A. 高中物理知識點總結
一、質點的運動(1)------直線運動
1)勻變速直線運動
1.平均速度V平=s/t(定義式) 2.有用推論Vt2-Vo2=2as
3.中間時刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0}
8.實驗用推論Δs=aT2 {Δs為連續相鄰相等時間(T)內位移之差}
9.主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。
注:①平均速度是矢量, ②物體速度大,加速度不一定大,
③a=(Vt-Vo)/t只是量度式,不是決定式,
④其它相關內容:質點、位移和路程、參考系、時間與時刻、s-t圖、v--t圖、速度與速率、瞬時速度。
2)自由落體運動
1.初速度Vo=0 a=g; 2.末速度Vt=gt
3.下落高度h=gt2/2(從Vo位置向下計算) 4.推論Vt2=2gh
注:①自由落體運動是初速度為零的勻加速直線運動,遵循勻變速直線運動規律;
②a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近較小,高山處比平地小,方向豎直向下)。
3)豎直上拋運動
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推論Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(拋出點算起)
5.往返時間t=2Vo/g (從拋出落回原位置的時間)
注:①全過程處理:是勻減速直線運動,以向上為正方向,加速度取負值;
②分段處理:向上為勻減速直線運動,向下為自由落體運動,具有對稱性;
③上升與下落過程具有對稱性,如在同點速度等值反向等。
二、質點的運動(2)----曲線運動、萬有引力
1)平拋運動
1.水平方向速度:Vx=Vo 2.豎直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.豎直方向位移:y=gt2/2
5.運動時間t=(2y/g)1/2 (通常又表示為(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向與水平夾角β:tgβ=Vy/Vx=gt/V0=2tgα;
7.合位移:s=(x2+y2)1/2, 位移方向與水平夾角α:tgα=y/x=gt/2Vo=tgβ/2
8.水平方向加速度:ax=0;豎直方向加速度:ay=g
注①平拋運動是勻變速曲線運動,加速度為g,通常可看作是水平方向的勻速直線運與豎直方向的自由落體運動的合成;
②運動時間由下落高度h(y)決定與水平拋出速度無關;
③θ與β的關系為tgβ=2tgα;
④在平拋運動中時間t是解題關鍵;
⑤做曲線運動物體必有加速度,當速度方向與所受合力(加速度)方向不在同一直線上時,物體做曲線運動。
2)勻速圓周運動
1.線速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r
4.向心力F心=mV2/r=mω2r=m (2π/T)2r=mωv=F合
5.周期與頻率:T=1/f 6.角速度與線速度的關系:V=ωr
7.角速度與轉速的關系ω=2πn (此處頻率與轉速意義相同)
8.主要物理量及單位:弧長(s):米(m);角度(Φ):弧度(rad);頻率(f):赫(Hz);周期(T):秒(s);轉速(n):r/s;半徑(r):米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:①向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直指向圓心.
②做勻速圓周運動的物體,其向心力等於合力,並且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力永不做功,但動量不斷改變.
(3)萬有引力
1.開普勒第三定律:T2/R3=K=4π2/GM)
(R:軌道半徑,T:周期,K:常量(與行星質量無關,取決於中心天體的質量))
2.萬有引力定律:F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它們的連線上)
3.天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2 (R:天體半徑(m),M:天體質量(kg))
4.衛星繞行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步衛星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km.h:距地球表面的高度,r地:地球的半徑}
注:①天體運動所需的向心力由萬有引力提供,F向=F萬;
②應用萬有引力定律可估算天體的質量密度等;
③地球同步衛星只能運行於赤道上空,運行周期和地球自轉周期相同;線速度、離地高度、加速度都恆定。
④衛星軌道半徑變小時,勢能變小、動能變大、速度變大、周期變小(一同三反);
⑤地球衛星的最大環繞速度和最小發射速度均為7.9km/s。
三、力(常見的力、力的合成與分解)
1)常見的力
1.重力G=mg (方向豎直向下,g=9.8m/s2≈10m/s2,作用點在重心,適用於地球表面附近)
2.胡克定律F=kx (方向沿恢復形變方向,k:勁度系數(N/m),x:形變數(m))
3.滑動摩擦力F=μFN (與物體相對運動方向相反,μ:摩擦因數,FN:正壓力(N))
4.靜摩擦力0≤f靜≤fm (與物體相對運動趨勢方向相反,fm為最大靜摩擦力)
5.萬有引力F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它們的連線上)
6.靜電力F=kQ1Q2/r2 (k=9.0×109N•m2/C2,方向在它們的連線上)
7.電場力F=qE (E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)
8.安培力F=BILsinθ (θ為B與L的夾角,當L⊥B時:F=BIL,B//L時:F=0)
9.洛侖茲力f=qBVsinθ (θ為B與V的夾角,當V⊥B時:f=qVB,V//B時:f=0)
注:①勁度系數k由彈簧自身決定;
②摩擦因數μ與壓力大小及接觸面積大小無關,由接觸面材料特性與表面狀況等決定;
③fm略大於μFN,一般視為fm≈μFN; ④其它相關內容:靜摩擦力(大小、方向)〔〕;
⑤物理量符號及單位B:磁感強度(T),L:有效長度(m),I:電流強度(A),V:帶電粒子速度(m/s),q:帶電粒子電量(C); ⑥安培力與洛侖茲力方向均用左手定則判定。
2)力的合成與分解
1.同一直線上力的合成 同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2 (餘弦定理)
F1⊥F2時(即正交):F=(F12+F22)1/2
3.合力大小范圍:|F1-F2|≤F合≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ (β為合力與x軸之間的夾角tgβ=Fy/Fx)
註:①力(矢量)的合成與分解遵循平行四邊形定則;
②合力與分力的關系是等效替代關系,可用合力替代分力的共同作用,反之也成立;
③除公式法外,也可用作圖法求解,此時要選擇標度,嚴格作圖;
④F1與F2的值一定時,F1與F2的夾角(α角)越大,合力越小;
⑤同一直線上力的合成,可沿直線取正方向,用正負號表示力的方向,化簡為代數運算。
四、動力學(運動和力)
1.牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止
2.牛頓第二運動定律:F合=ma或a=F合/m (a由合外力決定,與合外力方向一致)
3.牛頓第三定律:F=-F´{負號表方向相反,兩力各自作用在對方.平衡力與作用力反作用力區別.實際應用:反沖運動}
4.共點力的平衡F合=0,推廣 {正交分解法、三力匯交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛頓運動定律的適用條件:適用於解決低速運動問題,適用於宏觀物體,不適用於處理高速問題,不適用於微觀粒子〔〕 注:平衡狀態是指物體處於靜止或勻速直線狀態,或者是勻速轉動。
五、振動和波(機械振動與機械振動的傳播)
1.簡諧振動F=-kx {F:回復力,k:比例系數,x:位移,負號表示F的方向與x始終反向}
2.單擺周期T=2π(L/g)1/2 {L:擺長(m),g:當地重力加速度值,成立條件:擺角θ<100;L»r}
3.受迫振動頻率特點:f=f驅動力
4.發生共振條件:f驅動力=f固,A=max,共振的防止和應用 〔〕
5.機械波、橫波、縱波 〔〕
6.波速v=s/t=λf=λ/T {波傳播過程中,一個周期向前傳播一個波長;波速大小由介質本身所決定}
7.聲波的波速(在空氣中) 0℃:332m/s;20℃:344m/s;30℃:349m/s;(聲波是縱波)
8.波發生明顯衍射(波繞過障礙物或孔繼續傳播)條件:障礙物或孔的尺寸比波長小,或者相差不大, λ大(f小)衍射明顯。
9.波的干涉條件:兩列波頻率相同、(相位相同),
振動加強:到兩振源的距離=波長整數倍 ΔS=nλ
振動減弱:到兩振源的距離=半個波長的奇數倍 ΔS=(2n+1)λ/2
10.多普勒效應:由於波源與觀測者間的相互運動,導致波源發射頻率與接收頻率不同
{相互接近,接收頻率增大,反之,減小〔〕}
注:①物體的固有頻率與振幅、驅動力頻率無關,取決於振動系統本身;
②加強區是波峰與波峰或波谷與波谷相遇處(振動步調相同的地方),這些點也在作振動。
減弱區則是波峰與波谷相遇處;(振動步調反相的地方)
③波只是傳播了振動形式,質點本身不隨波發生遷移(只在平衡位置附近振動),是傳遞能量的一種方式; 也傳遞信號。
④反射、干涉、衍射、多普勒效應等是波特有的現像;
⑤振動圖象與波動圖象區別;
⑥其它相關內容:超聲波及其應用、振動中的能量轉化〔〕。
六、沖量與動量(物體的受力與動量的變化)
1.動量:p=mv= {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同}
3.沖量:I=Ft {I:沖量(N•s),F:恆力(N),t:力的作用時間(s),方向由F決定}
4.動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式}
5.動量守恆定律:p前總=p後總(或p=p』)´也可以是m1v1+m2v2=m1v1´+m2v2´
6.彈性碰撞:Δp=0;ΔEk=0 {即系統的動量和動能均守恆}
7.非彈性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:損失的動能,EKm:損失的最大動能}
8.完全非彈性碰撞Δp=0;ΔEK=ΔEKm {碰後連在一起成一整體}
9.物體m1以v1初速度與靜止的物體m2發生彈性正碰:
v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2)
10.由9得的推論-----等質量彈性正碰時二者交換速度(動能守恆、動量守恆)
11.子彈m水平速度vo射入靜止置於水平光滑地面的長木塊M,並嵌入其中一起運動時的機械能損失 E損=mvo2/2-(M+m)vt2/2=fs相對 {vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}
註:①正碰又叫對心碰撞,速度方向在它們「中心」的連線上;
②以上表達式除動能外均為矢量運算,在一維情況下可取正方向化為代數運算;
③系統動量守恆條件:合外力為零或系統不受外力,則系統動量守恆(碰撞問題、爆炸問題、反沖問題等);
④碰撞過程(時間極短,發生碰撞的物體構成的系統)視為動量守恆,原子核衰變時動量守恆;
⑤爆炸過程視為動量守恆,這時化學能轉化為動能,動能增加;
⑥其它相關內容:反沖運動、火箭、航天技術的發展和宇宙航行〔〕。
七、功和能(功是能量轉化的量度)
1.功:W=Fscosα {定義式}{功(J),F:恆力(N),s:位移(m),α:F、s間的夾角}
2.重力做功:Wab=mghab {m:物體質量,g=9.8m/s2≈10m/s2,hab:a與b高度差(hab=ha-hb)}
3.電場力做功:Wab=qUab {q:電量(C),Uab:a與b之間電勢差(V)即Uab= a- b}
4.電功:W=UIt(普適式) {U:電壓(V),I:電流(A),t:通電時間(s)}
5.功率:P=W/t(定義式) {P:功率[瓦(W)],W:t時間內所做的功(J),t:做功所用時間(s)}
6.汽車牽引力的功率:P=Fv;P平=Fv平 {P:瞬時功率,P平:平均功率}
7.汽車以恆定功率啟動、以恆定加速度啟動、汽車最大行駛速度(vmax=P額/f)
8.電功率:P=UI(普適式) {U:電路電壓(V),I:電路電流(A)}
9.焦耳定律:Q=I2Rt {Q:電熱(J),I:電流強度(A),R:電阻值(Ω),t:通電時間(s)}
10.純電阻電路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.動能:Ek=mv2/2=p2/2m {Ek:動能(J),m:物體質量(kg),v:物體瞬時速度(m/s)}
12.重力勢能:EP=mgh {EP :重力勢能(J),g:重力加速度,h:豎直高度(m)(從零勢能面起)}
13.電勢能: A=q A {EA:帶電體在A點電勢能(J),q:電量(C), A:A點的電勢(V)(從零勢能面起)}
14.動能定理(對物體做正功,物體的動能增加):W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力對物體做的總功,ΔEK:動能變化ΔEK=(mvt2/2-mvo2/2)}
15.機械能守恆定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功與重力勢能的變化(重力做功等於物體重力勢能增量的負值)WG=-ΔEP
注:①功率大小表示做功快慢,做功多少表示能量轉化數量;
②Oo≤α<90o 做正功;90o<α≤180o做負功;α=90o不做功(力的方向與位移(速度)方向垂直時該力不做功);
③重力(彈力、電場力、分子力)做正功,則重力(彈性、電、分子)勢能減少
④重力做功和電場力做功均與路徑無關(見2、3兩式);
⑤機械能守恆成立條件:除重力(彈力)外其它力不做功,只是動能和勢能之間的轉化;
⑥能的其它單位換算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;1u=931.5Mev
⑦*彈簧彈性勢能E=kx2/2,與勁度系數和形變數有關。
八、分子動理論、能量守恆定律
1.阿伏加德羅常數NA=6.02×1023/mol;分子直徑數量級10-10米、埃;10-9米納米.
膜法測分子直徑d=V/s {V:單分子油膜的體積(m3),S:油膜表面積(m2)}
3.分子動理論內容:物質由大量分子組成;大量分子在做規則的熱運動;分子間存在相互作用力。
4.分子間的引力和斥力 (1)r<r0,f引<f斥,F分子力表現為斥力
(2)r=r0,f引=f斥,F分子力=0,E分子勢能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表現為引力
(4)r>10r0,f引<f斥≈0,F分子力≈0,E分子勢能≈0
5.熱力學第一定律ΔE=W+Q;------能的轉化守恆定律;------第一類永動機不可能製成.
{(做功和熱傳遞,這兩種改變物體內能的方式,在效果上是等效的),W:外界對物體做的正功(J),Q:物體吸收的熱量(J),ΔU:增加的內能(J),涉及到第一類永動機不可造出
6.熱力學第二定律---第二類永動機不能製成---實質:涉及熱現象(自然界中實際)的宏觀過程都具方向性.
熱傳遞表述: 不可能使熱量由低溫物體傳遞到高溫物體,而不引起其它變化(熱傳導的方向性);
機械能與內能轉化表述:不可能從單一熱源吸收熱量並把它全部用來做功,而不引起其它變化(機械能與內能轉化的方向性)
7.熱力學第三定律:熱力學零度不可達到 {宇宙溫度下限:-273.15攝氏度(熱力學零度)}
注:①布朗粒子不是液體分子,而是固體顆粒,能夠反映液體分子的無規則運動,布朗顆粒越小,布朗運動越明顯,溫度越高越劇烈;
②溫度是分子平均動能的標志;
③分子間的引力和斥力同時存在,都隨分子間距離的增大而減小,但斥力減小得比引力快;
④分子力做正功,分子勢能減小,在r0處F引=F斥;且分子勢能最小;
⑤氣體膨脹,外界對氣體做正功W>0, 內能增大ΔE>0;溫度升高,吸收熱量,Q>0, 內能增大ΔE>0;
⑥物體內能是指物體所有分子動能和分子勢能的總和,對於理想氣體分子間作用力為零,分子勢能為零;
⑦r0為分子處於平衡狀態時,分子間的距離;
⑧其它相關內容:能的轉化和守恆定律、能源的開發與利用、環保、物體的內能、分子的動能、分子勢能。
九、氣體的性質
1.氣體的狀態參量:
溫度: 宏觀上: 物體的冷熱程度; 微觀上: 物體內部分子無規則運動的劇烈程度的標志,
熱力學溫度與攝氏溫度關系:T=t+273 {T:熱力學溫度(K),t:攝氏溫度(℃)}
體積V:氣體分子所能占據的空間, 單位換算:1m3=103L=106mL
壓強p:單位面積上,大量氣體分子頻繁撞擊器壁而產生持續、均勻的壓力,
標准大氣壓:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.氣體分子運動的特點:分子間空隙大;除了碰撞的瞬間外,相互作用力微弱;分子運動速率很大
3.理想氣體的狀態方程:p1V1/T1=p2V2/T2 {PV/T=恆量,T為熱力學溫度(K)}
注:①理想氣體的內能與理想氣體的體積無關,與溫度和物質的量有關;
②公式3成立條件為一定質量的理想氣體,使用注意溫度的單位,t為攝氏溫度(℃),T為熱力學溫度(K)。
十、電場
1.兩種電荷、電荷守恆定律、元電荷: (e=1.60×10-19C);帶電體電荷量等於元電荷的整數倍
2.庫侖定律:F=kQ1Q2/r2(在真空中) F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N•m2/C2, Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引
3.電場強度:E=F/q(定義式、計算式)
{E:電場強度(N/C)是矢量(電場的疊加原理)q:檢驗電荷的電量(C)}
4.真空點(源)電荷形成的電場E=kQ/r2 {r:源電荷到該位置的距離(m),Q:源電荷的電量}
5.勻強電場的場強E=UAB/d {UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}
6.電場力:F=qE {F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}
7.電勢與電勢差:UAB= a- b, UAB=WAB/q=-ΔEAB/q
8.電場力做功:WAB=qUAB=qEd {WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),
UAB:電場中A,B兩點間電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)
9.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}
10.電勢能的變化Δ AB= B- A {帶電體在電場中從A位置到B位置時電勢能的差值}
11.電場力做功與電勢能變化Δ AB=-WAB=-qUAB (電勢能的增量等於電場力做功的負值)
12.電容C=Q/U(定義式,計算式) {C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}
13.平行板電容器電容C=εS/4πkd (S:兩極板正對面積,d:兩極板間的垂直距離,ε:介電常數)
電容器兩種動態分析:①始終與電源相接u不變;②充電後與電源斷開q不變.距離d變化時各物理量的變化情況
14.帶電粒子在電場中的加速(Vo=0): W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)
類平拋運動 :垂直電場方向: 勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)
平行電場方向: 初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m
注:①兩個完全相同的帶電金屬小球接觸時,電量分配規律:原帶異種電荷的先中和後平分,原帶同種電荷的總量平分;
②靜電場的電場線從正電荷出發終止於負電荷,電場線不相交,切線方向為場強方向,電場線密處場強大,順著電場線電勢越來越低,電場線與等勢線垂直;變化電場的電場線是閉合的:電磁場.
③常見電場的電場線分布要求熟記,特別是等量同種電荷和等量異種電荷連線上及中垂線上的場強
④電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關;
⑤處於靜電平衡導體是個等勢體,其表面是個等勢面,導體外表面附近的電場線垂直於導體表面(距導體遠近不同的等勢面的特點?),導體內部合場強為零,導體內部沒有凈電荷,凈電荷只分布於導體外表面;
⑥電容單位換算:1F=106μF=1012PF;
⑦電子伏(eV)是能量的單位,1eV=1.60×10-19J;
⑧其它相關內容:靜電屏蔽、示波管、示波器及其應用、等勢面〔〕。
十一、恆定電流
1.電流強度:宏觀:I=q/t(定義式) (I:電流強度(A),q:在時間t內通過載面的電量(C),t:時間(s) 微觀:I=nesv (n單位體積自由電何數,e自由電荷電量,s導體截面積,v自由電荷定向移動速率)
2.歐姆定律:I=U/R {I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}
3.電阻、電阻定律:R=ρL/S {ρ:電阻率(Ω•m),L:導體的長度(m),S:導體橫截面積(m2)}
4.閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外
{I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}
5.電功與電功率:W=Pt= UIt, P=UI {W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}
6.焦耳定律:Q=I2Rt
{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}
7.純電阻電路中:由於I=U/R,W=Q,因此W=QU=UIt=I2Rt=U2t/R
8.電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總
{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}
9.電路的串/並聯 串聯電路(P、U與R成正比) 並聯電路(P、I與R成反比)
電阻關系(串同並反) R串=R1+R2+R3+ 1/R並=1/R1+1/R2+1/R3+
電流關系 I總=I1=I2=I3 I並=I1+I2+I3+
電壓關系 U總=U1+U2+U3+ U總=U1=U2=U3
功率分配 P總=P1+P2+P3+ P總=P1+P2+P3+
10.歐姆表測電阻
(1)電路組成 內電路和外電路
(2)測量原理
兩表筆短接後,調節Ro使電表指針滿偏,得 Ig=E/(r+Rg+Ro)
接入被測電阻Rx後通過電表的電流為 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由於Ix與Rx對應,因此可指示被測電阻大小
(3)使用方法:機械調零、選擇量程、歐姆調零、測量讀數{注意擋位(倍率)}、撥off擋。
(4)注意:測量電阻時,要與原電路斷開,選擇量程使指針在中央附近,每次換擋要重新短接歐姆調零。
11.伏安法測電阻
電流表內接法: 電流表外接法:
電壓表示數:U=UR+UA 電流表示數:I=IR+IV
Rx的測量值=U/I=(UA+UR)/IR Rx的測量值=U/I=UR/(IR+IV)
=RA+Rx>R真 =RVRx/(RV+R)<R真
選用電路條件Rx»RA [或Rx>(RARV)1/2] 選用電路條件Rx»RV [或Rx<(RARV)1/2]
12.滑動變阻器在電路中的限流接法與分壓接法
限流接法 分壓供電
電壓調節范圍小,電路簡單,功耗小 電壓調節范圍大,電路復雜,功耗較大
便於調節電壓的選擇條件Rp>Rx 便於調節電壓的選擇條件Rp<Rx
注:①單位換算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
②各種材料的電阻率都隨溫度的變化而變化,金屬電阻率隨溫度升高而增大;
③串聯總電阻大於任何一個分電阻,並聯總電阻小於任何一個分電阻;
④當電源有內阻時,外電路電阻增大時,總電流減小,路端電壓增大;
⑤當外電路電阻等於電源電阻時,電源輸出功率最大,此時的輸出功率為E2/(4r);效率50%
⑥其它相關內容:電阻率與溫度的關系半導體及其應用超導及其應用〔〕。
十二、磁場
1.磁感應強度是用來表示磁場的強弱和方向的物理量,是矢量,單位:(T),1T=1N/A•m
2.安培力F=BIL; (註:L⊥B) {B:磁感應強度(T),F:安培力(F),I:電流強度(A),L:導線長度(m)}
3.洛侖茲力f=qVB (注V⊥B);質譜儀〔〕 {f:洛侖茲力(N),q:帶電粒子電量(C),V:帶電粒子速度(m/s)
4.在重力忽略不計(不考慮重力)的情況下,帶電粒子進入磁場的運動情況(掌握兩種):
(1)帶電粒子沿平行磁場方向進入磁場:不受洛侖茲力的作用,做勻速直線運動V=V0
(2)帶電粒子沿垂直磁場方向進入磁場:做勻速圓周運動,規律如下:
(a) F向=f洛=mV2/r=mω2r=m (2π/T)2r=qVB;
r=mV/qB; T=2πm/qB;
(b) 運動周期與圓周運動的半徑和線速度無關,洛侖茲力對帶電粒子不做功(任何情況下);
(c) 解題關鍵:畫軌跡、找圓心、定半徑、圓心角=二倍弦切角。
註:1安培力和洛侖茲力的方向均可由左手定則判定,只是洛侖茲力要注意帶電粒子的正負;
2磁感線的特點及其常見磁場的磁感線分布要掌握〔〕;
(d)其它相關內容:地磁場、磁電式電表原理、迴旋加速器、磁性材料
B. 高三物理知識點總結
高中物理公式大全以及高中物理定理、定律、公式表
一、質點的運動(1)------直線運動
1)勻變速直線運動
1、速度Vt=Vo+at 2.位移s=Vot+at²/2=V平t= Vt/2t
3.有用推論Vt²-Vo²=2as
4.平均速度V平=s/t(定義式)
5.中間時刻速度Vt/2=V平=(Vt+Vo)/2
6.中間位置速度Vs/2=√[(Vo²+Vt²)/2]
7.加速度a=(Vt-Vo)/t {以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0}
8.實驗用推論Δs=aT²{Δs為連續相鄰相等時間(T)內位移之差}
9.主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。
註:(1)平均速度是矢量; (2)物體速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是決定式;
(4)其它相關內容:質點.位移和路程.參考系.時間與時刻;速度與速率.瞬時速度。
2)自由落體運動
1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(從Vo位置向下計算) 4.推論Vt2=2gh
注:(1)自由落體運動是初速度為零的勻加速直線運動,遵循勻變速直線運動規律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下)。
(3)豎直上拋運動
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推論Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(拋出點算起)
5.往返時間t=2Vo/g (從拋出落回原位置的時間)
注:(1)全過程處理:是勻減速直線運動,以向上為正方向,加速度取負值;
(2)分段處理:向上為勻減速直線運動,向下為自由落體運動,具有對稱性;
(3)上升與下落過程具有對稱性,如在同點速度等值反向等。
二、力(常見的力、力的合成與分解)
(1)常見的力
1.重力G=mg (方向豎直向下,g=9.8m/s2≈10m/s2,作用點在重心,適用於地球表面附近)
2.胡克定律F=kx {方向沿恢復形變方向,k:勁度系數(N/m),x:形變數(m)}
3.滑動摩擦力F=μFN {與物體相對運動方向相反,μ:摩擦因數,FN:正壓力(N)}
4.靜摩擦力0≤f靜≤fm (與物體相對運動趨勢方向相反,fm為最大靜摩擦力)
5.萬有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它們的連線上)
6.靜電力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它們的連線上)
7.電場力F=Eq (E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)
8.安培力F=BILsinθ (θ為B與L的夾角,當L⊥B時:F=BIL,B//L時:F=0)
9.洛侖茲力f=qVBsinθ (θ為B與V的夾角,當V⊥B時:f=qVB,V//B時:f=0)
注:(1)勁度系數k由彈簧自身決定;
(2)摩擦因數μ與壓力大小及接觸面積大小無關,由接觸面材料特性與表面狀況等決定;
(3)fm略大於μFN,一般視為fm≈μFN;
(4)其它相關內容:靜摩擦力(大小、方向);
(5)物理量符號及單位B:磁感強度(T),L:有效長度(m),I:電流強度(A),V:帶電粒子速度(m/s),q:帶電粒子(帶電體)電量(C);
(6)安培力與洛侖茲力方向均用左手定則判定。
2)力的合成與分解
1.同一直線上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(餘弦定理) F1⊥F2時:F=(F12+F22)1/2
3.合力大小范圍:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β為合力與x軸之間的夾角tgβ=Fy/Fx)
註:(1)力(矢量)的合成與分解遵循平行四邊形定則;
(2)合力與分力的關系是等效替代關系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作圖法求解,此時要選擇標度,嚴格作圖;
(4)F1與F2的值一定時,F1與F2的夾角(α角)越大,合力越小;
(5)同一直線上力的合成,可沿直線取正方向,用正負號表示力的方向,化簡為代數運算。
三、動力學(運動和力)
1.牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止
2.牛頓第二運動定律:F合=ma或a=F合/ma{由合外力決定,與合外力方向一致}
3.牛頓第三運動定律:F=-F′{負號表示方向相反,F、F′各自作用在對方,平衡力與作用力反作用力區別,實際應用:反沖運動}
4.共點力的平衡F合=0,推廣 {正交分解法、三力匯交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛頓運動定律的適用條件:適用於解決低速運動問題,適用於宏觀物體,不適用於處理高速問題,不適用於微觀粒子
注:平衡狀態是指物體處於靜止或勻速直線狀態,或者是勻速轉動。
二、質點的運動(2)----曲線運動、萬有引力
1)平拋運動
1.水平方向速度:Vx=Vo 2.豎直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.豎直方向位移:y=gt2/2
5.運動時間t=(2y/g)1/2(通常又表示為(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向與水平夾角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向與水平夾角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;豎直方向加速度:ay=g
註:(1)平拋運動是勻變速曲線運動,加速度為g,通常可看作是水平方向的勻速直線運與豎直方向的自由落體運動的合成;
(2)運動時間由下落高度h(y)決定與水平拋出速度無關;
(3)θ與β的關系為tgβ=2tgα;
(4)在平拋運動中時間t是解題關鍵;(5)做曲線運動的物體必有加速度,當速度方向與所受合力(加速度)方向不在同一直線上時,物體做曲線運動。
2)勻速圓周運動
1.線速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期與頻率:T=1/f 6.角速度與線速度的關系:V=ωr
7.角速度與轉速的關系ω=2πn(此處頻率與轉速意義相同)
8.主要物理量及單位:弧長(s):(m);角度(Φ):弧度(rad);頻率(f);赫(Hz);周期(T):秒(s);轉速(n);r/s;半徑(r):米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
註:(1)向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直,指向圓心;
(2)做勻速圓周運動的物體,其向心力等於合力,並且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力不做功,但動量不斷改變.
3)萬有引力
1.開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:周期,K:常量(與行星質量無關,取決於中心天體的質量)}
2.萬有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它們的連線上)
3.天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天體半徑(m),M:天體質量(kg)}
4.衛星繞行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步衛星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑}
注:(1)天體運動所需的向心力由萬有引力提供,F向=F萬;
(2)應用萬有引力定律可估算天體的質量密度等;
(3)地球同步衛星只能運行於赤道上空,運行周期和地球自轉周期相同;
(4)衛星軌道半徑變小時,勢能變小、動能變大、速度變大、周期變小(一同三反);
(5)地球衛星的最大環繞速度和最小發射速度均為7.9km/s。
五、功和能(功是能量轉化的量度)
1.功:W=Fscosα(定義式){W:功(J),F:恆力(N),s:位移(m),α:F、s間的夾角}
2.重力做功:Wab=mghab {m:物體的質量,g=9.8m/s2≈10m/s2,hab:a與b高度差(hab=ha-hb)}
3.電場力做功:Wab=qUab {q:電量(C),Uab:a與b之間電勢差(V)即Uab=φa-φb}
4.電功:W=UIt(普適式) {U:電壓(V),I:電流(A),t:通電時間(s)}
5.功率:P=W/t(定義式) {P:功率[瓦(W)],W:t時間內所做的功(J),t:做功所用時間(s)}
6.汽車牽引力的功率:P=Fv;P平=Fv平 {P:瞬時功率,P平:平均功率}
7.汽車以恆定功率啟動、以恆定加速度啟動、汽車最大行駛速度(vmax=P額/f)
8.電功率:P=UI(普適式) {U:電路電壓(V),I:電路電流(A)}
9.焦耳定律:Q=I2Rt {Q:電熱(J),I:電流強度(A),R:電阻值(Ω),t:通電時間(s)}
10.純電阻電路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.動能:Ek=mv2/2 {Ek:動能(J),m:物體質量(kg),v:物體瞬時速度(m/s)}
12.重力勢能:EP=mgh {EP :重力勢能(J),g:重力加速度,h:豎直高度(m)(從零勢能面起)}
13.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)(從零勢能面起)}
14.動能定理(對物體做正功,物體的動能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力對物體做的總功,ΔEK:動能變化ΔEK=(mvt2/2-mvo2/2)}
15.機械能守恆定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功與重力勢能的變化(重力做功等於物體重力勢能增量的負值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量轉化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做負功;α=90o不做功(力的方向與位移(速度)方向垂直時該力不做功);
(3)重力(彈力、電場力、分子力)做正功,則重力(彈性、電、分子)勢能減少
(4)重力做功和電場力做功均與路徑無關(見2、3兩式);(5)機械能守恆成立條件:除重力(彈力)外其它力不做功,只是動能和勢能之間的轉化;(6)能的其它單位換算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)彈簧彈性勢能E=kx2/2,與勁度系數和形變數有關。
六、電場
1.兩種電荷、電荷守恆定律、元電荷:(e=1.60×10-19C);帶電體電荷量等於元電荷的整數倍
2.庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N?m2/C2,Q1、Q2:兩點電荷的電量(C),
r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}
3.電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}
4.真空點(源)電荷形成的電場E=kQ/r2 {r:源電荷到該位置的距離(m),Q:源電荷的電量}
5.勻強電場的場強E=UAB/d {UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}
6.電場力:F=qE {F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}
7.電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),
UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}
9.電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}
10.電勢能的變化ΔEAB=EB-EA {帶電體在電場中從A位置到B位置時電勢能的差值}
11.電場力做功與電勢能變化ΔEAB=-WAB=-qUAB (電勢能的增量等於電場力做功的負值)
12.電容C=Q/U(定義式,計算式) {C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}
13.平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數)
常見電容器
14.帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)
類平 垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)
拋運動 平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m
注:
(1)兩個完全相同的帶電金屬小球接觸時,電量分配規律:原帶異種電荷的先中和後平分,原帶同種電荷的總量平分;
(2)電場線從正電荷出發終止於負電荷,電場線不相交,切線方向為場強方向,電場線密處場強大,順著電場線電勢越來越低,電場線與等勢線垂直;
3)常見電場的電場線分布要求熟記;
(4)電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關;
(5)處於靜電平衡導體是個等勢體,表面是個等勢面,導體外表面附近的電場線垂直於導體表面,導體內部合場強為零,
導體內部沒有凈電荷,凈電荷只分布於導體外表面;
(6)電容單位換算:1F=106μF=1012PF;
(7)電子伏(eV)是能量的單位,1eV=1.60×10-19J;
(8)其它相關內容:靜電屏蔽/示波管、示波器及其應用等勢面。
七、恆定電流
1.電流強度:I=q/t{I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)}
2.歐姆定律:I=U/R {I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}
3.電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω?m),L:導體的長度(m),S:導體橫截面積(m2)}
4.閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外
{I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}
5.電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}
6.焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}
7.純電阻電路中:由於I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總
{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}
9.電路的串/並聯 串聯電路(P、U與R成正比) 並聯電路(P、I與R成反比)
電阻關系(串同並反) R串=R1+R2+R3+ 1/R並=1/R1+1/R2+1/R3+
電流關系 I總=I1=I2=I3 I並=I1+I2+I3+
電壓關系 U總=U1+U2+U3+ U總=U1=U2=U3
功率分配 P總=P1+P2+P3+ P總=P1+P2+P3+
10.歐姆表測電阻
(1)電路組成 (2)測量原理
兩表筆短接後,調節Ro使電表指針滿偏,得
Ig=E/(r+Rg+Ro)
接入被測電阻Rx後通過電表的電流為
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由於Ix與Rx對應,因此可指示被測電阻大小
(3)使用方法:機械調零、選擇量程、歐姆調零、測量讀數{注意擋位(倍率)}、撥off擋。
(4)注意:測量電阻時,要與原電路斷開,選擇量程使指針在中央附近,每次換擋要重新短接歐姆調零。
11.伏安法測電阻
電流表內接法: 電流表外接法:
電壓表示數:U=UR+UA 電流表示數:I=IR+IV
Rx的測量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的測量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
選用電路條件Rx>>RA [或Rx>(RARV)1/2] 選用電路條件Rx<<RV [或Rx<(RARV)1/2]
12.滑動變阻器在電路中的限流接法與分壓接法
限流接法
電壓調節范圍小,電路簡單,功耗小 電壓調節范圍大,電路復雜,功耗較大
便於調節電壓的選擇條件Rp>Rx 便於調節電壓的選擇條件Rp<Rx
注1)單位換算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各種材料的電阻率都隨溫度的變化而變化,金屬電阻率隨溫度升高而增大;
(3)串聯總電阻大於任何一個分電阻,並聯總電阻小於任何一個分電阻;
(4)當電源有內阻時,外電路電阻增大時,總電流減小,路端電壓增大;
(5)當外電路電阻等於電源電阻時,電源輸出功率最大,此時的輸出功率為E2/(2r);
(6)其它相關內容:電阻率與溫度的關系半導體及其應用超導及其應用〔見第二冊P127〕。
八、磁場
1.磁感應強度是用來表示磁場的強弱和方向的物理量,是矢量,單位T),1T=1N/A?m
2.安培力F=BIL;(註:L⊥B) {B:磁感應強度(T),F:安培力(F),I:電流強度(A),L:導線長度(m)}
3.洛侖茲力f=qVB(注V⊥B);質譜儀{f:洛侖茲力(N),q:帶電粒子電量(C),V:帶電粒子速度(m/s)}
4.在重力忽略不計(不考慮重力)的情況下,帶電粒子進入磁場的運動情況(掌握兩種):
(1)帶電粒子沿平行磁場方向進入磁場:不受洛侖茲力的作用,做勻速直線運動V=V0
(2)帶電粒子沿垂直磁場方向進入磁場:做勻速圓周運動,規律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB
;r=mV/qB;T=2πm/qB;(b)運動周期與圓周運動的半徑和線速度無關,洛侖茲力對帶電粒子不做功(任何情況下);
©解題關鍵:畫軌跡、找圓心、定半徑、圓心角(=二倍弦切角)。
註:(1)安培力和洛侖茲力的方向均可由左手定則判定,只是洛侖茲力要注意帶電粒子的正負;
(2)磁感線的特點及其常見磁場的磁感線分布要掌握;
(3)其它相關內容:地磁場/磁電式電表原理/迴旋加速器/磁性材料
九、電磁感應
1.[感應電動勢的大小計算公式]
1)E=nΔΦ/Δt(普適公式){法拉第電磁感應定律,E:感應電動勢(V),n:感應線圈匝數,ΔΦ/Δt:磁通量的變化率}
2)E=BLV垂(切割磁感線運動) {L:有效長度(m)}
3)Em=nBSω(交流發電機最大的感應電動勢) {Em:感應電動勢峰值}
4)E=BL2ω/2(導體一端固定以ω旋轉切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:勻強磁場的磁感應強度(T),S:正對面積(m2)}
3.感應電動勢的正負極可利用感應電流方向判定{電源內部的電流方向:由負極流向正極}
*4.自感電動勢E自=nΔΦ/Δt=LΔI/Δt{L:自感系數(H)(線圈L有鐵芯比無鐵芯時要大),
ΔI:變化電流,?t:所用時間,ΔI/Δt:自感電流變化率(變化的快慢)}
註:(1)感應電流的方向可用楞次定律或右手定則判定,楞次定律應用要點;
(2)自感電流總是阻礙引起自感電動勢的電流的變化;(3)單位換算:1H=103mH=106μH。
(4)其它相關內容:自感/日光燈。
C. 高三物理必背知識點
1.力
力學是高中物理的開山和基礎,彈力的方向和彈簧、摩擦力應該是一輪復習的重中之重,受力分析的判斷不僅關乎到這個部分,也會影響整個物理學科,所謂武學基礎——「蹲馬步」
2. 運動學
這個部分是看起來簡單,但做起來易錯,且計算不算死人不罷休的境界,各種剎車、追擊、相遇、滑塊板塊、傳送帶,沒有做題底蘊的支撐,你會感到深深的惡意。
3. 牛頓定律
牛頓就是力學中的隱藏高手,就是王者榮耀中的法師,攻擊力本來就不錯,還可以對運動學、電場進行加持,讓你面對的陡然上升了幾個level功力。連接體是這裡面一輪要拿下的核心考點。
4. 曲線運動
兩大法寶:平拋和圓周,不能說難,但是高考年年出現,平拋的計算、水平圓周模型、豎直圓周模型、向心和離心的機車拐彎,這四個點重點拿下,然後給自己大大的微笑吧
5. 天體運動
天體會的人覺得可愛簡單送分,不會的人覺得變態、惡心、惹人煩,這個部分的核心公式之後很長的一組,但是出題的方式確異常靈活,且題目和實際結合多變,總從意想不到的地方出手,高手過招,就是毫釐之間定勝負,數量級運算可以幫助你不少哦。
6. 功和能
力學部分大boss的存在,誰都可以結合,從彈簧到皮帶到滑塊,等你做多了你會感到世界的真諦就是動能定理和一堆物理物體,多過程、大計算、復雜分析,燒腦的偵探小說也就到這個程度了,一輪必須啃下的硬骨頭,想想上甘嶺戰役的激烈程度吧
7. 電場
這就像一個軟妹子,看起來瘦弱不堪,但實際是芭比金剛,電場線、帶電粒子運動、電容器、這些都是理工科出題人最喜歡的軟妹子類型,多接觸接觸,熟悉了就好
8. 恆定電路
這個部分最難的是電學實驗,7個電學實驗要如數家珍,有人問為啥啊?因為考,年年考,考到12分熟了,其他的召喚出體內強大的初中物理基礎就可以了。
9. 磁場
電磁學的大boss,一劍封喉,殺人於無形,多見於選擇題壓軸或者和電場結合出在物理最後一道壓軸題,難度系數3.5,轉體動作復雜且難,盡量從步驟上逐個擊破,拿下這個你的高考物理滿分有望了。
10. 電磁感應/交變電流
每年必考的考點,電磁感應圖像、理想變壓器、遠端輸電、桿和框在磁場中運動都是熱點,如果知道出題人的喜好,接下來你就知道該做什麼了
11. 動量和原子物理
動量的六個常見模型要全面掌握,原子物理類似於文科記憶加理解就好了
12. 選修
不論你是選擇光和機械波還是選擇熱學,選修的訣竅就是多做題然後系統總結考點和易錯點,這個是覆蓋面的問題,當覆蓋面足夠的話,拿下就指日可待了。
高中物理知識點記憶順口溜
動量定理解題
動量定理來解題,矢量關系要牢記,
各量均把正負帶,代數加減萬事吉,
中間過程莫關心,便於求解平均力。
動量守恆
所受外力恆為零,系統動量就守恆,
碰前碰後和碰中,動量總和都相同,
矢量關系別忘記,誰正誰負要分清。
力的作用效果
時間積累動量增,空間積累增動能,
瞬間產生加速度,改變狀態或變形。
動量定理 · 動能定理
動量動能二定理,解起題來特容易,
動量定理求時間,動能定理求位移。
D. 求高中物理知識點大全
2009年高考物理知識點精要
八、分子動理論、熱和功、氣體
1.分子動理論
(1)物質是由大量分子組成的 分子直徑的數量級一般是10 -10 m.
(2)分子永不停息地做無規則熱運動.
①擴散現象:不同的物質互相接觸時,可以彼此進入對方中去.溫度越高,擴散越快.②布朗運動:在顯微鏡下看到的懸浮在液體(或氣體)中微小顆粒的無規則運動,是液體分子對微小顆粒撞擊作用的不平衡造成的,是液體分子永不停息地無規則運動的宏觀反映.顆粒越小,布朗運動越明顯;溫度越高,布朗運動越明顯.
八、分子動理論、熱和功、氣體
1.分子動理論
(1)物質是由大量分子組成的 分子直徑的數量級一般是10 -10 m.
(2)分子永不停息地做無規則熱運動.
①擴散現象:不同的物質互相接觸時,可以彼此進入對方中去.溫度越高,擴散越快.②布朗運動:在顯微鏡下看到的懸浮在液體(或氣體)中微小顆粒的無規則運動,是液體分子對微小顆粒撞擊作用的不平衡造成的,是液體分子永不停息地無規則運動的宏觀反映.顆粒越小,布朗運動越明顯;溫度越高,布朗運動越明顯.
E. 高考物理必考知識點及公式總結有什麼
高考物理必考知識點及公式總結有:
1.兩種電荷、電荷守恆定律、元電荷:(e=1.60×10-19c);帶電體電荷量等於元電荷的整數倍。
2.庫侖定律:f=kq1q2/r2(在真空中){f:點電荷間的作用力(n),k:靜電力常量k=9.0×109n?m2/c2,q1、q2:兩點電荷的電量(c),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}。
3.電場強度:e=f/q(定義式、計算式){e:電場強度(n/c),是矢量(電場的疊加原理),q:檢驗電荷的電量(c)}。
4.真空點(源)電荷形成的電場e=kq/r2{r:源電荷到該位置的距離(m),q:源電荷的電量}。
5.勻強電場的場強e=uab/d{uab:ab兩點間的電壓(v),d:ab兩點在場強方向的距離(m)}。
F. 高三物理知識點有哪些
1、物體做勻速圓周運動的條件是合外力大小恆定且方向始終指向圓心,或與速度方向始終垂直。
2、做勻速圓周運動的物體,在所受到的合外力突然消失時,物體將沿圓周的切線方向飛出做勻速直線運動;在所提供的向心力大於所需要的向心力時,物體將做向心運動;在所提供的向心力小於所需要的向心力時,物體將做離心運動。
3、開普勒第一定律的內容是所有的行星圍繞太陽運動的軌道都是橢圓,太陽在橢圓軌道的一個焦點上。開普勒第三定律的內容是所有行星的半長軸的三次方跟公轉周期的平方的比值都相等,即R3/T2=k。
4、地球質量為M,半徑為R,萬有引力常量為G,地球表面的重力加速度為g,則其間存在的一個常用的關系是。(類比其他星球也適用)。
5、第一宇宙速度(近地衛星的環繞速度)的表達式v1=(GM/R)1/2=(gR)1/2,大小為7、9m/s,它是發射衛星的最小速度,也是地球衛星的環繞速度。隨著衛星的高度h的增加,v減小,ω減小,a減小,T增加。
6、物體做勻減速直線運動,末速度為零時,可以等效為初速度為零的反向的勻加速直線運動。
7、對於加速度恆定的勻減速直線運動對應的正向過程和反向過程的時間相等,對應的速度大小相等(如豎直上拋運動)
8、質量是慣性大小的量度。慣性的大小與物體是否運動和怎樣運動無關,與物體是否受力和怎樣受力無關,慣性大小表現為改變物理運動狀態的難易程度。
9、做平拋或類平拋運動的物體在任意相等的時間內速度的變化都相等,方向與加速度方向一致(即Δv=at)。
10、做平拋或類平拋運動的物體,末速度的反向延長線過水平位移的中點。