的精神和基礎上制定的。《教學大綱》在教學目的一欄中指出:「要培養學生對數學的興趣,激勵學生為實現四個現代化學好數學的積極性」。具體作法是:「對學有餘力的學生,要通過課外活動或開設選修課等多種方式,充分發展他們的數學才能」,「要重視能力的培養,著重培養學生的運算能力、邏輯思維能力和空間想像能力,要使學生逐步學會分析、綜合、歸納、演繹、概括、抽象、類比等重要的思想方法。同時,要重視培養學生的獨立思考和自學的能力」。 《教學大綱》中所列出的內容,是教學的要求,也是競賽的最低要求。在競賽中對同樣的知識內容的理解程度與靈活運用能力,特別是方法與技巧掌握的熟練程度,有更高的要求。而「課堂教學為主,課外活動為輔」是必須遵循的原則。因此,本大綱所列的課外講授內容必須充分考慮學生的實際情況,分階段、分層次讓學生逐步地去掌握,並且要貫徹「少而精」的原則,這樣才能加強基礎,不斷提高。 一試 全國高中數學聯賽的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。 二試 1、平面幾何 基本要求:掌握初中數學競賽大綱所確定的所有內容。 補充要求:面積和面積方法。 幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。 幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點,重心。三角形內到三邊距離之積最大的點,重心。 幾何不等式。 簡單的等周問題。了解下述定理: 在周長一定的n邊形的集合中,正n邊形的面積最大。 在周長一定的簡單閉曲線的集合中,圓的面積最大。 在面積一定的n邊形的集合中,正n邊形的周長最小。 在面積一定的簡單閉曲線的集合中,圓的周長最小。 幾何中的運動:反射、平移、旋轉。 復數方法、向量方法。 平面凸集、凸包及應用。 2、代數 在一試大綱的基礎上另外要求的內容: 周期函數與周期,帶絕對值的函數的圖像。 三倍角公式,三角形的一些簡單的恆等式,三角不等式。 第二數學歸納法。 遞歸,一階、二階遞歸,特徵方程法。 函數迭代,求n次迭代,簡單的函數方程。 n個變元的平均不等式,柯西不等式,排序不等式及應用。 復數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。 圓排列,有重復的排列與組合,簡單的組合恆等式。 一元n次方程(多項式)根的個數,根與系數的關系,實系數方程虛根成對定理。 簡單的初等數論問題,除初中大綱中所包括的內容外,還應包括無窮遞降法,同餘,歐幾里得除法,非負最小完全剩餘類,高斯函數,費馬小定理,歐拉函數,孫子定理,格點及其性質。 3、立體幾何 多面角,多面角的性質。三面角、直三面角的基本性質。 正多面體,歐拉定理。 體積證法。 截面,會作截面、表面展開圖。 4、平面解析幾何 直線的法線式,直線的極坐標方程,直線束及其應用。 二元一次不等式表示的區域。 三角形的面積公式。 圓錐曲線的切線和法線。 圓的冪和根軸。 5、其它 抽屜原理。 容斤原理。 極端原理。 集合的劃分。 覆蓋。 參考資料: http://post..com/f?kz=10698381
7. 數學圓,知識點
1、圓是定點的距離等於定長的點的集合
2、圓的內部可以看作是圓心的距離小於半徑的點的集合
3、圓的外部可以看作是圓心的距離大於半徑的點的集合
4、同圓或等圓的半徑相等
5、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
6、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
7、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
9、定理不在同一直線上的三點確定一個圓。
10、垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
11、推論1:
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
12、推論2:圓的兩條平行弦所夾的弧相等
13、圓是以圓心為對稱中心的中心對稱圖形
14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
15、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
16、定理:一條弧所對的圓周角等於它所對的圓心角的一半
17、推論:1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
18、推論:2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
19、推論:3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
20、定理: 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
21、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
22、切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線
23、切線的性質定理圓的切線垂直於經過切點的半徑
24、推論1 經過圓心且垂直於切線的直線必經過切點
25、推論2 經過切點且垂直於切線的直線必經過圓心
26、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
27、圓的外切四邊形的兩組對邊的和相等
28、弦切角定理:弦切角等於它所夾的弧對的圓周角
29、推論:如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
30、相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等
31、推論:如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
32、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
33、推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
34、如果兩個圓相切,那麼切點一定在連心線上
35、①兩圓外離 d>R+r
②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r)
⑤兩圓內含 d<R-r(R>r)
36、定理:相交兩圓的連心線垂直平分兩圓的公共弦
37、定理:把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
38、定理: 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
39、正n邊形的每個內角都等於(n-2)×180°/n
40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
41、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
42、正三角形面積√3a/4 a表示邊長
43、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,
因此k (n-2)180°/n=360°化為(n-2)(k-2)=4
44、弧長計算公式:L=n兀R/180
45、扇形面積公式:S扇形=n兀R^2/360=LR/2
46、內公切線長= d-(R-r) 外公切線長= d-(R+r)
8. 初三數學圓知識點
圓周角的度數等於它所對的弧的度數的一半。
弦切角的度數等於它所夾的弧的度數的一半。
圓內角的度數等於這個角所對的弧的度數之和的一半。
圓外角的度數等於這個等於這個角所截兩段弧的度數之差的一半。
1.圓的周長C=2πr=πd
2.圓的面積S=πr^2;
3.扇形弧長l=nπr/1801.圓是以圓心為對稱中心的中心對稱圖形;圍繞圓心旋轉任意一個角度α,都能夠與原來的重合.
2.頂點在圓心的角叫做圓心角.圓心到弦的距離叫做弦心距.
圓冪定理(相交弦定理、切割線定理及其推論(割線定理)統稱為圓冪定理)
切線長定理
垂徑定理
圓周角定理
弦切角定理
四圓定理
3.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等.
4.在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等.
5.把整個圓周等分成360份,每一份弧是1°的弧.圓心角的度數和它所對的弧的度數相等.
6.圓是中心對稱圖形,即圓繞其對稱中心(圓心)旋轉180°後能夠與原來圖形重合,這一性質不難理解.圓和其他中心對稱圖形不同,它還具有旋轉不變性,即圍繞圓心旋轉任意一個角度,都能夠與原來的圖形重合.
7.垂徑定理
垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧
8.(1)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
(2)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
(3)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
9.圓的兩條平行弦所夾的弧相等
10.(1)一條弧所對的圓周角等於它所對的圓心角的一半.
(2)同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等.
(3)半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑.
(4)如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形.
11.(1)圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸.
(2)垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧.
(3)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧.
(4)弦的垂直平分線經過圓心,並且平分弦所對的兩條弦.
(5)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧.
(6)圓的兩條平行弦所夾的弧度數相等.
12.圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸.
垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧.
13.平分弦(不是直徑)的直徑垂直與弦,並且平分弦所對的兩條弧.
14.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等,所對的弦的弦心距也相等.
15.在同圓或等圓中,相等的弦所對的弧相等,所對的圓心角相等,所對的弦的弦心距也相等.
16.同一個弧有無數個相對的圓周角.
17.弧的比等於弧所對的圓心角的比.
18.圓的內接四邊形的對角互補或相等.
19.不在同一條直線上的三個點能確定一個圓.
20.直徑是圓中最長的弦.
21.一條弦把一個圓分成一個優弧和一個劣弧