Ⅰ 初中數學知識點總結
初中數學寶典,你知道學習數學最重要的是什麼嗎?
在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!
復習知識點
以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.
Ⅱ 初中數學知識點全總結(完美列印版)
鏈接: https://pan..com/s/1Y3loI4BuPKEQuz1uyirypQ 提取碼: hba7
作業幫精品資料:初中數學高頻考點Word文檔,網路網盤文檔。
Ⅲ 初中數學的知識點總結
一、基本運算方法
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行於、不平行於;垂直於、不垂直於;等於、不等於;大(小)於、不大(小)於;都是、不都是;至少有一個、一個也沒有;至少有n個、至多有(n一1)個;至多有一個、至少有兩個;唯一、至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,為分析法。
Ⅳ 初中數學知識點哪本書總結的好
下面是我們老師總結的,電子版的,就都發出來了
一、基本知識一、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。減法:減去一個數,等於加上這個數的相反數。乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。2、實數 無理數:無限不循環小數叫無理數平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。3、代數式代數式:單獨一個數或者一個字母也是代數式。合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。4、整式與分式整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。冪的運算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一樣。整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。公式兩條:平方差公式/完全平方公式整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。方法:提公因式法、運用公式法、分組分解法、十字相乘法。分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。分式的運算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個分式等於乘以這個分式的倒數。加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。B、方程與不等式1、方程與方程組一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程1)一元二次方程的二次函數的關系大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了2)一元二次方程的解法大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程變為完全平方公式,在用直接開平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解(3)公式法這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式(2)分解因式法的步驟:把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c4)韋達定理利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用5)一元一次方程根的情況利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:I當△>0時,一元二次方程有2個不相等的實數根;II當△=0時,一元二次方程有2個相同的實數根;III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)2、不等式與不等式組不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解。②一個含有未知數的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。一元一次不等式組:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。一元一次不等式的符號方向:在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<B*C(C<0)如果不等式乘以0,那麼不等號改為等號所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立; 3、函數變數:因變數,自變數。在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。一次函數:①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數。②當B=0時,稱Y是X的正比例函數。一次函數的圖象:①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經過原點的一條直線。③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。二空間與圖形A、圖形的認識1、點,線,面點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。2、角線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。垂直平分線定理:性質定理:在垂直平分線上的點到該線段兩端點的距離相等;判定定理:到線段2端點距離相等的點在這線段的垂直平分線上角平分線:把一個角平分的射線叫該角的角平分線。定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點性質定理:角平分線上的點到該角兩邊的距離相等判定定理:到角的兩邊距離相等的點在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形性質:正方形具有平行四邊形、菱形、矩形的一切性質判定:1、對角線相等的菱形2、鄰邊相等的矩形二、基本定理1、過兩點有且只有一條直線 2、兩點之間線段最短3、同角或等角的補角相等 4、同角或等角的餘角相等5、過一點有且只有一條直線和已知直線垂直6、直線外一點與直線上各點連接的所有線段中,垂線段最短7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行9、同位角相等,兩直線平行10、內錯角相等,兩直線平行11、同旁內角互補,兩直線平行12、兩直線平行,同位角相等13、兩直線平行,內錯角相等14、兩直線平行,同旁內角互補15、定理 三角形兩邊的和大於第三邊16、推論 三角形兩邊的差小於第三邊17、三角形內角和定理 三角形三個內角的和等於180°18、推論1 直角三角形的兩個銳角互餘19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角21、全等三角形的對應邊、對應角相等22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等27、定理1 在角的平分線上的點到這個角的兩邊的距離相等28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上29、角的平分線是到角的兩邊距離相等的所有點的集合30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)35、推論1 三個角都相等的三角形是等邊三角形36、推論 2 有一個角等於60°的等腰三角形是等邊三角形37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半38、直角三角形斜邊上的中線等於斜邊上的一半39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42、定理1 關於某條直線對稱的兩個圖形是全等形43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c247、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形48、定理 四邊形的內角和等於360°49、四邊形的外角和等於360°50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°51、推論 任意多邊的外角和等於360°52、平行四邊形性質定理1 平行四邊形的對角相等53、平行四邊形性質定理2 平行四邊形的對邊相等54、推論 夾在兩條平行線間的平行線段相等55、平行四邊形性質定理3 平行四邊形的對角線互相平分56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形60、矩形性質定理1 矩形的四個角都是直角61、矩形性質定理2 矩形的對角線相等62、矩形判定定理1 有三個角是直角的四邊形是矩形63、矩形判定定理2 對角線相等的平行四邊形是矩形64、菱形性質定理1 菱形的四條邊都相等65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
Ⅳ 初中數學知識點總結怎麼辦呢
幾何定義
01
過兩點有且只有一條直線
2
兩點之間線段最短
3
同角或等角的補角相等
4
同角或等角的餘角相等
5
過一點有且只有一條直線和已知直線垂直
6
直線外一點與直線上各點連接的所有線段中,垂線段最短
7
平行公理
經過直線外一點,有且只有一條直線與這條直線平行
8
如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9
同位角相等,兩直線平行
10
內錯角相等,兩直線平行
11
同旁內角互補,兩直線平行
12
兩直線平行,同位角相等
13
兩直線平行,內錯角相等
14
兩直線平行,同旁內角互補
定理及推論
15
定理
三角形兩邊的和大於第三
大概是這樣子的2014-3-18
下午
09:16:33
Ⅵ 初中數學知識點總結
很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?
知識點
當老師在講完內容之後會講一些課外的內容,一般是定理、概念等等,會讓你對這些知識更加的了解,所以如果對這類題目有問題的同學可以多看一些課外的題目,當然想要提升分數是離不開練習題的,想要多好就需要多做一些習題,但是不可以過多,需要邊做邊思考才可以,這樣所學的知識就會運用出來.
以上就是初中數學應該怎樣學習的內容,如果在這個階段對自己分數不滿意的同學可以借鑒一下以上的內容,或許會對你有一定的幫助,將自身的分數提升.
Ⅶ 初中數學知識點總結歸納
因式分解
①如果多項式的各項有公因式,那麼先提公因式;
②如果各項沒有公因式,那麼可嘗試運用公式、十字相乘法來分解;
③如果用上述方法不能分解,那麼可以嘗試用分組、拆項、補項法來分解
④分解因式,必須進行到每一個多項式因式都不能再分解為止。
也可以用一句話來概括:「先看有無公因式,再看能否套公式。十字相乘試一試,分組分解要相對合適。」
公式
平方差公式
(a+b)(a-b)=a^2-b^2
完全平方公式
(a+b)^2=a^2+2ab+b^;2
(a-b)^2=a^2-2ab+b^2
立方和(差)
兩數差乘以它們的平方和與它們的積的和等於兩數的立方差。
即a^3-b^3=(a-b)(a^2+ab+b^2)
證明如下: a^3-b^3=a^3-3a^2b+3ab^2-b^3
所以a^3-b^3=(a-b)a^3-[-3(a^2)b+3ab^2]=(a-b)(a-b)^2+3ab(a-b)
=(a-b)(a^2-2ab+b^2+3ab)=(a-b)(a^2+ab+b^2)
十字相乘公式
十字相乘法能把某些二次三項式分解因式。要務必注意各項系數的符號。
(x+a)(x+b)=x^2+(a+b)x+ab