當前位置:首頁 » 基礎知識 » 高二數學知識點總結大全
擴展閱讀
對新同學有什麼樣的期待 2024-11-20 09:42:21
防疫健康知識講座稿 2024-11-20 09:02:05

高二數學知識點總結大全

發布時間: 2022-06-08 06:11:47

1. 高二數學知識點整理

高中數學內容包括集合與函數、三角函數、不等式、數列、復數、排列、組合、二項式定理、立體幾何、平面解析幾何等部分。具體總結如下:

1、《集合與函數》

內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數。正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。

2、《三角函數》

三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,頂點任意一函數,等於後面兩根除。誘導公式就是好,負化正後大化小,變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值。

3、《不等式》

解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。

4、《數列》

等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。

5、《復數》

虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。

(1)高二數學知識點總結大全擴展閱讀:

1、高中數學許多概念都有著密切的聯系,如平行線段與平行向量、平面角與空間角、方程與不等式、映射與函數、對立事件與互斥事件等等,在教學中應善於尋找、分析其聯系與區別,有利於學生掌握概念的本質。

2、再如,函數概念有兩種定義,一種是初中給出的定義,是從運動變化的觀點出發,其中的對應關系是將自變數的每一個取值,與唯一確定的函數值對應起來:另一種是高中給出的定義,是從集合、對應的觀點出發,其中的對應關系是將原象集合中的每一個元素與象集合中唯一確定的元素對應起來。

2. 高中數學有哪些重點知識點,該如何把握

幾何空間,排列組合,兩元三次方程,集數以及參數,真假命題,這些都是高中數學所要學習的重點知識內容,在課堂上要做好相應的筆記,課後多做題,多復習多練習。

3. 高二數學知識點及公式是什麼

高二數學知識點及公式如下:

1、線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。

2、萬能公式:令tan(a/2)=t、sina=2t/(1+t^2)、cosa=(1-t^2)/(1+t^2)、tana=2t/(1-t^2)。積化和差:sina*cosb=[sin(a+b)+sin(a-b)]/2、cosa*sinb=[sin(a+b)-sin(a-b)]/2、cosa*cosb=[cos(a+b)+cos(a-b)]/2、sina*sinb=-[cos(a+b)-cos(a-b)]/2。

3、如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線。

4、函數的單調性、奇偶性、周期性。例如單調性定義:注意定義是相對於某個具體的區間而言。 判定方法有定義法(作差比較和作商比較)。 導數法(適用於多項式函數) 。

5、如果兩個平面互相垂直,那麼在一個平面內垂直於他們的交線的直線垂直於另一個平面。

4. 高中數學必修二知識點總結

高中數學必修2知識點
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即 .斜率反映直線與軸的傾斜程度.
當 時, ; 當 時, ; 當 時, 不存在.
②過兩點的直線的斜率公式:
注意下面四點:(1)當 時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.
(3)直線方程
①點斜式: 直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1.
②斜截式: ,直線斜率為k,直線在y軸上的截距為b
③兩點式: ( )直線兩點 ,
④截矩式:
其中直線 與 軸交於點 ,與 軸交於點 ,即 與 軸、 軸的截距分別為 .
⑤一般式: (A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行於x軸的直線: (b為常數); 平行於y軸的直線: (a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線 ( 是不全為0的常數)的直線系: (C為常數)
(二)垂直直線系
垂直於已知直線 ( 是不全為0的常數)的直線系: (C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系: ,直線過定點 ;
(ⅱ)過兩條直線 , 的交點的直線系方程為
( 為參數),其中直線 不在直線系中.
(6)兩直線平行與垂直
當 , 時,

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.
(7)兩條直線的交點
相交
交點坐標即方程組 的一組解.
方程組無解 ; 方程組有無數解 與 重合
(8)兩點間距離公式:設 是平面直角坐標系中的兩個點,

(9)點到直線距離公式:一點 到直線 的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解.
二、圓的方程
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑.
2、圓的方程
(1)標准方程 ,圓心 ,半徑為r;
(2)一般方程
當 時,方程表示圓,此時圓心為 ,半徑為
當 時,表示一個點; 當 時,方程不表示任何圖形.
(3)求圓方程的方法:
一般都採用待定系數法:先設後求.確定一個圓需要三個獨立條件,若利用圓的標准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置.
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線 ,圓 ,圓心 到l的距離為 ,則有 ; ;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
設圓 ,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
當 時兩圓外離,此時有公切線四條;
當 時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當 時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當 時,兩圓內切,連心線經過切點,只有一條公切線;
當 時,兩圓內含; 當 時,為同心圓.
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
三、立體幾何初步
1、柱、錐、台、球的結構特徵
(1)稜柱:
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方.
(3)稜台:
幾何特徵:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交於原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;

5. 高中數學最基礎的知識點匯總,謝謝

基礎知識的話,這個文檔我覺得是最全的http://wenku..com/view/f17bda06a6c30c2259019e6b.html

一些易錯點的整理上,這個文檔不錯

http://wenku..com/view/ba0339573c1ec5da50e2700f.html

如果還需要什麼,請追問
求採納啦~~~~~~~~~~~~~~~~~~~~~~~~~~~

6. 高中數學知識點總結(最全版)(強烈推薦)

鏈接:

提取碼: rrtg

高中數學基礎知識梳理(數學小飛俠)

7. 江蘇現在的高一升高二後,高二上學期數學准備學哪些知識點

很多人想知道高二數學的學習上有哪些重要的知識點,小編為大家整理了一些高二數學的重點知識,供參考!

1高二上學期數學知識點總結
一、不等式的性質
1.兩個實數a與b之間的大小關系
2.不等式的性質
(4)(乘法單調性)
3.絕對值不等式的性質
(2)如果a>0,那麼
(3)|a?b|=|a|?|b|.
(5)|a|-|b|≤|a±b|≤|a|+|b|.
(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.
二、不等式的證明
1.不等式證明的依據
(2)不等式的性質(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,當且僅當a=b時取「=」號)
2.不等式的證明方法
(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.
用比較法證明不等式的步驟是:作差——變形——判斷符號.
(2)綜合法:從已知條件出發,依據不等式的性質和已證明過的不等式,推導出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
(3)分析法:從欲證的不等式出發,逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
證明不等式除以上三種基本方法外,還有反證法、數學歸納法等.
三、解不等式
1.解不等式問題的分類
(1)解一元一次不等式.
(2)解一元二次不等式.
(3)可以化為一元一次或一元二次不等式的不等式.
①解一元高次不等式;
②解分式不等式;
③解無理不等式;
④解指數不等式;
⑤解對數不等式;
⑥解帶絕對值的不等式;
⑦解不等式組.
2.解不等式時應特別注意下列幾點:
(1)正確應用不等式的基本性質.
(2)正確應用冪函數、指數函數和對數函數的增、減性.
(3)注意代數式中未知數的取值范圍.
3.不等式的同解性
(5)|f(x)|0)
(6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②與g(x)<0同解.
(9)當a>1時,af(x)>ag(x)與f(x)>g(x)同解,當0ag(x)與f(x)
四、《不等式》
解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。
證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。
五、《立體幾何》
點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
六、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。
笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學
七、《排列、組合、二項式定理》
加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。
兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。
排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。
關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。
八、《復數》
虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,
兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。
2高二上學期數學重點知識大全
一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件.
二、函數(30課時,12個)1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例.
三、數列(12課時,5個)1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式.
四、三角函數(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4,單位圓中的三角函數線;5.同角三角函數的基本關系式;6.正弦、餘弦的誘導公式』7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16餘弦定理;17斜三角形解法舉例.
五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移.
六、不等式(22課時,5個)1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.
七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標准方程和一般方程;12.圓的參數方程.
八、圓錐曲線(18課時,7個)1橢圓及其標准方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標准方程;5.雙曲線的簡單幾何性質;6.拋物線及其標准方程;7.拋物線的簡單幾何性質.
九、(B)直線、平面、簡單何體(36課時,28個)1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5,直線和平面垂直的判與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.棱錐;27.正多面體;28.球.
十、排列、組合、二項式定理(18課時,8個)1.分類計數原理與分步計數原理.2.排列;3.排列數公式』4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質.
3高二數學期末復習建議
1、高二數學期末考試首先是對高二數學學習的檢測,所以先要保證自己的基礎知識沒有問題,那麼就需要高二學生在進行高二數學期末復習的時候要著重書上的重要知識點,在做題的時候一定要知道自己運用的什麼知識點,如有不會及時解決。
2、高二數學期末考試中基礎題為主要,所以在進行練習的時候要對典型題的解題步驟和易錯要點注意。比如利用導數求函數單調性的步驟,數學歸納法的基本思路和步驟,排列組合中的分類討論、排除法問題,用二項式定理求展開式中某項系數問題,服從典型分布的離散型隨機變數問題。一定要細心,保證自己會的不丟分。
3、高二數學期末復習的時候就要學會掌控時間,數學對於有些人來說做題是很費時間的,所以一定要勤加練習,別造成考試的時候題會做,但是沒有時間做,這樣就很傷心了。
4、學習不能是死學,一定要活學活用,一個題目會了就要保證相類似的題型就差不多沒問題。
5、考試中也會有難題出現,這就考查學生的能力了,所以在高二數學期末復習中還要做一些難題,以保證考試的時候沒有思路。

8. 高中數學所有知識點歸納

高中數學基礎知識梳理(數學小飛俠)

鏈接:

提取碼:9bdp復制這段內容後打開網路網盤手機App,操作更方便哦

若資源有問題,歡迎追問~

9. 高中數學知識點整理

下面,我分章節講一下數學的主幹內容:那些雖然課本上沒有,但是必須講也必須學會的東西。

目錄(未完待更新):
零,總論與試卷分析(就是上文內容)
一,函數
1.1 集合
1.2 函數的定義域
1.3 函數的值域
1.4 單調性
1.5 奇偶性,對稱性,周期性
1.6 指數函數,對數函數
1.7 復合函數
1.8 含參函數
二,三角函數(僅函數部分,解三角形部分等講完平面向量和平面幾何再說)
2.1 正弦,餘弦,正切
2.2 三角函數線
2.3 三角函數的基本形式與伸縮
2.4 三角變換公式和萬能公式
2.5 三角函數最值問題
三,平面幾何,平面向量,與直線與圓的方程
3.1 平行線和相交線
3.2 三角形
3.3 圓
3.4 基向量,正交基,和坐標系
3.5 平面向量與基本幾何圖形
3.6 向量運算律與推論
3.7 直線方程
3.8 圓的方程
3.9 用向量解決平面幾何問題
四,解三角形
4.1 正弦定理
4.2 餘弦定理
4.3 正弦定理和餘弦定理的應用
4.4 解三角形中的多解問題
4.5 解三角形中的最值問題
五,立體幾何
5.1 基本幾何體:柱,錐,台,球
5.2 三視圖與直觀圖
一,函數
1.1 集合。
集合的元素必須是確定的,並且是唯一的。比如,一個集合里不能有兩個「1」。
1.2 函數的定義域。
除了最常見的幾個:分母不為零,對數函數的真數大於零,偶數次方的被開方數不為負(注意我前面幾個表述,其中暗含了區間的開閉),正切餘切函數不能恰好取定義中分母為零的角度(正切餘切都是用比值定義的) 還一定要注意一個容易被忽略的易錯點: 無定義。
1.3 函數的值域
分離常數法 判別式法 換元法 基本不等式法 等等幾種方法,看起來方法非常繁多,似乎挺難總結,但是,我們如果按題目的形式進行總結,每種只需要掌握一種,或者兩種就可以了