A. 六年級數學上冊所有圓的公式
與圓相關的公式:
1、圓面積:S=πr²,S=π(d/2)²。(d為直徑,r為半徑)。
2、半圓的面積:S半圓=(πr^2)/2。(r為半徑)。
3、圓環面積:S大圓-S小圓=π(R^2-r^2)(R為大圓半徑,r為小圓半徑)。
4、圓的周長:C=2πr或c=πd。(d為直徑,r為半徑)。
5、半圓的周長:d+(πd)/2或者d+πr。(d為直徑,r為半徑)。
圓
是一種幾何圖形。根據定義,通常用圓規來畫圓。 同圓內圓的直徑、半徑的長度永遠相同,圓有無數條半徑和無數條直徑。圓是軸對稱、中心對稱圖形。對稱軸是直徑所在的直線。 同時,圓又是「正無限多邊形」,而「無限」只是一個概念。圓可以看成由無數個無限小的點組成的正多邊形,當多邊形的邊數越多時,其形狀、周長、面積就都越接近於圓。
B. 六年級上冊數學做一張思維導圖,整理圓的知識,幫幫我吧(是2014年的新教材)
把你的這冊書分為代數和幾何兩部分,代數就是有理數什麼的,集合就是三角形什麼的,然後再分為每個單元你所學的內容。就很簡單了。
整理圓的知識:
連接圓心和圓上的任意一點的線段叫做半徑(radius)。
通過圓心並且兩端都在圓上的線段叫做直徑(diameter)。
連接圓上任意兩點的線段叫做弦(chord)。最長的弦是直徑。
圓的周長C=2πr=或C=πd。
圓的面積S=πr^2。
圓的直徑 d=2r。
把一個圓平均分成若干份,再拼成一個近似的長方形這個長方形的周長減去圓的直徑就是原來圓的周長。
C. 六年級上冊關於圓的數學題(有圖)
一個等邊三角形,變長3.14cm,有一個圓和三角形周長相等,求圓的面積
D. 六年級上冊數學知識點
六年級數學上冊期末復習要點(人教版)
第1單元 分數乘法
(二)分數乘法的意義
1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。「分數乘整數」指的是第二個因數必須是整數,不能是分數。
2、一個數乘分數的意義就是求一個數的幾分之幾是多少。「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)
(二)分數乘法計演算法則
1、分數乘整數的運演算法則是:分子與整數相乘,分母不變.
(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。
2、分數乘分數的運演算法則是:用分子相乘的積做分子,分母相乘的積做分母(分子乘分子,分母乘分母)。
(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。
(2)分數化簡的方法是:分子、分母同時除以它們的最大公因數。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)。
(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。
(三)積與因數的關系:
一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b>1時,c>a。
一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b<1時,c<a(b<0)。
一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b=1時,c=a。
在進行因數與積的大小比較時,要注意因數為0時的特殊情況。
(四)分數乘法混合運算
1、分數乘法混合運算順序與整數相同,先乘、除後加、減,有括弧的先算括弧裡面的,再算括弧外面的。
2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。
乘法交換律:a×b=bXa乘法結合律:(a×b)Xc=a×(b×c)
乘法分配律:a×(b±c)=a×b土a×c
(五)倒數的意義:乘積為1的兩個數互為倒數。
1、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。(必須說清誰是誰的倒數)
2、判斷兩個數是否互為倒數的唯一標準是:兩數相乘的積是否為「1」。例如:a×b=1則a、b互為倒數。
3、求倒數的方法:
①求分數的倒數:交換分子、分母的位置。
②求整數的倒數:整數分之1。
③求帶分數的倒數:先化成假分數,再求倒數。
④求小數的倒數:先化成分數再求倒數。
內容比較多,完整列印版請見網路文庫:人教版六年級上冊數學期末知識要點
E. 北師大數學六年級上 所有 圓的重要概念和計算公式 急啊
我也想問,咋辦????
F. 六年級上冊數學圓
1.連接圓心到圓上任意一點的線段叫做( ),在同一個圓里,直徑的長度是半徑的( ),半徑長度是直徑的( ).
2.圓周率是圓的( )與( )的比值.
3.一條鐵絲長31.4cm,用它圍成一個最大的圓,圓的面積是( ).
4.用一個長6dm,寬4dm的長方形,剪下一個最大的圓,這個圓的面積是( ),長方形還剩下( )平方分米.
5.甲圓的半徑等於乙圓直徑,乙圓直徑是甲圓的幾分之幾,乙圓周長是甲圓的幾分之幾,乙圓面積是甲圓面積的比是( ):( ).
6.周長相等的長方形、正方形和圓中,面積最大的是( ),最小的是( ).
7.圓的半徑增加1cm,它的周長增加了( )厘米.
判斷題
1.圓里有無數條直徑,無數條半徑( )
應用題
地球赤道的半徑大約是0.65萬千米,繞赤道一周有多少萬千米?(得數保留整萬千米)
G. 六年級上冊數學百分數和圓的知識點(簡單一點)
六年級的百分數,是關於百分比的范圍:銀行利率問題、百分率(發芽率、出粉率、出勤率等)等,這些都是關於:部分量占總體百分之幾的計算。(部分量除以總量乘以百分之百=百分比)
園:圓的周長/圓的直徑=圓周率 圓的面積=圓周長的一半乘以半徑=半徑的平方乘以圓周率
H. 六年級上冊數學日記《圓的認識》
篇一:學習圓的周長
今天早上老師要教我們怎樣算周長。
老師先拿出圓片說:「每個人先畫一個圓片或拿出一個圓形的東西,想辦法量出它的周長。」於是,我們開始討論了。我們先想辦法,再動手操作,一個同學馬上想出了辦法,便說:「我有辦法了。先在圓片上做一個記號,再從那個記號為點,向右在尺子上滾動一周,做一個記號,量出的長度就是這個圓片的周長了。」我馬上又想到了一個辦法,我說:「我也有辦法,我們用紙條在圓片上繞一周,做一個記號,然後量出紙條長度,就是圓的周長了。」
過了一會,老師聽我們講出各自的辦法之後便說,這樣有些辦法不免會有些誤差,我來教你們怎樣算周長吧!
「圓的周長要用到直徑,圓的周長總是直徑的3倍多一些,實際上,圓的周長除以直徑是一個固定的數,我們把它叫做圓周率,用字母π表示,計算時通常取3.14,所以圓的周長=直徑×圓周率(3.14),也就是c=πd或c=2πr。老師說完又舉了例子。
我們學會了怎樣算圓周率(圓的周長)。
篇二:關於圓的數學日記
老師就讓我們將學具中的圓折一折看看能從中發現什麼?我心裡奇怪了:圓就是一個圓,有什麼好折的呢?原來讓我們折圓是為了了解圓的對稱啊!
我們又拿出剪刀將一個圓剪了下來,再平均剪成八份。老師讓我們想一想如何球出圓的面積來。同學們有的說用π乘、有的說用半徑求……大家七嘴八舌,課堂好不熱鬧。最後老師讓我們把剪好的八份近似於扇形的紙片試著拼成一個別的圖形。我拼的是一個近似於平行四邊形的圖形。
隨後,我們又分別將圓平均分成了16份、32份,再分別將剪好的小扇形拼成一個多邊形。這時候我發現,平均分的數量越多,拼成的圖形越接近長方形。
因為:長方形的面積=長×寬
所以:圓的面積=C/2×r=2πr/2×r=πr2
經過了圖形的分解再組合,我知道了怎麼求圓的面積啦!數學好神奇喲~
篇三:圓與正方形的奧秘
周末,我和爸爸一起去超市買卧室門外的小地毯,到了超市,爸爸選中了一種花色,這種花色有兩種形狀:圓形和正方形,服務員告訴我們,這兩種地毯的周長都是一樣的,是12.56dm。爸爸說:「反正大小都一樣的,你來挑吧!」我連忙喊道:「我來算算。」說著,我向服務員要了紙和筆,按老師教過的方法,算起圓的面積。
要算圓的面積先求圓的半徑:12.56÷3.14÷2=2分米,面積:3.14×2×2=12.56平方分米.
正方形的邊長:12.56÷4=3.14分米,面積:3.14×3.14=9.8596平方分米.
「以即使圓和正方形的周長相等,它們的面積也不一定相等,買圓形地毯比正方形地毯要劃算。」我滔滔不絕地給爸爸講著,爸爸聽得目瞪口呆,一旁的服務員也誇我聰明,我別提有多高興了。
生活中真是處處有數學,處處有學問啊!
篇四:生活中的圓
今天,我在寫作業的時候發現了一個問題。那就是生活中的圓。
什麼叫做生活中的圓,那就是在生活中有哪些關於圓的周長、圓的面積還有圓的對稱軸之類的東西,也就是圓的知識在生活中的應用。
在我們的現實生活中有許多地方要應用到圓的周長,只要你認真觀察,就肯定能發現的,雖然我不知道大家知道多少關於圓的周長的東西,今天我就把我所知的一點皮毛告訴大家,據我所知,車輪走一圈的路程就是這個圓的周長;時鍾的分針針尖走過的路線是鍾面的周長;圓形餐桌圍的花布邊的長度也是餐桌面的周長;人們經常戴在手上的手鐲也含有圓的周長的知識……真的是太多太多了,我只說了一點剩下的就由你這位高手去觀察了。
圓面積其實也很簡單,只要你會觀察,眼睛亮一點就可以了。圓桌的大小也就是圓桌的面積;時針掃過的面的大小也就是這個鍾的面積;還有就是可能大家很少見,那就是用繩子拴住牛吃草,求牛吃草的最大范圍,也就是求圓的面積,……。這是我所歸納的。
還有,圓有無數條對稱軸,切記!
我知道的就這些,不算多,所謂:「天外有山,人外有人」請指教。
其實生活中有許多數學,看你仔細不仔細。Do you know?
篇五:數學日記之圓的面積
之前,我們探索了圓的周長,現在我們繼續我們的探索之旅。圓有周長就"理所當然"會有面積。現在我們探索我們的圓的周長的"兄弟"圓的面積。
之前,圓的周長是關於直徑的,那"兄弟"面積就是關於直徑的"老弟"半徑的了。我們看著書上的探究活動,我們拿出數學用具,裡面有兩個圓形,一個圓是把一個圓分成了12份,一個圓是把一個圓分成了24份。我把12份的剪了下來,按照書上,我們拼成了一個像平行四邊形的圖形,我很奇怪,繼續把24份的也拼成了像長方形的圖形,我慢慢的理解到了:拼成的平行四邊形的高相當於圓的半徑,它的底相當於圓周長的一半。而長方形的長相當於圓周長的一半,它的寬相當於圓的半徑。從我的理解中,我推測出了圓的面積計算公式:π乘r的平方就是圓的面積了。在原來的基礎中,我舉一反三,列出了考試時考圓的面積的三種方式:1.已知半徑求面積,這一種是最簡單的,直接π乘r的平方就行了。2.已知直徑求面積,這一種先要求出半徑(直徑除以2=半徑),再用半徑的平方乘π就行了。3.已知周長就面積,這一道題就有點困難,但只要細心就能做好。先求直徑:周長除以π,再求半徑:直徑除以2,再π乘r的平方就行了。
數學我們要學會舉一反三,我們也要學會自己動手推出公式,這樣數學才會成為你的知心朋友。
篇六:圓的周長
我們剛剛學習了圓的認識(一)、(二),知道了圓的許多知識,並且由圓的認識了解到了圓周長的應用,能聯系生活實際解決問題,我們去了解一下圓周長的知識!
剛開始學圓的周長時,知道了能用滾動法和繞線法來量出圓的周長,探究出了圓的周長總是直徑3倍多一些,實際上,圓的周長除以直徑的商是一個固定的數,我們把它叫做圓周率,用字母π表示,計算時,通常取3.14。我們就得出一個公式:如果用C表示的周長,那麼C=πd或C=2πr也就是圓的周長=圓周率×直徑。圓的周長有3個應用:1.已知d求C=πd 2.已知r求C,先求d再求C 3.已知C求d d=C÷π 已知C求r 先求d 再求r。
已知d求C:一個圓的直徑是5.5分米, 求這個圓的周長,那就用π3.14×直徑5.5=17.27dm.
已知r求C:汽車車輪的半徑為0.3米,它滾動1圈前進多少米?滾動1000圈前進多少米?它滾動一圈前進多少米?也就是求這個輪子的周長,先求出直徑:0.3×2=0.6m,然後求一圈的周長:3.14×0.6=1.884m 最後求出1000圈前進多少米:1.884×1000=1884m。
已知C求d:花壇的的周長是62.8m。你能求出這個圓形花壇的直徑嗎?周長6.28÷π3.14=d 2m
已知C求r:一個圓的周長是25.12㎝,求這個圓的半徑,那麼先求這個圓的直徑:用周長25.12÷π3.14=d 8㎝ 再求半徑:8÷2=4㎝。
這是圓周長的四大典型例題,圓的周長,除以直徑是一個固定的數,π是≈3.14的。
還有一種類型的題目:下圖是一個一面靠牆,另一面用竹籬笆圍成的半圓形養雞場,這個半圓的直徑為6米,籬笆長多少米?這題是求半圓的周長,一面靠牆的就不用算上籬笆,也就是求圓周長的一半,就用直徑6m×π3.14=圓的周長 18.84m 再算圓周長的一半:18.84÷2=9.42m。
這就是有趣的圓的周長,圓周長的一半,讓數學與生活緊緊地聯系在一起,原來數學也是蘊藏著生活的奧秘!