1. 高一數學必修4的知識點的總結
同角三角函數基本關系
⒈同角三角函數的基本關系式
倒數關系:
tanα •cotα=1
sinα •cscα=1
cosα •secα=1
商的關系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數關系六角形記憶法
六角形記憶法:(參看圖片或參考資料鏈接)
構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
(1)倒數關系:對角線上兩個函數互為倒數;
(2)商數關系:六邊形任意一頂點上的函數值等於與它相鄰的兩個頂點上函數值的乘積。
(主要是兩條虛線兩端的三角函數值的乘積)。由此,可得商數關系式。
(3)平方關系:在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等於下面頂點上的三角函數值的平方。
兩角和差公式
⒉兩角和與差的三角函數公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα •tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα •tanβ
倍角公式
⒊二倍角的正弦、餘弦和正切公式(升冪縮角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
2tanα
tan2α=—————
1-tan^2(α)
半形公式
⒋半形的正弦、餘弦和正切公式(降冪擴角公式)
1-cosα
sin^2(α/2)=—————
2
1+cosα
cos^2(α/2)=—————
2
1-cosα
tan^2(α/2)=—————
1+cosα
萬能公式
⒌萬能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)
1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)
2tan(α/2)
tanα=——————
1-tan^2(α/2)
萬能公式推導
附推導:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因為cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))
然後用α/2代替α即可。
同理可推導餘弦的萬能公式。正切的萬能公式可通過正弦比餘弦得到。
三倍角公式
⒍三倍角的正弦、餘弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
3tanα-tan^3(α)
tan3α=——————
1-3tan^2(α)
三倍角公式推導
附推導:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
即
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式聯想記憶
記憶方法:諧音、聯想
正弦三倍角:3元 減 4元3角(欠債了(被減成負數),所以要「掙錢」(音似「正弦」))
餘弦三倍角:4元3角 減 3元(減完之後還有「余」)
☆☆注意函數名,即正弦的三倍角都用正弦表示,餘弦的三倍角都用餘弦表示。
和差化積公式
⒎三角函數的和差化積公式
α+β α-β
sinα+sinβ=2sin—----•cos—---
2 2
α+β α-β
sinα-sinβ=2cos—----•sin—----
2 2
α+β α-β
cosα+cosβ=2cos—-----•cos—-----
2 2
α+β α-β
cosα-cosβ=-2sin—-----•sin—-----
2 2
積化和差公式
⒏三角函數的積化和差公式
sinα •cosβ=0.5[sin(α+β)+sin(α-β)]
cosα •sinβ=0.5[sin(α+β)-sin(α-β)]
cosα •cosβ=0.5[cos(α+β)+cos(α-β)]
sinα •sinβ=- 0.5[cos(α+β)-cos(α-β)]
2. 高一數學必修四總結
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
降冪公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
3. 高一必修一必修四數學的知識點。
必修4三角函數(約16課時)(1)任意角、弧度了解任意角的概念和弧度制,能進行弧度與角度的互化。(2)三角函數①藉助單位圓理解任意角三角函數(正弦、餘弦、正切)的定義。②藉助單位圓中的三角函數線推導出誘導公式( 的正弦、餘弦、正切),能畫出 的圖象,了解三角函數的周期性。③藉助圖象理解正弦函數、餘弦函數在 ,正切函數在 上的性質(如單調性、最大和最小值、圖象與x軸交點等)。④理解同角三角函數的基本關系式:⑤結合具體實例,了解 的實際意義;能藉助計算器或計算機畫出 的圖象,觀察參數A,ω, 對函數圖象變化的影響。⑥會用三角函數解決一些簡單實際問題,體會三角函數是描述周期變化現象的重要函數模型。平面向量(約12課時)(1)平面向量的實際背景及基本概念通過力和力的分析等實例,了解向量的實際背景,理解平面向量和向量相等的含義,理解向量的幾何表示。(2)向量的線性運算①掌握向量加、減法的運算,並理解其幾何意義。②掌握向量數乘的運算,並理解其幾何意義,以及兩個向量共線的含義。③了解向量的線性運算性質及其幾何意義。(3)平面向量的基本定理及坐標表示①了解平面向量的基本定理及其意義。②掌握平面向量的正交分解及其坐標表示。③會用坐標表示平面向量的加、減與數乘運算。④理解用坐標表示的平面向量共線的條件。(4)平面向量的數量積①通過物理中「功」等實例,理解平面向量數量積的含義及其物理意義。②體會平面向量的數量積與向量投影的關系。③掌握數量積的坐標表達式,會進行平面向量數量積的運算。④能運用數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。(5)向量的應用經歷用向量方法解決某些簡單的平面幾何問題、力學問題與其他一些實際問題的過程,體會向量是一種處理幾何問題、物理問題等的工具,發展運算能力和解決實際問題的能力。三角恆等變換(約8課時)(1)經歷用向量的數量積推導出兩角差的餘弦公式的過程,進一步體會向量方法的作用。(2)能從兩角差的餘弦公式導出兩角和與差的正弦、餘弦、正切公式,二倍角的正弦、餘弦、正切公式,了解它們的內在聯系。(3)能運用上述公式進行簡單的恆等變換(包括引導導出積化和差、和差化積、半形公式,但不要求記憶)。
4. 高中數學必修4知識點總結
5. 高一必修四數學
根據向量的定義,的確是只有兩個向量的起點重合時所對應的角是兩向量的夾角。就這一題而言,將向量AD與BD都沿著向量方向延伸,則所求的向量的角就變為以D為定點的兩個向量的角,而這個角的大小等於角ADB大小。
6. 跪求高一數學必修一必修四知識點公式
高中數學必修2知識點
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
當時,; 當時,; 當時,不存在。
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:
其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行於x軸的直線:(b為常數); 平行於y軸的直線:(a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線(是不全為0的常數)的直線系:(C為常數)
(二)垂直直線系
垂直於已知直線(是不全為0的常數)的直線系:(C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為
(為參數),其中直線不在直線系中。
(6)兩直線平行與垂直
當,時,
;
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
(7)兩條直線的交點
相交
交點坐標即方程組的一組解。
方程組無解 ; 方程組有無數解與重合
(8)兩點間距離公式:設是平面直角坐標系中的兩個點,
則
(9)點到直線距離公式:一點到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解。
二、圓的方程
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
(1)標准方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點; 當時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都採用待定系數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設圓,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內切,連心線經過切點,只有一條公切線;
當時,兩圓內含; 當時,為同心圓。
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
三、立體幾何初步
1、柱、錐、台、球的結構特徵
(1)稜柱:
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
(3)稜台:
幾何特徵:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交於原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、
俯視圖(從上向下)
註:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
4、柱體、錐體、台體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)
(3)柱體、錐體、台體的體積公式
(4)球體的表面積和體積公式:V= ; S=
4、空間點、直線、平面的位置關系
公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內。
應用: 判斷直線是否在平面內
用符號語言表示公理1:
公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a。
符號語言:
公理2的作用:
①它是判定兩個平面相交的方法。
②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點。
③它可以判斷點在直線上,即證若干個點共線的重要依據。
公理3:經過不在同一條直線上的三點,有且只有一個平面。
推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理3及其推論作用:①它是空間內確定平面的依據 ②它是證明平面重合的依據
公理4:平行於同一條直線的兩條直線互相平行
空間直線與直線之間的位置關系
① 異面直線定義:不同在任何一個平面內的兩條直線
② 異面直線性質:既不平行,又不相交。
③ 異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線
④ 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。
求異面直線所成角步驟:
A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。 B、證明作出的角即為所求角 C、利用三角形來求角
(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那麼這兩角相等或互補。
(8)空間直線與平面之間的位置關系
直線在平面內——有無數個公共點.
三種位置關系的符號表示:aα a∩α=A a‖α
(9)平面與平面之間的位置關系:平行——沒有公共點;α‖β
相交——有一條公共直線。α∩β=b
5、空間中的平行問題
(1)直線與平面平行的判定及其性質
線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。
線線平行線面平行
線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,
那麼這條直線和交線平行。線面平行線線平行
(2)平面與平面平行的判定及其性質
兩個平面平行的判定定理
(1)如果一個平面內的兩條相交直線都平行於另一個平面,那麼這兩個平面平行
(線面平行→面面平行),
(2)如果在兩個平面內,各有兩組相交直線對應平行,那麼這兩個平面平行。
(線線平行→面面平行),
(3)垂直於同一條直線的兩個平面平行,
兩個平面平行的性質定理
(1)如果兩個平面平行,那麼某一個平面內的直線與另一個平面平行。(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那麼它們的交線平行。(面面平行→線線平行)
7、空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關系的判定和性質定理
①線面垂直判定定理和性質定理
判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直這個平面。
性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。
②面面垂直的判定定理和性質定理
判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直。
性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於他們的交線的直線垂直於另一個平面。
9、空間角問題
(1)直線與直線所成的角
①兩平行直線所成的角:規定為。
②兩條相交直線所成的角:兩條直線相交其中不大於直角的角,叫這兩條直線所成的角。
③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大於直角的角叫做兩條異面直線所成的角。
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規定為。 ②平面的垂線與平面所成的角:規定為。
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。
求斜線與平面所成角的思路類似於求異面直線所成角:「一作,二證,三計算」。
在「作角」時依定義關鍵作射影,由射影定義知關鍵在於斜線上一點到面的垂線,
在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
兩相交平面如果所組成的二面角是直二面角,那麼這兩個平面垂直;反過來,如果兩個平面垂直,那麼所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直於棱的射線得到平面角
垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
7. 高一數學必修4函數知識點總結
§1.2.1、函數的概念
1、 設A、B是非空的數集,如果按照某種確定的對應關系,使對於集合A中的任意一個數,在集合B中都有惟一確定的數和它對應,那麼就稱為集合A到集合B的一個函數,記作:.
2、 一個函數的構成要素為:定義域、對應關系、值域.如果兩個函數的定義域相同,並且對應關系完全一致,則稱這兩個函數相等.
§1.2.2、函數的表示法
1、 函數的三種表示方法:解析法、圖象法、列表法.
§1.3.1、單調性與最大(小)值
1、 注意函數單調性證明的一般格式:
§1.3.2、奇偶性
1、 一般地,如果對於函數的定義域內任意一個,都有,那麼就稱函數為偶函數.偶函數圖象關於軸對稱.
2、 一般地,如果對於函數的定義域內任意一個,都有,那麼就稱函數為奇函數.奇函數圖象關於原點對稱.
第二章、基本初等函數(Ⅰ)
§2.1.1、指數與指數冪的運算
1、 一般地,如果,那麼叫做 的次方根。其中.
若需要可以發郵箱
8. 高一數學必修一和四的知識點總結
唉,年輕的時候還願意回憶回憶順便打幾個字,孩子你自己總結總結吧,網路文庫挺多這種資料的,但是太全了也沒必要,根據自身情況酌情刪減吧,然後合上回憶下,或者先看教材然後回憶總結(包括題型、方法)
9. 高一數學必修一至四知識點總結
一
集合與簡易邏輯
集合具有四個性質
廣泛性
集合的元素什麼都可以
確定性
集合中的元素必須是確定的,比如說是好學生就不具有這種性質,因為它的概念是模糊不清的
互異性
集合中的元素必須是互不相等的,一個元素不能重復出現
無序性
集合中的元素與順序無關
二
函數
這是個重點,但是說起來也不好說,要作專題訓練,比如說二次函數,指數對數函數等等做這一類型題的時候,要掌握幾個函數思想如
構造函數
函數與方程結合
對稱思想,換元等等
三
數列
這也是個比較重要的題型,做體的時候要有整體思想,整體代換,等比等差要分開來,也要注意聯系,這樣才能做好,注意觀察數列的形式判斷是什麼數列,還要掌握求數列通向公式的幾種方法,和求和公式,求和方法,比如裂項相消,錯位相減,公式法,分組求和法等等
四
三角函數
三角函數不是考試題型,只是個應用的知識點,所以只要記熟特殊角的三角函數值和一些重要的定理就行
五
平面向量
這是個比較抽象的把幾何與代數結合起來的重難點,結體的時候要有技巧,主要就是把基本知識掌握到位,注意拓展,另外要多做題,見的題型多,結體的時候就有思路,能夠把問題簡單化,有利於提高做題效率
高一的數學只是入門,只要把基礎的掌握了,做題就沒什麼大問題了,數學就可以上130
10. 高一數學必修1和必修4的知識點總結
看書去,沒什麼可總結……多做點基礎題,自己就會了