1. 初中數學知識點整理
初中數學寶典,你知道學習數學最重要的是什麼嗎?
在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!
復習知識點
以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.
2. 初一數學知識點總結
第一冊
第一章 有理數
1.1正數和負數
以前學過的0以外的數前面加上負號「-」的書叫做負數。
以前學過的0以外的數叫做正數。
數0既不是正數也不是負數,0是正數與負數的分界。
在同一個問題中,分別用正數和負數表示的量具有相反的意義
1.2有理數
1.2.1有理數
正整數、0、負整數統稱整數,正分數和負分數統稱分數。
整數和分數統稱有理數。
1.2.2數軸
規定了原點、正方向、單位長度的直線叫做數軸。
數軸的作用:所有的有理數都可以用數軸上的點來表達。
注意事項:⑴數軸的原點、正方向、單位長度三要素,缺一不可。
⑵同一根數軸,單位長度不能改變。
一般地,設是一個正數,則數軸上表示a的點在原點的右邊,與原點的距離是a個單位長度;表示數-a的點在原點的左邊,與原點的距離是a個單位長度。
1.2.3相反數
只有符號不同的兩個數叫做互為相反數。
數軸上表示相反數的兩個點關於原點對稱。
在任意一個數前面添上「-」號,新的數就表示原數的相反數。
1.2.4絕對值
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。
一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;0的絕對值是0。
在數軸上表示有理數,它們從左到右的順序,就是從小到大的順序,即左邊的數小於右邊的數。
比較有理數的大小:⑴正數大於0,0大於負數,正數大於負數。
⑵兩個負數,絕對值大的反而小。
3. 初中數學知識點總結
很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?
知識點
當老師在講完內容之後會講一些課外的內容,一般是定理、概念等等,會讓你對這些知識更加的了解,所以如果對這類題目有問題的同學可以多看一些課外的題目,當然想要提升分數是離不開練習題的,想要多好就需要多做一些習題,但是不可以過多,需要邊做邊思考才可以,這樣所學的知識就會運用出來.
以上就是初中數學應該怎樣學習的內容,如果在這個階段對自己分數不滿意的同學可以借鑒一下以上的內容,或許會對你有一定的幫助,將自身的分數提升.
4. 初中數學知識要點
一、緊扣大綱,精心編制復習計劃
初中數學內容多而雜,其基礎知識和基本技能又分散覆蓋在三年的教科書中,學生往往學了新的,忘了舊的。因此,必須依據大綱規定的內容和系統化的知識要點,精心編制復習計劃。計劃的編寫必須切合學生實際。可採用基礎知識習題化的方法,根據平時教學中掌握的學生應用知識的實際,編制一份滲透主要知識點的測試題,讓學生在規定時間內獨立完成。然後按測試中出現的學生難以理解、遺忘率較高且易混易錯的內容,確定計劃的重點。復習計劃制定後,要做好復習課例題的選擇、練習題配套作業篩眩教師制定的復習計劃要交給學生,並要求學生再按自己的學習實際制定具體復習規劃,確定自己的奮進目標。
二、追本求源,系統掌握基礎知識總
復習開始的第一階段,首先必須強調學生系統掌握課本上的基礎知識和基本技能,過好課本關。對學生提出明確的要求:①對基本概念、法則、公式、定理不僅要正確敘述,而且要靈活應用;②對課本後練習題必須逐題過關;③每章後的復習題帶有綜合性,要求多數學生必須獨立完成,少數困難學生可在老師的指導下完成。
三、系統整理,提高復習效率
總復習的第二階段,要特別體現教師的主導作用。對初中數學知識加以系統整理,依據基礎知識的相互聯系及相互轉化關系,梳理歸類,分塊整理,重新組織,變為系統的條理化的知識點。例如,初三代數可分為函數的定義、正反比例函數、一次函數;一元二次方程、二次函數、二次不等式;統計初步三大部分。幾何分為4塊13線:第一塊為以解直角三角形為主體的1條線。第二塊相似形分為3條線:(1)成比例線段;(2)相似三角形的判定與性質。(3)相似多邊形的判定與性質;第三塊圓,包含7條線:(4)圓的性質;(5)直線與圓;(6)圓與圓;(7)角與圓;(8)三角形與圓;(9)四邊形與圓;(10)多邊形與圓。第四塊是作圖題,有2條線:(11)作圓及作圓的內外公切線等;(12)點的軌跡。這種歸納總結對程度差別不大、素質較好的班級可在教師的指導下師生共同去作,即由學生「畫龍」,教師「點睛」。中等及其以下班級由教師歸類,對比講解,分塊練習與綜合練習交叉進行,使學生真正掌握初中數學教材內容。
四、集中練習,爭取最佳效果
梳理分塊,把握教材內容之後,即開始第三階段的綜合復習。這個階段,除了重視課本中的重點章節之外,主要以反復練習為主,充分發揮學生的主體作用。通常以章節綜合習題和系統知識為骨乾的綜合練習題為主,適當加大模擬題的份量。對教師來說,這時主要任務是精選習題,精心批改學生完成的練習題,及時講評,從中查漏補缺,鞏固復習成效,達到自我完善的目的。精選綜合練習題要注意兩個問題:第一,選擇的習題要有目的性、典型性和規律性。如,函數的取值范圍可選擇如下一組例題:
(2)y=13-2x
(3)y=3x+2x-1
(4)y=1x+1-1
(5)y=x+2x-2第二,習題要有啟發性、靈活性和綜合性。如,角平分線定理的證明及應用,圓的證明題中圓周角、圓心角、弦心角、圓冪定理、射影定理等的應用都是綜合性強且是重點應掌握的題目,都要抓住不放,抓出成效。
5. 初中數學知識點全總結(完美列印版)
鏈接: https://pan..com/s/1Y3loI4BuPKEQuz1uyirypQ 提取碼: hba7
作業幫精品資料:初中數學高頻考點Word文檔,網路網盤文檔。
6. 初中數學知識歸納
初中數學寶典,你知道學習數學最重要的是什麼嗎?
在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!
復習知識點
以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.
7. 初中數學的知識點總結
一、基本運算方法
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行於、不平行於;垂直於、不垂直於;等於、不等於;大(小)於、不大(小)於;都是、不都是;至少有一個、一個也沒有;至少有n個、至多有(n一1)個;至多有一個、至少有兩個;唯一、至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,為分析法。
8. 初中數學知識點總結簡潔
初中數學知識點總結
一、基本知識
一、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸.②任何一個有理數都可以用數軸上的一個點來表示.③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數.在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等.④數軸上兩個點表示的數,右邊的總比左邊的大.正數大於0,負數小於0,正數大於負數.
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值.②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0.兩個負數比較大小,絕對值大的反而小.
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加.②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值.③一個數與0相加不變.
減法:減去一個數,等於加上這個數的相反數.
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘.②任何數與0相乘得0.③乘積為1的兩個有理數互為倒數.
除法:①除以一個數等於乘以一個數的倒數.②0不能作除數.
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數.
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的.
2、實數 無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根.②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根.③一個正數有2個平方根/0的平方根為0/負數沒有平方根.④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數.
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根.②正數的立方根是正數、0的立方根是0、負數的立方根是負數.③求一個數A的立方根的運算叫開立方,其中A叫做被開方數.
實數:①實數分有理數和無理數.②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣.③每一個實數都可以在數軸上的一個點來表示.
3、代數式
代數式:單獨一個數或者一個字母也是代數式.
合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項.②把同類項合並成一項就叫做合並同類項.③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變.
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式.②一個單項式中,所有字母的指數和叫做這個單項式的次數.③一個多項式中,次數最高的項的次數叫做這個多項式的次數.
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項.
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣.
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式.②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加.③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加.
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式.②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加.
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式.
方法:提公因式法、運用公式法、分組分解法、十字相乘法.
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0.②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變.
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.
除法:除以一個分式等於乘以這個分式的倒數.
加減法:①同分母分式相加減,分母不變,把分子相加減.②異分母的分式先通分,化為同分母的分式,再加減.
分式方程:①分母中含有未知數的方程叫分式方程.②使方程的分母為0的解稱為原方程的增根.
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程.②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式.
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1.
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程.
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組.
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解.
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解.
解二元一次方程組的方法:代入消元法/加減消元法.
一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了.那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點.也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法.在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a.利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)
2、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式.②不等式的兩邊都加上或減去同一個整式,不等號的方向不變.③不等式的兩邊都乘以或者除以一個正數,不等號方向不變.④不等式的兩邊都乘以或除以同一個負數,不等號方向相反.
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解.②一個含有未知數的不等式的所有解,組成這個不等式的解集.③求不等式解集的過程叫做解不等式.
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式.
一元一次不等式組:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組.②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集.③求不等式組解集的過程,叫做解不等式組.
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變.
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C如果不等式乘以0,那麼不等號改為等號
所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立;
3、函數
變數:因變數,自變數.
在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數.
一次函數:①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數.②當B=0時,稱Y是X的正比例函數.
一次函數的圖象:①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象.②正比例函數Y=KX的圖象是經過原點的一條直線.③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限.④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少.
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的.②面與面相交得線,線與線相交得點.③點動成線,線動成面,面動成體.
展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體.②N稜柱就是底面圖形有N條邊的稜柱.
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面.
視圖:主視圖,左視圖,俯視圖.
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形.
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形.②圓可以分割成若干個扇形.
2、角
線:①線段有兩個端點.②將線段向一個方向無限延長就形成了射線.射線只有一個端點.③將線段的兩端無限延長就形成了直線.直線沒有端點.④經過兩點有且只有一條直線.
比較長短:①兩點之間的所有連線中,線段最短.②兩點之間線段的長度,叫做這兩點之間的距離.
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點.②一度的1/60是一分,一分的1/60是一秒.
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的.②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角.始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角.③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線.
平行:①同一平面內,不相交的兩條直線叫做平行線.②經過直線外一點,有且只有一條直線與這條直線平行.③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行.
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直.②互相垂直的兩條直線的交點叫做垂足.③平面內,過一點有且只有一條直線與已知直線垂直.
垂直平分線:垂直和平分一條線段的直線叫垂直平分線.
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點.
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線.
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓.
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上
135、①兩圓外離 d>R+r ②兩圓外切 d=R+r③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)
很高興為你解答有用請採納
9. 人教版初中數學知識點總結
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數= 1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1、正方形:C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2、正方體:V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6
體 積=棱長×棱長×棱長 V=a×a×a
3、長方形:
C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab
4、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
(2)體積=長×寬×高 V=abh
5、三角形
s面積 a底 h高 面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6、平行四邊形:s面積 a底 h高 面積=底×高 s=ah
7、梯形:s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)×h÷2
8 圓形:S面 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r
(2)面積=半徑×半徑×∏
9、圓柱體:v體積 h:高 s:底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10、圓錐體:v體積 h高 s底面積 r底面半徑 體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1、非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2、封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有: 1\3\5\7\8\10\12月
小月(30天)的有: 4\6\9\11月
平年 2月28天, 閏年 2月29天
平年全年365天, 閏年全年366天
1日=24小時 1小時=60分
1分=60秒 1小時=3600秒
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
常見的初中數學公式
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12 兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22 邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理(ASA) 有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對
的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理 1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平
分線
44 定理 3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那
么交點在對稱軸上
45 逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖
形關於這條直線對稱
46 勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,
即a^2+b^2=c^2
47 勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那
么這個三角形是直角三角形
48 定理 四邊形的內角和等於360°
49 四邊形的外角和等於360°
50 多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51 推論 任意多邊的外角和等於360°
52 平行四邊形性質定理 1 平行四邊形的對角相等
53 平行四邊形性質定理 2 平行四邊形的對邊相等
54 推論 夾在兩條平行線間的平行線段相等
55 平行四邊形性質定理 3 平行四邊形的對角線互相平分
56 平行四邊形判定定理 1 兩組對角分別相等的四邊形是平行四邊形
57 平行四邊形判定定理 2 兩組對邊分別相等的四邊形是平行四邊形
58 平行四邊形判定定理 3 對角線互相平分的四邊形是平行四邊形
59 平行四邊形判定定理 4 一組對邊平行相等的四邊形是平行四邊形
60 矩形性質定理 1 矩形的四個角都是直角
61 矩形性質定理 2 矩形的對角線相等
62 矩形判定定理 1 有三個角是直角的四邊形是矩形
63 矩形判定定理 2 對角線相等的平行四邊形是矩形
64 菱形性質定理 1 菱形的四條邊都相等
65 菱形性質定理 2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66 菱形面積=對角線乘積的一半,即 S=(a×b)÷2
67 菱形判定定理 1 四邊都相等的四邊形是菱形
68 菱形判定定理 2 對角線互相垂直的平行四邊形是菱形
69 正方形性質定理 1 正方形的四個角都是直角,四條邊都相等
70 正方形性質定理 2 正方形的兩條對角線相等,並且互相垂直平分,每
條對角線平分一組對角
71 定理 1 關於中心對稱的兩個圖形是全等的
72 定理 2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對
稱中心平分
73 逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那
么這兩個圖形關於這一點對稱
74 等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75 等腰梯形的兩條對角線相等
76 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77 對角線相等的梯形是等腰梯形
78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼
在其他直線上截得的線段也相等
79 推論 1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論 2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=
(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果 a:b=c:d,那麼 ad=bc如果ad=bc,那麼 a:b=c:d
84 (2)合比性質 如果 a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果 a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/
(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對
應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成
比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊
與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構
成的三角形與原三角形相似
91 相似三角形判定定理 1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理 2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理 3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊
和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理 1 相似三角形對應高的比,對應中線的比與對應角平分線的比都
等於相似比
97 性質定理 2 相似三角形周長的比等於相似比
98 性質定理 3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角
的正弦值
100 任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角
的正切值
101 圓是定點的距離等於定長的點的集合
102 圓的內部可以看作是圓心的距離小於半徑的點的集合
103 圓的外部可以看作是圓心的距離大於半徑的點的集合
104 同圓或等圓的半徑相等
105 到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106 和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107 到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108 到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一
條直線
109 定理 不在同一直線上的三點確定一個圓。
110 垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111 推論 1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112 推論2 圓的兩條平行弦所夾的弧相等
113 圓是以圓心為對稱中心的中心對稱圖形
114 定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對
的弦的弦心距相等
115 推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距
中有一組量相等那麼它們所對應的其餘各組量都相等
116 定理 一條弧所對的圓周角等於它所對的圓心角的一半
117 推論 1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對
的弧也相等
118 推論 2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119 推論 3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角
三角形
120 定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121 ①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122 切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123 切線的性質定理 圓的切線垂直於經過切點的半徑
124 推論 1 經過圓心且垂直於切線的直線必經過切點
125 推論 2 經過切點且垂直於切線的直線必經過圓心
126 切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一
點的連線平分兩條切線的夾角
127 圓的外切四邊形的兩組對邊的和相等
128 弦切角定理 弦切角等於它所夾的弧對的圓周角
129 推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130 相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131 推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的
比例中項
132 切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點
的兩條線段長的比例中項
133 推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線
段長的積相等
134 如果兩個圓相切,那麼切點一定在連心線上
135 ①兩圓外離 d>R+r ②兩圓外切 d=R+r ③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136 定理 相交兩圓的連心線垂直平分兩圓的公共弦
137 定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外
切正n邊形
138 定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139 正n邊形的每個內角都等於(n-2)×180°/n
140 定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141 正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142 正三角形面積 √3a/4 a表示邊長
143 如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×
(n-2)180°/n=360°化為(n-2)(k-2)=4
144 弧長計算公式:L=n兀R/180
145 扇形面積公式:S扇形=n兀R^2/360=LR/2
146 內公切線長=d-(R-r) 外公切線長= d-(R+r)
實用工具:常用數學公式
公式分類 公式表達式
乘法與因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 13+23+33+43+53+63+…n3=n2(n+1)2/4
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註:其中R表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註: (a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註: D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h 正棱錐側面積 S=1/2c*h'
正稜台側面積 S=1/2(c+c')h' 圓台側面積 S=1/2(c+c')l=pi(R+r)l
球的表面積 S=4pi*r2 圓柱側面積 S=c*h=2pi*h
圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r>0 扇形公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h