當前位置:首頁 » 基礎知識 » 生活中的數學小知識
擴展閱讀
兒童手腕脫臼如何護理 2025-01-10 02:20:24

生活中的數學小知識

發布時間: 2022-03-07 01:10:28

❶ 寫10個生活中的數學現象(說明用到數學知識或原理)

1、抽屜原理

「任意367個人中,必有生日相同的人。」

「從任意5雙手套中任取6隻,其中至少有2隻恰為一雙手套。」

「從數1,2,...,10中任取6個數,其中至少有2個數為奇偶性不同。」

這里用到的是抽屜原理,抽屜原理的內容可以用形象的語言表述為:
「把m個東西任意分放進n個空抽屜里(m>n),那麼一定有一個抽屜中放進了至少2個東西。」
在上面的第一個結論中,由於一年最多有366天,因此在367人中至少有2人出生在同月同日。這相當於把367個東西放入366個抽屜,至少有2個東西在同一抽屜里。在第二個結論中,不妨想像將5雙手套分別編號,即號碼為1,2,...,5的手套各有兩只,同號的兩只是一雙。任取6隻手套,它們的編號至多有5種,因此其中至少有兩只的號碼相同。這相當於把6個東西放入5個抽屜,至少有2個東西在同一抽屜里。

利用上述原理容易證明:「任意7個整數中,至少有3個數的兩兩之差是3的倍數。」因為任一整數除以3時余數只有0、1、2三種可能,所以7個整數中至少有3個數除以3所得余數相同,即它們兩兩之差是3的倍數。
如果問題所討論的對象有無限多個,抽屜原理還有另一種表述:
「把無限多個東西任意分放進n個空抽屜(n是自然數),那麼一定有一個抽屜中放進了無限多個東西。」
抽屜原理的內容簡明樸素,易於接受,它在數學問題中有重要的作用。許多有關存在性的證明都可用它來解決。

2、漲跌停現象

假設你有10萬元:

第一種情況:第一天漲停後是11萬元,第二天跌停後剩下9.9萬元。

第二種情況:第一天跌停後是9萬元,第二天漲停後還是9.9萬元。

3、補倉或定投現象

假設一個基金凈值10元的時候,你買入了1萬元。第二個月,基金凈值跌到5元的時候,你又買了1萬元。

請問:你的持倉成本是多少? A.7.5元 B.6.67元

正確答案:持倉成本是6.67元。

這就是基金定投的魅力,可以讓你的持倉成本大幅降低。

4、蜜蜂蜂房是嚴格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個相同的菱形組成。組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料。蜂房的巢壁厚0.073毫米,誤差極小。

5、丹頂鶴總是成群結隊遷飛,而且排成「人」字形。「人」字形的角度是110度。更精確地計算還表明「人」字形夾角的一半——即每邊與鶴群前進方向的夾角為54度44分8秒!而金剛石結晶體的角度正好也是54度44分8秒!

6、冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數學,因為球形使身體的表面積最小,從而散發的熱量也最少。

7、保本的資產組合

以下兩種投資產品:

(1)生活中的數學小知識擴展閱讀:

數學(mathematics或maths,來自希臘語,「máthēma」;經常被縮寫為「math」),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。

而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。

❷ 生活中最常用的數學知識

一、數學的簡單美

日常生活中離不開數,我們無時無刻不在跟數字打交道,紛繁復雜的數是由非常簡單的十個數字構成,即0到9這10個數字,構築起一個無限真與美的王國。這簡直太神奇了。數學,就是一個人造的宇宙。

二、幾何圖形的對稱美

蜜蜂的蜂窩構造非常精巧、適用而且節省材料。蜂房由無數個大小相同的房孔組成,房孔都是正六角形,每個房孔都被其它房孔包圍,兩個房孔之間只隔著一堵蠟制的牆。令人驚訝的是,房孔的底既不是平的,也不是圓的,而是尖的。這個底是由三個完全相同的菱形組成。有人測量過菱形的角度,兩個鈍角都是109°28′而兩個銳角都是70°32′。令人叫絕的是,世界上所有蜜蜂的蜂窩都是按照這個統一的角度和模式建造的。

蜂房的結構引起了科學家們的極大興趣。經過對蜂房的深入研究,科學家們驚奇地發現,相鄰的房孔共用一堵牆和一個孔底,非常節省建築材料;房孔是正六邊形,蜜蜂的身體基本上是圓柱形,蜂在房孔內既不會有多餘的空間又不感到擁擠。

蜂窩的結構給航天器設計師們很大啟示,他們在研製時,採用了蜂窩結構:先用金屬製造成蜂窩,然後再用兩塊金屬板把它夾起來就成了蜂窩結構。這種蜂窩結構強度很高,重量又很輕,還有益於隔音和隔熱。因此,現在的太空梭、人造衛星、宇宙飛船在內部大量採用蜂窩結構,衛星的外殼也幾乎全部是蜂窩結構。因此,這些航天器又統稱為「蜂窩式航天器」。蜜蜂建造的蜂窩都是正六邊形的。

另外,大自然的鬼斧神工使幾何圖形的對稱美成了造型藝術、建築美學的基礎。雪花的對稱性就是大自然的傑作,它的形狀,也是正六角形。多美的結構啊,線條流暢、美麗大方而且牢固結實。晶體的平面對稱極為精巧,並由此內含著深刻的物理性質。在人類賴以生存的生活實際中,小到衣物裝飾、首飾、生活用品,大到房屋建築(比如屋頂、窗格、地面、雕梁、畫棟等),幾乎到處都有美麗的對稱圖形裝飾,古代皇宮中壁畫的邊飾、項光和藻井,都含有極為壯麗的對稱美。

現在,我們創建衛生城市、文明城市、宜居城市等等。街道兩旁門面房的門頭、樓房外的亮化設施,全部都是統一的矩形,這是為什麼呢?因為矩形既簡單又對稱,所以很美觀。

❸ 生活中的數學知識有哪些三年級

生活中的數學小知識匯總2

去大型菜場幫姨夫賣菜。姨夫家的菜可多了,花花綠綠的,有茄子、西紅柿、黃瓜、大白菜……這兒的人也挺多的。我一邊剝毛豆一邊看姨夫賣菜。
過了一會,一位大約三十多歲的男子來買菜。他看起來像個大飯店的老闆,要了好多菜:二十斤青菜、十顆大白菜、十斤土豆……姨夫忙的不亦樂乎,我也過來幫忙。男子從褲兜掏出錢包,雙手抱臂看著我們忙。「胡蘿卜多少錢一斤?」叔叔問道。姨夫回道:「你買多點就算一塊八。」叔叔又說:「買十斤算一塊五吧。」姨夫連忙搖手說:「進價都不夠。」叔叔說:「這樣吧,我兒子有一道數學題不會,如果你幫我做出來,就兩塊一斤。「姨夫滿口答應下來。題目是:一個牧場長滿草,可供17頭牛吃30天,或19頭牛吃24天,現有若干頭牛吃草,六天後4頭牛被賣走,餘下的牛又吃了2天將草吃完,問原有多少牛?姨夫看了很久,頭都快撓破了也沒想出來。於是把我喊來,我一看題目,巧了,剛好會就在紙上寫答案。首先:17頭牛30天;17*30=510(份);是17頭牛30天吃草的數量;19頭牛24天;19*24=456(份);是19頭牛24天吃草的數量;再用(510-456)/(30-24)=9(份)是每天長草的數量;510-9*30=240(份)求的原來數量。設現有X頭牛,方程是(X+4)6+2X=240+8*9,這個方程就算出來了。我這樣一算,那位叔叔就懂了,也履行了他的諾言買了姨夫的菜,大家皆大歡喜,叔叔還誇我這個「小老闆」呢,不僅會賣菜,還能把數學運用到生活中…… 作文網
由此可見,數學真的很重要。生活中處處都有數學的腳印,數學的歷史也很悠久,有許多著名的數學家如:陳景潤、哥德巴赫、華羅庚等等,數學可以解決我們生活中的很多事情,它應該成為我們生活中的小夥伴,應該從小把基礎打好,用我們的數學知識去改善生活,創造更美好的明天!我們一定要學好數學,帶著愉快的心情去學習,帶著發現的眼光去理解生活中的數學,相信你也能學好的,並且能它成為朋友,相信自己!

❹ 生活中的數學小常識10字左右

被人們稱為電子計算機之父的的是蘭美籍匈牙利數學家是諾伊曼。

❺ 生活中的數學知識

人體內的杠桿
幾乎每一台機器中都少不了杠桿,就是在人體中也有許許多多的杠桿在起作用。拿起一件東西,彎一下腰,甚至翹一下腳尖都是人體的杠桿在起作用,了解了人體的杠桿不僅可以增長物理知識,還能學會許多生理知識。
其中,大部分為費力杠桿,也有小部分是等臂和省力杠桿。
點一下頭或抬一下頭是靠杠桿的作用(見圖),杠桿的支點在脊柱之頂,支點前後各有肌肉,頭顱的重量是阻力。支點前後的肌肉配合起來,有的收縮有的拉長配合起來形成低頭仰頭,從圖里可以看出來低頭比仰頭要省力。
當曲肘把重物舉起來的時候,手臂也是一個杠桿(如圖)。肘關節是支點,支點左右都有肌肉。這是一種費力杠桿,舉起一份的重量,肌肉要花費6倍以上的力氣,雖然費力,但是可以省一定距離。
當你把腳尖翹起來的時候,是腳跟後面的肌肉在起作用,腳尖是支點,體重落在兩者之間。這是一個省力杠桿(如圖),肌肉的拉力比體重要小。而且腳越長越省力。
如果你彎一下腰,肌肉就要付出接近1200牛頓的拉力。這是 由於在腰部肌肉和脊骨之間形成的杠桿也是一個費力杠桿(如圖)。 所以在彎腰提起立物時,正確的姿式是盡量使重物離身體近一 些。以避免肌肉被拉傷。

❻ 生活中的數學知識介紹舉實例

1、身體計算器

我們的身體真得很奇妙,手是一個常見的計算器。最常見的手的計算是9的倍數計算。計算9的倍數時,將手放在膝蓋上,如下圖所示,從左到右給你的手指編號。

現在選擇你想計算的9的倍數,假設這個乘式是7×9。只要彎曲標有數字7的手指,然後數左邊剩下的手指數是6,右邊剩下的手指數是3,將它們放在一起,得出7×9的答案是63。

2、石塊、貝殼計數

原始社會,人類智力低下,當時把石塊放進皮袋,或用貝殼串成珠子,用「一一對應」的方法,計算需要計數的物品。

3、結繩計數

就是在長繩上打結記事或計數,這比用石塊貝殼方便了許多。

4、擲硬幣並非最公平

拋硬幣是做決定時普遍使用的一種方法。這種方法對當事人雙方都很公平。因為錢幣落下後正面朝上和反面朝上的概率都一樣,都是50%。

5、商場購物

商場里說某物品打九折優惠,就是90%原價乘以0.9,原來100塊的只賣90塊。七五折就是75% 原價100乘以0.75=75塊。

❼ 生活中涉及到數學知識有哪些

1、數學幾何知識在生活中的應用

數學已逐漸成為了設計與構圖的主要工具,其不但屬於建築設計的智力資源,還是降低技術差錯以及建設實驗的有效方式。

比例,以及和比例存在著緊密聯系的布局、均衡以及尺度等均屬於組成建築美感的重要因素。正確、和諧的尺度與比例則屬於體現建築結構的主要條件,特別是對黃金分割比例的應用能夠讓建築物所具備的美感達到極致。

2、數學統計知識在生活中的應用

統計工作、統計資料和統計科學。統計工作、統計資料、統計科學三者之間的關系是:統計工作的成果是統計資料,統計資料和統計科學的基礎是統計工作,統計科學既是統計工作經驗的理論概括,又是指導統計工作的原理、原則和方法。

3、數學不等式在購買中的應用

去水果店買蘋果,購買蘋果方式不一樣:每次花一樣的錢,不管蘋果的價格是怎樣的,只買這么多錢的蘋果;每次就買同樣重量的蘋果,也不管蘋果的價格怎樣。那麼,可能就有一個問題提出來了:在購買相同次數情況下,哪種方式的買蘋果的平均價格最少,這就涉及到不等式的應用。

4、數學概率知識在生活中的應用

它反映隨機事件出現的可能性(likelihood)大小。隨機事件是指在相同條件下,可能出現也可能不出現的事件。概率在生活中的應用非常廣泛,如抽獎、體彩、工廠次品率等的估算。

例如,從一批有正品和次品的商品中,隨意抽取一件,「抽得的是正品」就是一個隨機事件。設對某一隨機現象進行了n次試驗與觀察,其中A事件出現了m次,即其出現的頻率為m/n。經過大量反復試驗,常有m/n越來越接近於某個確定的常數。

5、數學利率知識在生活中的應用

信用卡渠道在銀行規定的期限內歸還資金,一旦超過了規定期限,則就是根據時間的長短對利息進行收取。在對利息進行計算的過程中,就會運用到數學利率,若熟練的掌握這方面的知識,那麼就能夠通過數學利率來計算各大銀行信用卡在逾期利息方面的收費標准。