當前位置:首頁 » 基礎知識 » 初中數學全部知識點及公式大全
擴展閱讀
怎麼放棄同班同學的愛情 2024-11-20 04:29:16
被同學單刪很生氣怎麼辦 2024-11-20 04:27:07
和久不見的同學聊什麼 2024-11-20 04:24:07

初中數學全部知識點及公式大全

發布時間: 2022-06-09 06:46:35

① 初中所有數學公式,知識點

中考數學公式定理
點線角定理:
點的定理:過兩點有且只有一條直線
點的定理:兩點之間線段最短
角的定理:同角或等角的補角相等
角的定理:同角或等角的餘角相等
直線定理:過一點有且只有一條直線和已知直線垂直
直線定理:直線外一點與直線上各點連接的所有線段中,垂線段最短
平行定理:
經過直線外一點,有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
平行性質:
1、同位角相等,兩直線平行
2、內錯角相等,兩直線平行
3、同旁內角互補,兩直線平行
平行推論:
1、兩直線平行,同位角相等
2、兩直線平行,內錯角相等
3、兩直線平行,同旁內角互補
三角形內角定理:
定理:三角形兩邊的和大於第三邊
推論:三角形兩邊的差小於第三邊
三角形內角和定理:三角形三個內角的和等於180°
推論1:直角三角形的兩個銳角互余
推論2:三角形的一個外角等於和它不相鄰的兩個內角的和
推論3:三角形的一個外角大於任何一個和它不相鄰的內角
全等三角形判定定理:
定理:全等三角形的對應邊、對應角相等
邊角邊定理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等
角邊角定理(ASA):有兩角和它們的夾邊對應相等的兩個三角形全等
推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等
邊邊邊定理(SSS):有三邊對應相等的兩個三角形全等
斜邊、直角邊定理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等
角的平分線定理:
定理1:在角的平分線上的點到這個角的兩邊的距離相等
定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上
角的平分線是到角的兩邊距離相等的所有點的集合
等腰三角形的性質定理:
等腰三角形的兩個底角相等(即等邊對等角)
推論1:等腰三角形頂角的平分線平分底邊並且垂直於底邊
等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
推論3:等邊三角形的各角都相等,並且每一個角都等於60°
等腰三角形的判定定理:如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等 角對等邊)
推論1:三個角都相等的三角形是等邊三角形
推論2:有一個角等於60°的等腰三角形是等邊三角形
對稱定理
定理:線段垂直平分線上的點和這條線段兩個端點的距離相等
逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
定理1:關於某條直線對稱的兩個圖形是全等形
定理2:如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
定理3:兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
直角三角形定理:
定理:在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
判定定理:直角三角形斜邊上的中線等於斜邊上的一半
勾股定理:直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a²+b²=c²。
勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a²+b²=c²,那麼這個三角形是直角三角形。
多邊形內角和定理:
定理:四邊形的內角和等於360°;四邊形的外角和等於360°
多邊形內角和定理:n邊形的內角的和等於(n-2)×180°
推論:任意多邊的外角和等於360°
平行四邊形定理:
平行四邊形性質定理1:平行四邊形的對角相等
2:平行四邊形的對邊相等
3:平行四邊形的對角線互相平分
推論:夾在兩條平行線間的平行線段相等
平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形
2:兩組對邊分別相等的四邊形是平行四邊形
3:對角線互相平分的四邊形是平行四邊形
4:一組對邊平行相等的四邊形是平行四邊形
矩形的定理
性質:1:矩形的四個角都是直角
2:矩形的對角線相等
判定:1:有三個角是直角的四邊形是矩形
2:對角線相等的平行四邊形是矩形
菱形性質定理
1:菱形的四條邊都相等
2:菱形的對角線互相垂直,並且每一條對角線平分一組對角
菱形面積=對角線乘積的一半,即S=(a×b)÷2
菱形判定定理
1:四邊都相等的四邊形是菱形
2:對角線互相垂直的平行四邊形是菱形
正方形定理:
正方形性質定理1:正方形的四個角都是直角,四條邊都相等
2:正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
中心對稱定理:
定理1:關於中心對稱的兩個圖形是全等的
2:關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
逆定理:如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
等腰梯形性質定理:
等腰梯形性質定理:1.等腰梯形在同一底上的兩個角相等
2.等腰梯形的兩條對角線相等
等腰梯形判定定理:1.在同一底上的兩個角相等的梯形是等腰梯形
2.對角線相等的梯形是等腰梯形
平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰
推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
中位線定理
三角形:三角形的中位線平行於第三邊,並且等於它的一半
梯形:梯形的中位線平行於兩底,並且等於兩底和的一半L=(a+b)÷2 S=L×h
相似三角形定理:
平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
相似三角形判定定理1:兩角對應相等,兩三角形相似(ASA)
直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
2:兩邊對應成比例且夾角相等,兩三角形相似(SAS)
3:三邊對應成比例,兩三角形相似(SSS)

相似直角三角形定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
相似性質:
1:相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
2:相似三角形周長的比等於相似比
3:相似三角形面積的比等於相似比的平方
三角函數定理:
任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
圓的定理:
1.不共線的三點確定一個圓,經過一點可以作無數個圓,經過兩點也可以作無數個圓,且圓心都在連結這兩點的線段的垂直平分線上
定理:過不共線的三個點,可以作且只可以作一個圓
推論:三角形的三邊垂直平分線相交於一點,這個點就是三角形的外心
三角形的三條高線的交點叫三角形的垂心
2.垂徑定理
圓是中心對稱圖形;圓心是它的對稱中心,圓是周對稱圖形,任一條通過圓心的直線都是它的對稱軸
定理:垂直於弦的直徑平分這條弦,並且評分弦所對的兩條弧
推論1:平分弦(不是直徑)的直徑垂直於弦並且平分弦所對的兩條弧
推論2:弦的垂直平分弦經過圓心,並且平分弦所對的兩條弧
推論3:平分弦所對的一條弧的直徑,垂直評分弦,並且平分弦所對的另一條弧
3.弧、弦和弦心距
定理:在同圓或等圓中,相等的弧所對的弦相等,所對的弦的弦心距相等
4.圓與直線的位置關系
如果一條直線和一個圓沒有公共點,我們就說這條直線和這個圓相離
如果一條直線和一個圓只有一個公共點,我們就說這條直線和這個圓相切,這條直線叫做圓的切線,這個公共點叫做它們的切點
定理:經過圓的半徑外端點,並且垂直於這條半徑的直線是這個圓的切線
定理:圓的切線垂直經過切點的半徑
推論1:經過圓心且垂直於切線的直線必經過切點
推論2:經過切點且垂直於切線的直線必經過圓心
如果一條直線和一個圓有兩個公共點,我們就說,這條直線和這個圓相交,這條直線叫這個圓的割線,這兩個公共點叫做它們的交點
直線和圓的位置關系只能由相離、相切和相交三種
5.三角形的內切圓
如果一個多邊形的各邊所在的直線,都和一個圓相切,這個多邊形叫做圓的外切多邊形,這個圓叫做多邊形的內切圓
定理:三角形的三個內角平分線交於一點,這點是三角形的內心
6.切線長定理
定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
7.圓的外切四邊形
定理: 圓的外切四邊形的兩組對邊的和相等
定理:如果四邊形兩組對邊的和相等,那麼它必有內切圓
8.兩圓的位置關系
在平面內,不重合的兩圓它們的位置關系,有以下五種情況:外離、外切、相交、內切、外切
經過兩個圓的圓心的直線,叫做兩圓的連心線,兩個圓心之間的距離叫做圓心距
定理:兩圓的連心線是兩圓的對稱軸,並且兩圓相切時,它們切點在連心線上
(1)兩圓外離d>R+r (2)兩圓外切d=R+r
(3)兩圓相交R-rr) (4)兩圓內切d=R-r(R>r)
(5)兩圓內含dr)
特殊情況,兩圓是同心圓d=0
9.兩圓的公切線
定理:兩圓的兩條外公切線的長相等;兩圓的兩條內公切線的長也相等
比例性質定理:
(1)比例的基本性質
如果a:b=c:d,那麼ad=bc如果ad=bc,那麼a:b=c:d
(2)合比性質
如果a/b=c/d,那麼(a±b)/b=(c±d)/d
(3)等比性質
如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b

中考數學必備公式
圓與弧的公式:
正n邊形的每個內角都等於(n-2)×180°/n
弧長計算公式:L=n兀R/180
扇形面積公式:S扇形=n兀R^2/360=LR/2
①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-rr)④兩圓內切d=R-r(R>r)⑤兩圓內含dr)
定理:相交兩圓的連心線垂直平分兩圓的公共弦
定理:把圓分成n(n≥3):⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
因式分解公式:
公式:a^3+b^3+c^3-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)
解:a^3+b^3+c^3-3abc
=(a+b)(a^2-ab+b^2)+c(c^2-3ab)
=(a+b)(a^2-ab+b^2)+c(c^2-3ab+a^2-ab+b^2-a^2+ab-b^2)
=(a+b)(a^2-ab+b^2)+c[(c^2-a^2-2ab-b^2)+(a^2-ab+b^2)]
=(a+b)(a^2-ab+b^2)+c[c^2-(a+b)^2]+c(a^2-ab+b^2)
=(a+b+c)(a^2-ab+b^2)+c(a+b+c)(c-a-b)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
平方差公式:a平方-b平方=(a+b)(a-b)
完全平方和公式: (a+b)平方=a²+2ab+b²
完全平方差公式: (a-b)平方=a²-2ab+b²
兩根式: ax²+bx+c=a[x-(-b+√(b²-4ac))/2a][x-(-b-√(b²-4ac))/2a]兩根式
立方和公式: a^3+b^3=(a+b)(a²-ab+b²)
立方差公式:a^3-b^3=(a-b)(a²+ab+b²)
完全立方公式: a^3±3a²b+3ab²±b^3=(a±b)^3.
一元二次方程公式與判別式:
一元二次方程的解 -b+√(b²-4ac)/2a ,-b-√(b²-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b²-4ac=0 註:方程有兩個相等的實根
b²-4ac>0 註:方程有兩個不等的實根
b²-4ac<0 註:方程沒有實根,有共軛復數根
三角不等式:
|a+b|≤|a|+|b| |a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a|
等差數列公式:
某些數列前n項和:
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

三角函數公式--兩角和公式:
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
三角函數公式--倍角公式:
tan2A=2tanA/(1-tan2A)
cos2a=cos²a-sin²a=2cos²a-1=1-2sin²a
三角函數公式--半形公式:
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
三角函數公式--和差化積:
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) 2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos(A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

http://www.exam8.com/zhongkao//shuxue/201304/2595337.html

② 初中三年數學公式和知識點

以下是初中三年數學公式和知識點
1、過兩點有且只有一條直線

2、兩點之間線段最短

3、同角或等角的補角相等

4、同角或等角的餘角相等

5、過一點有且只有一條直線和已知直線垂直

6、直線外一點與直線上各點連接的所有線段中,垂線段最短

7、平行公理經過直線外一點,有且只有一條直線與這條直線平行

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9、同位角相等,兩直線平行

10、內錯角相等,兩直線平行

11、同旁內角互補,兩直線平行

12、兩直線平行,同位角相等

13、兩直線平行,內錯角相等

14、兩直線平行,同旁內角互補

15、定理三角形兩邊的和大於第三邊

比例的基本性質:

如果a:b=c:d,那麼ad=bc

如果ad=bc,那麼a:b=c:d

(2)合比性質:

如果a/b=c/d,那麼(a±b)/b=(c±d)/d

(3)等比性質:

如果a/b=c/d=…=m/n(b+d+…+n≠0),

那麼(a+c+…+m)/(b+d+…+n)=a/b

梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半L=(a+b)÷2S=L×h

菱形面積=對角線乘積的一半,即S=(a×b)÷2

平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例

圓是定點的距離等於定長的點的集合

圓的內部可以看作是圓心的距離小於半徑的點的集合

圓的外部可以看作是圓心的距離大於半徑的點的集合

同圓或等圓的半徑相等

到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線

③ 初中數學常考知識點有哪些

1、一元二次方程的基本概念
一元二次方程經過整理都可化成一般形式ax²+bx+c=0(a≠0)。直角坐標系與點的位置,特殊三角函數值,圓的基本性質,直線與圓的位置關系等等。
2、一元二次方程
只含有一個未知數(一元),並且未知數項的最高次數是2(二次)的整式方程叫做一元二次方程
。一元二次方程經過整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次項,a是二次項系數;bx叫作一次項,b是一次項系數;c叫作常數項。
3、特殊三角函數
特殊三角函數值一般指在30°,45°,60°等角的三角函數值。這些角度的三角函數值是經常用到的。並且利用兩角和與差的三角函數公式,可以求出一些其他角度的三角函數值。cos30°=1,tan45°=1。
4、圓的基本性質
半圓或直徑所對的圓周角是直角。
任意一個三角形一定有一個外接圓。
在同一平面內,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
在同圓或等圓中,相等的圓心角所對的弧相等。
同弧所對的圓周角等於圓心角的一半。
同圓或等圓的半徑相等。
過三個點一定可以作一個圓。
長度相等的兩條弧是等弧。
在同圓或等圓中,相等的圓心角所對的弧相等。
經過圓心平分弦的直徑垂直於弦。

④ 數學初中全部重要知識點是什麼

如下:

1、圓:圓的標准方程(x-a)2+(y-b)2=r2。再知道圓點和半價的情況下使用標准方程列出圓的函數表達式是比較直接的。

2、二次函數(簡稱拋物線):函數表達式:y=ax2+bx+c(a≠0);二次函數的幾個重要性質必須熟記。

3、概率:概率是對隨機事件發生的可能性的度量,一般以一個在0到1之間的實數。

4、三角形相似:我對三角形相似的理解是這樣的,你把三角形方大或者縮小。那麼前後這兩個圖形就叫相似。

5、一元二次方程:表達式ax2+bx+c=0(a≠0)。其實就是二次函數的變形,二次函數把y等於0時對求x的解。

與圓相關的公式:

1、圓面積:S=πr²,S=π(d/2)²。(d為直徑,r為半徑)。

2、半圓的面積:S半圓=(πr^2)/2。(r為半徑)。

3、圓環面積:S大圓-S小圓=π(R^2-r^2)(R為大圓半徑,r為小圓半徑)。

4、圓的周長:C=2πr或c=πd。(d為直徑,r為半徑)。

5、半圓的周長:d+(πd)/2或者d+πr。(d為直徑,r為半徑)。

6、扇形所在圓的面積除以360再乘以扇形圓心角的角度n,如下:

S=n/360×πr²。

S=πr²×L/2πr=Lr/2(L為弧長,r為扇形半徑)。

⑤ 初中數學所有公式表

常用數學公式:

1、乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

2、三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b〈=〉-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|

3、一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

4、根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac〉0 註:方程有兩個不等的實根
b2-4ac〈0 註:方程沒有實根,有共軛復數根

5、三角函數公式
兩角和公式

6、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

7、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

8、tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

9、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)


10、倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

11、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a


12、半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

13、cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

14、tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

15、ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))


和差化積
16、2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

17、2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

18、sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

19、+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

20、ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB


某些數列前n項和

21、1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

22、2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

23、13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3


24、正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑


25、餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角


26、圓的標准方程(x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標


27、圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F〉0


28、拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py


29、直稜柱側面積S=c*h 斜稜柱側面積 S=c'*h


30、正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'


31、圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2


32、圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l


33、弧長公式 l=a*r a是圓心角的弧度數r 〉0 扇形面積公式 s=1/2*l*r


34、錐體體積公式V=1/3*S*H圓錐體體積公式 V=1/3*pi*r2h


35、斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長


36、柱體體積公式 V=s*h 圓柱體 V=pi*r2h

(5)初中數學全部知識點及公式大全擴展閱讀

部分基本公式

1 過兩點有且只有一條直線


2 兩點之間線段最短


3 同角或等角的補角相等

4 同角或等角的餘角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7平行公理經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9同位角相等,兩直線平行

10內錯角相等,兩直線平行

11同旁內角互補,兩直線平行

12兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理 三角形兩邊的和大於第三邊

16 推論 三角形兩邊的差小於第三邊

17三角形內角和定理三角形三個內角的和等於180°

18 推論1直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角

⑥ 數學初中全部重要知識點有哪些

數學初中全部重要知識點:

一、一元一次方程

1、只含有一個未知數,並且未知數的次數是1,並且含未知數項的系數不是零的整式方程是一元一次方程。

2、一元一次方程的標准形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。

3、一元一次方程解法的一般步驟:整理方程、去分母、去括弧、移項、合並同類項、系數化為1。

二、解一元二次方程的步驟

1、配方法的步驟

先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式。

2、分解因式法的步驟

把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式。

3、公式法

就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c。

4、韋達定理

利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a。

也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用。

5、一元一次方程根的情況

利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diaota」,而△=b2-4ac,這里可以分為3種情況:

(1)當△>0時,一元二次方程有2個不相等的實數根。

(2)當△=0時,一元二次方程有2個相同的實數根。

(3)當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)。

三、有理數

1、定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。

2、數軸:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸。

3、相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。

4、絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

5、有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加。

(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

(3)一個數同0相加,仍得這個數。

6、有理數的乘法

兩數相乘,同號得正,異號得負,並把絕對值相乘。

任何數與0相乘,積為0。例:0×1=0。

7、有理數的除法

除以一個不為0的數,等於乘這個數的倒數。

⑦ 初三數學知識要點和公式大全

初三數學復習知識點:

1 過兩點有且只有一條直線

2 兩點之間線段最短

3 同角或等角的補角相等

4 同角或等角的餘角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內錯角相等,兩直線平行

11 同旁內角互補,兩直線平行

12 兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理 三角形兩邊的和大於第三邊

16 推論 三角形兩邊的差小於第三邊

17 三角形內角和定理 三角形三個內角的和等於180°

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角

21 全等三角形的對應邊、對應角相等

22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等

26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等

27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點的集合

30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°

34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

35 推論1 三個角都相等的三角形是等邊三角形

36 推論 2 有一個角等於60°的等腰三角形是等邊三角形

37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半

38 直角三角形斜邊上的中線等於斜邊上的一半

39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等

40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42 定理1 關於某條直線對稱的兩個圖形是全等形

43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱

46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形

48定理 四邊形的內角和等於360°

49四邊形的外角和等於360°

50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°

51推論 任意多邊的外角和等於360°

52平行四邊形性質定理1 平行四邊形的對角相等

53平行四邊形性質定理2 平行四邊形的對邊相等

54推論 夾在兩條平行線間的平行線段相等

55平行四邊形性質定理3 平行四邊形的對角線互相平分

56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等

62矩形判定定理1 有三個角是直角的四邊形是矩形

63矩形判定定理2 對角線相等的平行四邊形是矩形

64菱形性質定理1 菱形的四條邊都相等

65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角

66菱形面積=對角線乘積的一半,即S=(a×b)÷2

67菱形判定定理1 四邊都相等的四邊形是菱形

68菱形判定定理2 對角線互相垂直的平行四邊形是菱形

69正方形性質定理1 正方形的四個角都是直角,四條邊都相等

70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

71定理1 關於中心對稱的兩個圖形是全等的

72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分

73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一

點平分,那麼這兩個圖形關於這一點對稱

74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等

75等腰梯形的兩條對角線相等

76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

77對角線相等的梯形是等腰梯形

78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等

79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰

80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc如果ad=bc,那麼a:b=c:d

84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d

85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b

86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例

87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊

89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)

92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)

94 判定定理3 三邊對應成比例,兩三角形相似(SSS)

95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似

96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比

97 性質定理2 相似三角形周長的比等於相似比

98 性質定理3 相似三角形面積的比等於相似比的平方

99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值

100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值

101圓是定點的距離等於定長的點的集合

102圓的內部可以看作是圓心的距離小於半徑的點的集合

103圓的外部可以看作是圓心的距離大於半徑的點的集合

104同圓或等圓的半徑相等

105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

109定理 不在同一直線上的三點確定一個圓。

110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

112推論2 圓的兩條平行弦所夾的弧相等

113圓是以圓心為對稱中心的中心對稱圖形

114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦

相等,所對的弦的弦心距相等

115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等

116定理 一條弧所對的圓周角等於它所對的圓心角的一半

117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形

120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角

121①直線L和⊙O相交 d

②直線L和⊙O相切 d=r

③直線L和⊙O相離 d>r

122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線

123切線的性質定理 圓的切線垂直於經過切點的半徑

124推論1 經過圓心且垂直於切線的直線必經過切點

125推論2 經過切點且垂直於切線的直線必經過圓心

126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

127圓的外切四邊形的兩組對邊的和相等

128弦切角定理 弦切角等於它所夾的弧對的圓周角

129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等

130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等

131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項

132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

134如果兩個圓相切,那麼切點一定在連心線上

135①兩圓外離 d>R+r ②兩圓外切 d=R+r

③兩圓相交 R-rr)

④兩圓內切 d=R-r(R>r) ⑤兩圓內含dr)

136定理 相交兩圓的連心線垂直平分兩圓的公共弦

137定理 把圓分成n(n≥3):

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

139正n邊形的每個內角都等於(n-2)×180°/n

140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

142正三角形面積√3a/4 a表示邊長

143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

144弧長計算公式:L=n兀R/180

145扇形面積公式:S扇形=n兀R^2/360=LR/2

146內公切線長= d-(R-r) 外公切線長= d-(R+r)
公式分類 公式表達式

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理

判別式

b2-4ac=0 註:方程有兩個相等的實根

b2-4ac>0 註:方程有兩個不等的實根

b2-4ac<0 註:方程沒有實根,有共軛復數根

三角函數公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角

圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標

圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0

拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py

直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h

正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'

圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2

圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l

弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r

錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h

斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長

柱體體積公式 V=s*h 圓柱體 V=pi*r2h

⑧ 初中數學必背知識點

總結的有點多,請耐心看哈!

希望能幫助你,還請及時採納謝謝!


數學,是一門關於如何思維的科學。熟記數學口訣,是解題的一條捷徑,孩子做題思維就會變快。從而更加深刻的記住知識點,減輕孩子的學習負擔,輕松學習。



下面小優老師將初中數學必須掌握的26個知識點口訣總結如下,希望對你有幫助。


圓的證明不算難,常把半徑直徑連;

有弦可作弦心距,它定垂直平分弦;

直徑是圓最大弦,直圓周角立上邊,

它若垂直平分弦,垂徑、射影響耳邊;

還有與圓有關角,勿忘相互有關聯,

圓周、圓心、弦切角,細找關系把線連

同弧圓周角相等,證題用它最多見,

圓中若有弦切角,夾弧找到就好辦;

圓有內接四邊形,對角互補記心間,

外角等於內對角,四邊形定內接圓;

直角相對或共弦,試試加個輔助圓;

若是證題打轉轉,四點共圓可解難;

要想證明圓切線,垂直半徑過外端,

直線與圓有共點,證垂直來半徑連,

直線與圓未給點,需證半徑作垂線;

四邊形有內切圓,對邊和等是條件;

如果遇到圓與圓,弄清位置很關鍵,

兩圓相切作公切,兩圓相交連公弦。

⑨ 初中數學知識點總結

很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?

知識點

當老師在講完內容之後會講一些課外的內容,一般是定理、概念等等,會讓你對這些知識更加的了解,所以如果對這類題目有問題的同學可以多看一些課外的題目,當然想要提升分數是離不開練習題的,想要多好就需要多做一些習題,但是不可以過多,需要邊做邊思考才可以,這樣所學的知識就會運用出來.

以上就是初中數學應該怎樣學習的內容,如果在這個階段對自己分數不滿意的同學可以借鑒一下以上的內容,或許會對你有一定的幫助,將自身的分數提升.

⑩ 初中數學超綱卻好用的公式這些知識點可以記下來

1、立方和公式是有時在數學運算中需要運用的一個公式。該公式的文字表達為:兩數和,乘它們的平方和與它們的積的差,等於這兩個數的立方和;表達式為:(a+b)(a2-ab+b2)=a3+b3。
2、圓公式:設圓半徑為r,面積為S,則面積S=π·r2(π表示圓周率)。即圓面積等於圓周率乘以圓半徑的平方。
3、橢圓面積公式:S=πab橢圓面積定理:橢圓的面積等於圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。