當前位置:首頁 » 基礎知識 » 數學知識面
擴展閱讀
書法基礎不好怎麼辦 2025-01-10 20:57:01
人中龍鳳是什麼歌詞 2025-01-10 20:53:31
同學聊聊天有什麼意義 2025-01-10 20:21:56

數學知識面

發布時間: 2022-03-08 13:31:00

① 數學常識中什麼是點線面

點、線、面是幾何學里的概念,是平面空間的基本元素。點的哲學含義:點就是宇宙的起源,沒有任何體積,被擠在宇宙的"邊緣";點是所有圖形的基礎。線的哲學含義:線就是由無數個點連接而成的。面的哲學含義:面就是由無數條線組成的。在幾何學、拓撲學以及數學的相關分支中,一個空間中的點用於描述給定空間中一種特別的對象,在空間中有類似於體積,面積,長度, 或其他高維類似物。一個點是一個零維度對象,點作為最簡單的幾何概念 通常作為幾何、 物理、矢量圖形和其他領域中的最基本的組成部分。點成線,線成面,點是幾何中最基本的組成部分。在通常的意義下,點被看作零維對象,線被看作一維對象,面被看作二維對象。點動成線,線動成面。有序的點的構成:這里主要指點的形狀與面積、位置或方向等諸因素,以規律化的形式排列構成,或相同的重復,或有序的漸變等。點往往通過疏與密的排列而形成空間中圖形的表現需要,同時,豐富而有序的點構成,也會產生層次細膩的空間感,形成三次元。在構成中,點與點形成了整體的關系,其排列都與整體的空間相結合,於是,點的視覺趨向線與面,這是點的理性化構成方式。從線性上講,線具有整齊端正的幾何線,還具有徒手畫的自由線。物象本身並不存在線,面的轉折形成了線,形式由線來界定的,也就是我們說的輪廓線,它是藝術家對物質的一種概括性的形式表現。

② 數學常識

定義域不同,情況不同

③ 數學的基礎知識是什麼

數學的基礎知識如下:

如果說數學的基礎知識,首先要看你處於哪個數學學習階段(初等數學,高等數學,或者數學研究方向)。

初等數學的話,基礎知識就是記憶使用各種定理定義(代數:一元二元一次二次方程,一元二元一次二次函數等,幾何:平面幾何,簡單立體幾何等)。

高等數學的話,基礎知識就是利用已知嘗試推演定理(各種初等函數的擴展,解析幾何,向量,立體幾何,微積分,統計學等)。

數學的簡介:

數學[英語:mathematics,源自古希臘語μθημα(máthēma);經常被縮寫為math或maths],是研究數量、結構、變化、空間以及信息等概念的一門學科。

數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。

在人類歷史發展和社會生活中,數學發揮著不可替代的作用,同時也是學習和研究現代科學技術必不可少的基本工具。

④ 什麽是數學知識

就是和數學有關的知識!
下面分別解釋什麼是數學,什麼是知識。
****************************************************************************
數學:
數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」

自古以來,多數人把數學看成是一種知識體系,是經過嚴密的邏輯推理而形成的系統化的理論知識總和,它既反映了人們對「現實世界的空間形式和數量關系(恩格斯)」的認識(恩格斯),又反映了人們對「可能的量的關系和形式」的認識。數學既可以來自現實世界的直接抽象,也可以來自人類思維的勞動創造。

從人類社會的發展史看,人們對數學本質特徵的認識在不斷變化和深化。「數學的根源在於普通的常識,最顯著的例子是非負整數。"歐幾里德的算術來源於普通常識中的非負整數,而且直到19世紀中葉,對於數的科學探索還停留在普通的常識,」另一個例子是幾何中的相似性,「在個體發展中幾何學甚至先於算術」,其「最早的徵兆之一是相似性的知識,」相似性知識被發現得如此之早,「就象是大生的。」因此,19世紀以前,人們普遍認為數學是一門自然科學、經驗科學,因為那時的數學與現實之間的聯系非常密切,隨著數學研究的不斷深入,從19世紀中葉以後,數學是一門演繹科學的觀點逐漸占據主導地位,這種觀點在布爾巴基學派的研究中得到發展,他們認為數學是研究結構的科學,一切數學都建立在代數結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數學是研究模式的學問,數學家懷特海(A. N. Whiiehead,186----1947)在《數學與善》中說,「數學的本質特徵就是:在從模式化的個體作抽象的過程中對模式進行研究,」數學對於理解模式和分析模式之間的關系,是最強有力的技術。」1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統中存在的缺憾,這樣,人們又想到了數學是經驗科學的觀點,著名數學家馮·諾伊曼就認為,數學兼有演繹科學和經驗科學兩種特性。

對於上述關於數學本質特徵的看法,我們應當以歷史的眼光來分析,實際上,對數本質特徵的認識是隨數學的發展而發展的。由於數學源於分配物品、計算時間、丈量土地和容積等實踐,因而這時的數學對象(作為抽象思維的產物)與客觀實在是非常接近的,人們能夠很容易地找到數學概念的現實原型,這樣,人們自然地認為數學是一種經驗科學;隨著數學研究的深入,非歐幾何、抽象代數和集合論等的產生,特別是現代數學向抽象、多元、高維發展,人們的注意力集中在這些抽象對象上,數學與現實之間的距離越來越遠,而且數學證明(作為一種演繹推理)在數學研究中占據了重要地位,因此,出現了認為數學是人類思維的自由創造物,是研究量的關系的科學,是研究抽象結構的理論,是關於模式的學問,等等觀點。這些認識,既反映了人們對數學理解的深化,也是人們從不同側面對數學進行認識的結果。正如有人所說的,「恩格斯的關於數學是研究現實世界的數量關系和空間形式的提法與布爾巴基的結構觀點是不矛盾的,前者反映了數學的來源,後者反映了現代數學的水平,現代數學是一座由一系列抽象結構建成的大廈。」而關於數學是研究模式的學問的說法,則是從數學的抽象過程和抽象水平的角度對數學本質特徵的闡釋,另外,從思想根源上來看,人們之所以把數學看成是演繹科學、研究結構的科學,是基於人類對數學推理的必然性、准確性的那種與生俱來的信念,是對人類自身理性的能力、根源和力量的信心的集中體現,因此人們認為,發展數學理論的這套方法,即從不證自明的公理出發進行演繹推理,是絕對可靠的,也即如果公理是真的,那麼由它演繹出來的結論也一定是真的,通過應用這些看起來清晰、正確、完美的邏輯,數學家們得出的結論顯然是毋庸置疑的、無可辯駁的。

事實上,上述對數學本質特徵的認識是從數學的來源、存在方式、抽象水平等方面進行的,並且主要是從數學研究的結果來看數學的本質特徵的。顯然,結果(作為一種理論的演繹體系)並不能反映數學的全貌,組成數學整體的另一個非常重要的方面是數學研究的過程,而且從總體上來說,數學是一個動態的過程,是一個「思維的實驗過程」,是數學真理的抽象概括過程。邏輯演繹體系則是這個過程的一種自然結果。在數學研究的過程中,數學對象的豐富、生動且富於變化的一面才得以充分展示。波利亞(G. Poliva,1888一1985)認為,「數學有兩個側面,它是歐幾里德式的嚴謹科學,但也是別的什麼東西。由歐幾里德方法提出來的數學看來象是一門系統的演繹科學,但在創造過程中的數學看來卻像是一門實驗性的歸納科學。」弗賴登塔爾說,「數學是一種相當特殊的活動,這種觀點「是區別於數學作為印在書上和銘,記在腦子里的東西。」他認為,數學家或者數學教科書喜歡把數學表示成「一種組織得很好的狀態,」也即「數學的形式」是數學家將數學(活動)內容經過自己的組織(活動)而形成的;但對大多數人來說,他們是把數學當成一種工具,他們不能沒有數學是因為他們需要應用數學,這就是,對於大眾來說,是要通過數學的形式來學習數學的內容,從而學會相應的(應用數學的)活動。這大概就是弗賴登塔爾所說的「數學是在內容和形式的互相影響之中的一種發現和組織的活動」的含義。菲茨拜因(Efraim Fischbein)說,「數學家的理想是要獲得嚴謹的、條理清楚的、具有邏輯結構的知識實體,這一事實並不排除必須將數學看成是個創造性過程:數學本質上是人類活動,數學是由人類發明的,」數學活動由形式的、演算法的與直覺的等三個基本成分之間的相互作用構成。庫朗和羅賓遜(Courani Robbins)也說,「數學是人類意志的表達,反映積極的意願、深思熟慮的推理,以及精美而完善的願望,它的基本要素是邏輯與直覺、分析與構造、一般性與個別性。雖然不同的傳統可能強調不同的側面,但只有這些對立勢力的相互作用,以及為它們的綜合所作的奮斗,才構成數學科學的生命、效用與高度的價值。」

另外,對數學還有一些更加廣義的理解。如,有人認為,「數學是一種文化體系」,「數學是一種語言」,數學活動是社會性的,它是在人類文明發展的歷史進程中,人類認識自然、適應和改造自然、完善自我與社會的一種高度智慧的結晶。數學對人類的思維方式產生了關鍵性的影響.也有人認為,數學是一門藝術,「和把數學看作一門學科相比,我幾乎更喜歡把它看作一門藝術,因為數學家在理性世界指導下(雖然不是控制下)所表現出的經久的創造性活動,具有和藝術家的,例如畫家的活動相似之處,這是真實的而並非臆造的。數學家的嚴格的演繹推理在這里可以比作專門注技巧。就像一個人若不具備一定量的技能就不能成為畫家一樣,不具備一定水平的精確推理能力就不能成為數學家,這些品質是最基本的,它與其它一些要微妙得多的品質共同構成一個優秀的藝術家或優秀的數學家的素質,其中最主要的一條在兩種情況下都是想像力。」「數學是推理的音樂,」而「音樂是形象的數學」.這是從數學研究的過程和數學家應具備的品質來論述數學的本質,還有人把數學看成是一種對待事物的基本態度和方法,一種精神和觀念,即數學精神、數學觀念和態度。尼斯(Mogens Niss)等在《社會中的數學》一文中認為,數學是一門學科,「在認識論的意義上它是一門科學,目標是要建立、描述和理解某些領域中的對象、現象、關系和機制等。如果這個領域是由我們通常認為的數學實體所構成的,數學就扮演著純粹科學的角色。在這種情況下,數學以內在的自我發展和自我理解為目標,獨立於外部世界,另一方面,如果所考慮的領域存在於數學之外,數學就起著用科學的作用,數學的這兩個側面之間的差異並非數學內容本身的問題,而是人們所關注的焦點不同。無論是純粹的還是應用的,作為科學的數學有助於產生知識和洞察力。數學也是一個工具、產品以及過程構成的系統,它有助於我們作出與掌握數學以外的實踐領域有關的決定和行動,數學是美學的一個領域,能為許多醉心其中的人們提供對美感、愉悅和激動的體驗,作為一門學科,數學的傳播和發展都要求它能被新一代的人們所掌握。數學的學習不會同時而自動地進行,需要靠人來傳授,所以,數學也是我們社會的教育體系中的一個教學科目.」

從上所述可以看出,人們是從數學內部(又從數學的內容、表現形式及研究過程等幾個角度)。數學與社會的關系、數學與其它學科的關系、數學與人的發展的關系等幾個方面來討論數學的性質的。它們都從一個側面反映了數學的本質特徵,為我們全面認識數學的性質提供了一個視角。

基於對數學本質特徵的上述認識,人們也從不同側面討論了數學的具體特點。比較普遍的觀點是,數學有抽象性、精確性和應用的廣泛性等特點,其中最本質的特點是抽象性。A,。亞歷山大洛夫說,「甚至對數學只有很膚淺的知識就能容易地覺察到數學的這些特點:第一是它的抽象性,第二是精確性,或者更好他說是邏輯的嚴格性以及它的結論的確定性,最後是它的應用的極端廣泛性」王梓坤說,「數學的特點是:內容的抽象性、應用的廣泛性、推理的嚴謹性和結論的明確必」這種看法主要從數學的內容、表現形式和數學的作用等方面來理解數學的特點,是數學特點的一個方面。另外,從數學研究的過程方面、數學與其它學科之間的關系方面來看,數學還有形象性、似真性、擬經驗性。「可證偽性」的特點。對數學特點的認識也是有時代特徵的,例如,關於數學的嚴謹性,在各個數學歷史發展時期有不同的標准,從歐氏幾何到羅巴切夫斯基幾何再到希爾伯特公理體系,關於嚴謹性的評價標准有很大差異,尤其是哥德爾提出並證明了「不完備性定理…以後,人們發現即使是公理化這一曾經被極度推崇的嚴謹的科學方法也是有缺陷的。因此,數學的嚴謹性是在數學發展歷史中表現出來的,具有相對性。關於數學的似真性,波利亞在他的《數學與猜想》中指出,「數學被人看作是一門論證科學。然而這僅僅是它的一個方面,以最後確定的形式出現的定型的數學,好像是僅含證明的純論證性的材料,然而,數學的創造過程是與任何其它知識的創造過程一樣的,在證明一個數學定理之前,你先得猜測這個定理的內容,在你完全作出詳細證明之前,你先得推測證明的思路,你先得把觀察到的結果加以綜合然後加以類比.你得一次又一次地進行嘗試。數學家的創造性工作成果是論證推理,即證明;但是這個證明是通過合情推理,通過猜想而發現的。只要數學的學習過程稍能反映出數學的發明過程的話,那麼就應當讓猜測、合情推理佔有適當的位置。」正是從這個角度,我們說數學的確定性是相對的,有條件的,對數學的形象性、似真性、擬經驗性。「可證偽性」特點的強調,實際上是突出了數學研究中觀察、實驗、分析。比較、類比、歸納、聯想等思維過程的重要性。
***********************************************************************************
知識:
知識到底是什麼,目前仍然有爭議。我國對知識的定義一般是從哲學角度作出的,如在《中國大網路全書·教育》中「知識」條目是這樣表述的:「所謂知識,就它反映的內容而言,是客觀事物的屬性與聯系的反映,是客觀世界在人腦中的主觀映象。就它的反映活動形式而言,有時表現為主體對事物的感性知覺或表象,屬於感性知識,有時表現為關於事物的概念或規律,屬於理性知識。」從這一定義中我們可以看出,知識是主客體相互統一的產物。它來源於外部世界,所以知識是客觀的;但是知識本身並不是客觀現實,而是事物的特徵與聯系在人腦中的反映,是客觀事物的一種主觀表徵,知識是在主客體相互作用的基礎上,通過人腦的反映活動而產生的。

上述定義為我們討論知識的內涵提供了哲學基礎。但宏觀的哲學反映論的認識還需要從個體認知角度進行具體化,這樣才能有效地用以指導學校的具體教學。

與哲學不同,認知心理學是從知識的來源、個體知識的產生過程及表徵形式等角度對知識進行研究的。例如,皮亞傑認為,經驗(即知識)來源於個體與環境的交互作用,這種經驗可分為兩類:一類是物理經驗,它來自外部世界,是個體作用於客體而獲得的關於客觀事物及其聯系認識;另一類是邏輯——數學經驗,它來自主體的動作,是個體理解動作與動作之間相互協調的結果。如兒童通過擺弄物體,獲得關於數量守恆的經驗,學生通過數學推理獲得關於數學原理的認識。皮亞傑對知識的定義是從個體知識的產生過程來表述的。布盧姆在《教育目標分類學》中認為知識是「對具體事物和普遍原理的回憶,對方法和過程的回憶,或者對一種模式、結構或框架的回憶」,這是從知識所包含的內容的角度說的,屬於一種現象描述。

我們認為,在理解知識的含義時,有必要把作為人類社會共同財富的知識與作為個體頭腦中的知識區分開來。人類社會的知識是客觀存在的,但個體頭腦中的知識並不是客觀現實本身,而是個體的一種主觀表徵,即人腦中的知識結構,它既包括感覺、知覺、表象等,又包括概念、命題、圖式,它們分別標志著個體對客觀事物反應的不同廣度和深度,這是通過個體的認知活動而形成的。一般來說,個體的知識以從具體到抽象的層次網路結構(認知結構)的形式存儲於大腦之中。哲學主要對人類社會共同知識的性質進行研究,心理學則主要對個體知識的性質進行研究。

有關知識的名言

高爾基: 愛護書籍吧,它是知識的源泉。

諾思科特: 博學的人是知識的蓄水池,而不是源泉。

不吸取知識之光,心靈就會被黑暗籠罩。

弗萊克斯: 大學是這樣一種機構:它自覺地獻身於對知識的追,力爭解決難題,用挑剔的眼光去評價人們的成就,並用真正的高水平去教育人。

切斯特菲爾德: 當我們步入晚年,知識將是我們舒適而必要的隱退的去處;如果我們年輕時不去栽種知識之樹,到老就沒有乘涼的地方了。

宋·朱熹: 當務之急,不求難知;力行所知,不憚所難為。

切斯特菲爾德: 讀書能獲得知識;但更有用的知識對世界的認識卻只能通過研究各種各樣的人才能獲得。

塞·約翰遜: 對知識的渴求是人類的自然意向,任何頭腦健全的人都會為獲取知識而不惜一切。

恩格斯: 復雜的勞動包含著需要耗費或多或少的辛勞、時間和金錢去獲得的技巧和知識的運用。

卡斯特: 管理者不承擔創造知識的任務,他的任務是有效地運用知識。

·里格斯: 經理人員的管理能力是他在品質、知識和經驗方面的功能。這三種因素相互作用形成一個特殊的管理方式。

鄧小平: 靠空講不能實現現代化,必須有知識,有人才。沒有知識,沒有人才,怎麼上得去?

科爾莫戈羅夫: 科學是人類的共同財富,而真正的科學家的任務就是豐富這個令人類都能受益的知識寶庫。

赫·斯賓塞: 科學是系統化了的知識。

約瑟夫·魯: 科學是為了那些勤奮好學的人,詩歌是為了那些知識淵博的人。

奧·霍姆斯: 科學是「無知」的局部解剖學。

叔本華: 沒有深厚經驗襯托的廣博思想和知識,就像是一本每頁僅有兩行正文卻有四十行注釋的教科書。

論衡: 人有知識,則有力矣。

實踐是知識的母親,知識是生活的明燈。

愛因斯坦: 學習知識要善於思考,思考,再思考。

⑤ 生活中的數學小常識10字左右

被人們稱為電子計算機之父的的是蘭美籍匈牙利數學家是諾伊曼。

⑥ 小學數學小常識

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

⑦ 生活數學常識

1]、某車間計劃四月份生產零件5480個。已生產了9天,再生產908個就能完成生產計劃,這9天中平均每天生產多少個?
2】、某校六年級有兩個班,上學期級數學平均成績是85分。已知六(1)班40人,平均成績為87.1分;六(2)班有42人,平均成績是多少分?
3】、學校買來10箱粉筆,用去250盒後,還剩下550盒,平均每箱多少盒?
4】、3年前母親歲數是女兒的6倍,今年母親33歲,女兒今年幾歲?
5】、一輛時速是50千米的汽車,需要多少時間才能追上2小時前開出的一輛時速為40千米汽車?
6】、小東到水果店買了3千克的蘋果和2千克的梨共付15元,1千克蘋果比1千克梨貴0.5元,蘋果和梨每千克各多少元?
.......還是有很多的!!我答案就不給你貼了,自己去算吧。但我可以告訴你,這幾個題目都是一元一次方程,就是只有一個x的。
好好學習,天天向上啊!!!

⑧ 數學小常識

哥德巴赫猜想

大約在250年前,德國數字家哥德巴赫發現了這樣一個現象:任何大於5的整數都可以表示為3個質數的和。他驗證了許多數字,這個結論都是正確的。但他卻找不到任何辦法從理論上徹底證明它,於是他在1742年6月7日寫信和當時在柏林科學院工作的著名數學家歐拉請教。歐拉認真地思考了這個問題。他首先逐個核對了一張長長的數字表:

6=2+2+2=3+3
8=2+3+3=3+5
9=3+3+3=2+7
10=2+3+5=5+5
11=5+3+3
12=5+5+2=5+7
99=89+7+3
100=11+17+71=97+3
101=97+2+2
102=97+2+3=97+5
……

這張表可以無限延長,而每一次延長都使歐拉對肯定哥德巴赫的猜想增加了信心。而且他發現證明這個問題實際上應該分成兩部分。即證明所有大於2的偶數總能寫成2個質數之和,所有大於7的奇數總能寫成3個質數之和。當他最終堅信這一結論是真理的時候,就在6月30日復信給哥德巴赫。信中說:"任何大於2的偶數都是兩個質數的和,雖然我還不能證明它,但我確信無疑這是完全正確的定理"由於歐拉是頗負盛名的數學家、科學家,所以他的信心吸引和鼓舞無數科學家試圖證明它,但直到19世紀末也沒有取得任何進展。這一看似簡單實則困難無比的數論問題長期困擾著數學界。誰能證明它誰就登上了數學王國中一座高聳奇異的山峰。因此有人把它比作"數學皇冠上的一顆明珠"。

實際上早已有人對大量的數字進行了驗證,對偶數的驗證已達到1.3億個以上,還沒有發現任何反例。那麼為什麼還不能對這個問題下結論呢?這是因為自然數有無限多個,不論驗證了多少個數,也不能說下一個數必然如此。數學的嚴密和精確對任何一個定理都要給出科學的證明。所以"哥德巴赫猜想"幾百年來一直未能變成定理,這也正是它以"猜想"身份聞名天下的原因。

要證明這個問題有幾種不同辦法,其中之一是證明某數為兩數之和,其中第一個數的質因數不超過a 個,第二數的質因數不超過b個。這個命題稱為(a+b)。最終要達到的目標是證明(a+b)為(1+1)。

1920年,挪威數學家布朗教授用古老的篩選法證明了任何一個大於2的偶數都能表示為9個質數的乘積與另外9個質數乘積的和,即證明了(a+b)為(9+9)。 1924年,德國數學家證明了(7+7); 1932年,英國數學家證明了(6+6);

1937年,蘇聯數學家維諾格拉多夫證明了充分大的奇數可以表示為3個奇質數之和,這使歐拉設想中的奇數部分有了結論,剩下的只有偶數部分的命題了。

1938年,我國數學家華羅庚證明了幾乎所有偶數都可以表示為一個質數和另一個質數的方冪之和。

1938年到1956年,蘇聯數學家又相繼證明了(5+5),(4+4),(3+3)。

1957年,我國數學家王元證明了(2+3);

1962年,我國數學家潘承洞與蘇聯數學家巴爾巴恩各自獨立證明了(1+5);

1963年,潘承洞、王元和巴爾巴恩又都證明了(1+4)。 1965年,幾位數學家同時證明了(1+3)。

1966年,我國青年數學家陳景潤在對篩選法進行了重要改進之後,終於證明了(1+2)。他的證明震驚中外,被譽為"推動了群山,"並被命名為"陳氏定理"。他證明了如下的結論:任何一個充分大的偶數,都可以表示成兩個數之和,其中一個數是質數,別一個數或者是質數,或者是兩個質數的乘積。

⑨ 數學基礎知識

七年級到九年級數學必記重要知識點
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:
如果a:b=c:d,那麼ad=bc
如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:
如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上
135、①兩圓外離 d>R+r
②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r)
⑤兩圓內含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)
正弦定理 a/sinA=b/sinB=c/sinC=2R
註:其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB
註:角B是邊a和邊c的夾角

⑩ 數學常識題

http://wenku..com/link?url=-
另外:http://wenku..com/view/201fb20a0b4e767f5acfce6a.html?re=view
另外:http://wenku..com/view/6f5302bdb0717fd5360cdccc.html?re=view