當前位置:首頁 » 基礎知識 » 初三數學旋轉知識點
擴展閱讀
結了婚的同學送什麼好 2025-01-15 00:34:49
同學聚會在哪個年齡段 2025-01-15 00:25:07

初三數學旋轉知識點

發布時間: 2022-03-06 22:14:40

❶ 初三數學圓知識點

圓周角的度數等於它所對的弧的度數的一半。
弦切角的度數等於它所夾的弧的度數的一半。
圓內角的度數等於這個角所對的弧的度數之和的一半。
圓外角的度數等於這個等於這個角所截兩段弧的度數之差的一半。
1.圓的周長C=2πr=πd
2.圓的面積S=πr^2;
3.扇形弧長l=nπr/1801.圓是以圓心為對稱中心的中心對稱圖形;圍繞圓心旋轉任意一個角度α,都能夠與原來的重合.
2.頂點在圓心的角叫做圓心角.圓心到弦的距離叫做弦心距.
圓冪定理(相交弦定理、切割線定理及其推論(割線定理)統稱為圓冪定理)
切線長定理
垂徑定理
圓周角定理
弦切角定理
四圓定理
3.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等.
4.在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等.
5.把整個圓周等分成360份,每一份弧是1°的弧.圓心角的度數和它所對的弧的度數相等.
6.圓是中心對稱圖形,即圓繞其對稱中心(圓心)旋轉180°後能夠與原來圖形重合,這一性質不難理解.圓和其他中心對稱圖形不同,它還具有旋轉不變性,即圍繞圓心旋轉任意一個角度,都能夠與原來的圖形重合.
7.垂徑定理
垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧
8.(1)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
(2)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
(3)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
9.圓的兩條平行弦所夾的弧相等
10.(1)一條弧所對的圓周角等於它所對的圓心角的一半.
(2)同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等.
(3)半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑.
(4)如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形.
11.(1)圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸.
(2)垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧.
(3)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧.
(4)弦的垂直平分線經過圓心,並且平分弦所對的兩條弦.
(5)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧.
(6)圓的兩條平行弦所夾的弧度數相等.
12.圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸.
垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧.
13.平分弦(不是直徑)的直徑垂直與弦,並且平分弦所對的兩條弧.
14.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等,所對的弦的弦心距也相等.
15.在同圓或等圓中,相等的弦所對的弧相等,所對的圓心角相等,所對的弦的弦心距也相等.
16.同一個弧有無數個相對的圓周角.
17.弧的比等於弧所對的圓心角的比.
18.圓的內接四邊形的對角互補或相等.
19.不在同一條直線上的三個點能確定一個圓.
20.直徑是圓中最長的弦.
21.一條弦把一個圓分成一個優弧和一個劣弧

❷ 九年級上冊數學旋轉的知識點

旋轉關註:旋轉中心與旋轉角度;
旋轉性質:
①旋轉前後兩個圖形全等;
②旋轉前後對應點到旋轉中心的距離相等;
③對應點旋轉的角度相等,都等於旋轉角。
注意點:旋轉有方向:順時針或逆時針。

❸ 初中數學得所有知識點

知識點
一、基本知識
一、數與代數A、數與式:1、

:①整數→正整數/0/負整數②分數→正分數/負分數

:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到
。②任何一個
都可以用
上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的
,也稱這兩個數互為
。在數軸上,表示互為
的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。

:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。

:求N個相同因數A的積的運算叫做

的結果叫冪,A叫
,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數



:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的
。②如果一個數X的平方等於A,那麼這個數X就叫做A的
。③一個正數有2個
/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做
,其中A叫做


:①如果一個數X的立方等於A,那麼這個數X就叫做A的
。②正數的
是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫
,其中A叫做

實數:①實數分有理數和
。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、

:單獨一個數或者一個字母也是


:①所含字母相同,並且相同字母的指數也相同的項,叫做
。②把
合並成一項就叫做
。③在
時,我們把
的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫
,幾個
的和叫


統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個
中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的
。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:
/

:①單項式相除,把系數,同
冪分別相除後,作為商的
;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個
。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:
、運用



分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。

:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先
,化為同分母的分式,再加減。

:①分母中含有未知數的方程叫
。②使方程的分母為0的解稱為原方程的

B、方程與不等式
1、方程與方程組

:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫
。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

的步驟:去分母,
,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。

:兩個
成的方程組叫做

適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次

解二元一次方程組的方法:
/


:只有一個未知數,並且未知數的項的最高系數為2的方程
1)

的關系
大家已經學過
(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實
也可以用
來表示,其實一元
也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元
了。那如果在
中表示出來,一元
就是二次函數中,圖象與X軸的交點。也就是該

2)一元二次

大家知道,二次函數有
(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)

利用配方,使方程變為
,在用直接
法去求出解
(2)分解因式法
提取
,套用
,和
。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)

這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)
的步驟:
先把
移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成

(2)分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取
,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,
的系數為c
4)

利用
去了解,
就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的
去了解,根的
可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的

II當△=0時,一元二次方程有2個相同的

III當△<0時,一元二次方程沒有
(在這里,學到高中就會知道,這里有2個
根)
2、不等式與

不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,
的方向不變。③不等式的兩邊都乘以或者除以一個正數,
方向不變。④不等式的兩邊都乘以或除以同一個負數,
方向相反。
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解。②一個含有未知數的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做

一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。

:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了
。②
中各個不等式的解集的公共部分,叫做這個一元一次
的解集。③求
解集的過程,叫做
組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<B*C(C<0)
如果不等式乘以0,那麼不等號改為等號
所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立;
3、函數
變數:


在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點
,用豎直方向的數軸上的點表示


:①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的
。②當B=0時,稱Y是X的


的圖象:①把一個函數的
X與對應的
Y的值分別作為點的橫坐標與縱坐標,在
內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②
Y=KX的圖象是經過原點的一條直線。③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在
中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,
的所有側棱長相等,
的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。
截一個
:用一個平面去截一個圖形,截出的面叫做截面。
視圖:

,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做
。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做
。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。

:垂直和平分一條線段的直線叫


垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上

:把一個角平分的射線叫該角的

定義中有幾個要點要注意一下的,就是角的
是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的
相等
4、同角或等角的
相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、
經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、
相等,兩直線平行
10、
相等,兩直線平行
11、
互補,兩直線平行
12、兩直線平行,
相等
13、兩直線平行,
相等
14、兩直線平行,
互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、
三角形三個內角的和等於180°
18、推論1 直角三角形的兩個
互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、
的對應邊、對應角相等
22、邊角邊
(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角
( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊
(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個
等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的
、等於斜邊c的平方,即a2+b2=c2
47、
如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的
等於360°
50、
n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的
等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、
1 矩形的四個角都是直角
61、
2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、
等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、
如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、
三角形的中位線平行於第三邊,並且等於它的一半
82、
梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、
三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、
1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意

等於它的
的餘弦值,任意銳角的餘弦值等於它的


100、任意銳角的
等於它的餘角的
值,任意銳角的
值等於它的餘角的

101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓
小於半徑的點的集合
103、圓的外部可以看作是圓
大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、
垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的

114、定理 在同圓或等圓中,相等的
所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個
、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的
等於它所對的
的一半
117、推論1 同弧或等弧所對的
相等;同圓或等圓中,相等的
所對的弧也相等
118、推論2 半圓(或直徑)所對的圓
是直角;90°的圓
所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、
從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、
弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、
圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的

132、
從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的

133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上

135、①兩圓外離 d>R+r ②兩圓外切 d=R+r③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何
都有一個
和一個
,這兩個圓是

139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、
:L=n兀R/180
145、
公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)
望採納

❹ 初中數學幾何的旋轉是什麼時候講解的知識點

幾何旋轉知識點一般在八下數學所學,版本不同,安排先後順序有差別。

❺ 初中數學幾何知識點

1.過兩點有且只有一條直線
2.兩點之間線段最短
3.同角或等角的補角相等
4.同角或等角的餘角相等
5.過一點有且只有一條直線和已知直線垂直

❻ 初中數學有好多個知識點

知識點一:整數
1、整數的范圍
整數包括自然數和負整數,或者說整數由正整數、零、負整數組成。
(1)自然數
自然數的意義:我們在數物體的時候,用來表示物體的個數0,1,2,3,4,5,…..叫做自然數。自然數的個數是無限的,沒有最大的自然數。
自然數的基本單位:任何非「0」的自然數都是若干個「1」組成,所以「1」是自然數的基本單位。1也是最小的一位數。
「0」的含義:「0」表示一個物體也沒有,在計數中起佔位作用,表示該數位上沒有計數單位。「0」還可以表示起點、分界點等。「0」是最小的自然數。
自然數的兩種意義:如果一個自然數用來表示物體的個數就叫基數;如果一個自然數用來表示物體排列的次序就叫序數。
(2)正數
正數的定義 以前學過的8、16、200……..這樣的數叫做正數。
正數的寫法和讀法 正數前面也可以加「+」號,例如:+8讀作:正八。「+」號一般可以省略不寫。
(2)負數
負數的定義 像-1、-5、-132……這樣的數叫做負數。「一」叫負號。
負數的寫法和讀法 負數前面加「一」號,例如:-15讀作:負十五。數字越大的負數反而越小。
「0」既不是正數,也不是負數。
(4)整數與自然數的聯系及區別
自然數全是整數,整數不全是自然數,還包括負整數。
2、整數的讀法和寫法
數的分級 按照我國的計數習慣,整數從個位起,每四個數位是一級。個位、十位、百位、千位是個級,表示多少個一;萬位、十萬位、百萬位、千萬位是萬級,表示多少個萬位;億位、十億位、百億位、千億位是億級,表示多少個億。
計數單位 整數、小數都是按照十進制寫出的數,其中一(個)、十、百…….是整數的計數單位。計數單位是按一定順序排列的。
數位 各個計數單位所佔的位置叫數位。如9357中的「5」在右起第二位,即「5」所在的數位是十位。
位數 指一個數是由幾個數字組成,是含有數位個數,如1234佔有四個數位,就是四位數。
十進制計數法 十進制是指滿十進一,十個一進為十,十個十進位百,十個百進為千……每相鄰兩個計數單位間的進率都是「十」,這樣的計數法叫做十進制計數法。
(2)整數的讀法和寫法
整數的讀法 讀整數時,從高位到低位,一級一級地讀,讀億級、萬級時,按照個級的讀法去讀,只要在後面加上「億」字、「萬」字就可以了,每一級末尾的「0」都不讀出來,其他數位有一個「0」或連續幾個「0」都只讀一個零。
整數的寫法 寫整數時,從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3、整數大小的比較
比較兩個整數的大小,整數數位多的數比較大;整數數位相同的,要從高位依次看相同數位上的數字,相同數位上數字大的數比較大。
知識點二 小數
1、小數的意義
把整數「1」平均分成10份,100份,1000份……這樣的1份或幾份是十分之幾,百分之幾,千分之幾…….可以用小數來表示。一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾…….
1、小數的讀法和寫法
小數部分的最高計數單位「十分之一」和整數部分的最低計數單位「一」之間的進率也是十。
(2)小數的讀法和寫法
讀小數時,整數部分按整數的讀法讀,整數部分是0的讀作「零」,小數點讀作「點」,小數部分可以順次讀出每個數位上的數字。
寫小數時,整數部分按整數的寫法寫,整數部分是零的要寫「0」,小數點點在個位的右下角,然後依次寫出小數部分每個數位上的數字。
3、小數大小的比較
比較兩個小數的大小,先看它們的整數部分,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就在;十分位上的數也相同的,百分位上的數大的那個數就大……
4、數的改寫與求近似數
(1)數的改寫與省略這個數某一位後面的尾數寫成近似數的方法
為了讀寫方便,常把較大的數簡寫成用「萬」或「億」作單位的數。如:2365500=236.55萬(改寫用「萬」作單位的數)。有時還可以根據需要,省略這個數某一的尾數,寫成近似數。如:2365500≈237萬(省略萬位後面的尾數),有時還要求保留一位小數的近似數。如:7.62983≈7.6(保留一位小數)。
取近似數時,常用「四捨五入法」或「進一法」、「去尾法」把一個數某一位後面的尾數省略。
(2) 較大數的「改寫」與「求近似數」的異同
相同點 都是改變原數的計數單位。根據要求用「億」或「萬」作單位。
不同點 「改寫」只改變數的單位,不改變數的大小,用「=」表示。「求近似數」是用四捨五入法或「進一法」、「去尾法」,既改變了數的單位,又改變數的大小,用「≈」表示。
5、小數的分類與性質
(1)小數的分類
按小數的整數部分是否為0,小數分為純小數和帶小數。
純小數 整數部分是0的小數叫做純小數。
帶小數 整數部不是0的小數叫做帶小數。(純小數都小於1,帶小數都大於或等於1。)
按小數部分的倍數是否有限,小數可以分為有限小數和無限小數。
有限小數 小數部分的位數有限的小數,叫做有限小數。
無限小數 小數部分的位數無限的小數,叫做無限小數。
無限小數又可以分為無限不循環小數和無限循環小數兩類。
循環小數 一個無限小數,從小數部分的某一位起,一個數定或幾個數字依次不斷地重復出現,這樣的小數叫做無限循環小數。
循環節 一個循環小數的小數部分依次不斷地重復出現的數字,叫做這個循環小數的循環節。
循環小數的簡便寫法 寫循環小數時,為了簡便,一般只寫出它的第一個循環節,並在循環節的首位和末尾數字上各點一個小圓點。
(2)小數的性質
小數的末尾添上「0」或者去掉「0」,小數的大小不變,(注意:是在「小數的末尾」而不是「小數點的後面」。)
(3)小數點位置的移動引起小數的大小變化
小數點向右移動一位、二位、三位、…….小數就擴大到原來的10倍、100倍、1000倍……小數點向左移動一位、兩位、三位……小數就縮小到原來的 、 、 ……
(4)常見的質量單位、人民幣單位、時間單位及各單位間的坦率
(5)平年、閏年的判斷方法
公歷年份是4的倍數的一般是閏年,公歷年份是整百數的,必須是400的倍數才是閏年。
知識點三 分數
1、分數的意義 把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。
2、分數單位 把單位「1」平均分成若干份,表示其中一份的分數,叫做分數單位。
3、分數的分類
(1)真分數 分子比分母小的分數叫做真分數。
(2)假分數 分子比分母大或者與分母相等的分數叫做假分數。
4、分數的基本性質 分數的分子一分母同時乘或除以一個相同的數(0除外),分數的大小不變,這叫做分數的基本性質。
5、分數與除法的關系 (1)分數的分子相當於除法的被除數,分數的分母相當於除法的除數,分數線相當於除法的除號。(2)在除法中,除數不能為0,在分數中分母也不能為0,除數、分母為0沒有意義。
6、約分 把一個分數化成同它相等,且分子、分母都比較小的分數的過程,叫做約分。
7、最簡分數 分子、分母是互質數的分數叫做最簡分數。
8、通分 把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
9、分數大小的比較 分母相同的兩個分數,分子大的分數比較大;分子相同的兩個分數,分母小的分數比較大。
10、分數化小數 根據分數與除法的關系,把分數轉化為除法算式,然後計算,就可以得到小數。
分數化小數有兩種情況:一般是分子除以分母能除盡,得到有限小數,如 =0.4;一種是分子除以分母除不盡,得到無限小數,如 =0.142857……
11、小數化為分數 原來有幾位小數,就在1的的後面寫上幾個0
母,把原來的小數點去掉作分子,化成分數後,能約分的要約分。
12、分數的基本性質與小數基本性質的關系
分數的基本性質與小數的基本性質是一致的。小數的末尾添上「0」
或者去掉「0」,就相當於把相應的分數的分子、分母同時擴大(或縮小)到原來的10倍(或 )、100倍(或 )、1000倍(或 )……
《空間與圖形》部分
1、圖形的初步認識
(1)生活中的立體圖形
閱讀材料:歐拉公式
(2)畫立體圖形:①由立體圖形到視圖;②由視圖到立體圖形
(3)立體圖形的表面展開圖
(4)平面圖形
閱讀材料:七巧板
(5)最基本的圖形:點和線 ①點和線;②線段的長短比較
(6)角: ①角的比較和運算;②角的特殊關系
(7)相交線:①垂線;②相交線中的角
(8)平行線:①平行線的識別;②平行線的特徵
2、多邊形
(1)三角形
(2)三角形的內角和、三角形的外角和
(3)瓷磚的鋪設
(4)用正多邊形拼地板
閱讀材料:多姿多彩的圖案
課題學習:圖形的鑲嵌
3、圖形的變換
(1)平移:①圖形的平移;②圖形的特徵
(2)旋轉:①圖形的旋轉;②旋轉的特徵;③旋轉對稱圖形;④中心對稱圖形
(3)軸對稱:①生活中的軸對稱;②軸對稱的認識;③等腰三角形
閱讀材料:(1)剪五角星;(2)對稱拼圖游戲;(3)Times and dates
(4)位似變換:①圖形的放大與縮小;②畫相似圖形
4、命題與證明
(1)定義、命題與定理
(2)證明及其再認識
5、圖形的全等
(1)圖形的全等
(2)全等三角形的識別及其性質
(3)尺規作圖:①畫線段;②畫角;③畫線段;④畫角平分線
6、圖形的相似
(1)相似的圖形及其特徵
(2)相似三角形:①相似三角形的識別;②相似三角形的特徵
(3)圖形與坐標
7、解三角形
(1)測量
(2)勾股定理
(3)銳角三角函數
(4)解直角三角形
8、平行四邊形
(1)平行四邊形:①平行四邊形的概念;②平行四邊形的識別;③平行四邊形的特徵
(2)矩形:①矩形的概念;②矩形的識別;③矩形的特徵
(3)菱形:①菱形的概念;②菱形的識別;③菱形的特徵
(4)正方形:①正方形的概念;②正方形的識別;③正方形的特徵
閱讀材料:四邊形的變身術
課題學習:中點四邊形
9、圓
(1)圓的基本元素
(2)圓的對稱性
(3)圓周角
(4)與圓有關的位置關系:①點和圓的位置關系;②直線和圓的位置關系;③圓和圓的位置關系
(5)圓中的有關計算問題:①弧長和扇形的面積;②圓錐的側面積和全面積
1、統計

科學記數法:一個大於10的數可以表示成A*10N的形式,其中1小於等於A小於10,N是正整數。

扇形統計圖:①用圓表示總體,圓中的各個扇形分別代表總體中的不同部分,扇形的大小反映部分佔總體的百分比的大小,這樣的統計圖叫做扇形統計圖。②扇形統計圖中,每部分佔總體的百分比等於該部分所對應的扇形圓心角的度數與360度的比。

各類統計圖的優劣:條形統計圖:能清楚表示出每個項目的具體數目;折線統計圖:能清楚反映事物的變化情況;扇形統計圖:能清楚地表示出各部分在總體中所佔的百分比。

近似數字和有效數字:①測量的結果都是近似的。②利用四捨五入法取一個數的近似數時,四捨五入到哪一位,就說這個近似數精確到哪一位。③對於一個近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數字都叫做這個數的有效數字。

平均數:對於N個數X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個N個數的算術平均數,記為X(上邊一橫)。

加權平均數:一組數據里各個數據的重要程度未必相同,因而,在計算這組數據的平均數時往往給每個數據加一個權,這就是加權平均數。

中位數與眾數:①N個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。②一組數據中出現次數最大的那個數據叫做這個組數據的眾數。③優劣:平均數:所有數據參加運算,能充分利用數據所提供的信息,因此在現實生活中常用,但容易受極端值影響;中位數:計算簡單,受極端值影響少,但不能充分利用所有數據的信息;眾數:各個數據如果重復次數大致相等時,眾數往往沒有特別的意義。

調查:①為了一定的目的而對考察對象進行的全面調查,稱為普查,其中所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。②從總體中抽取部分個體進行調查,這種調查稱為抽樣調查,其中從總體中抽取的一部分個體叫做總體的一個樣本。③抽樣調查只考察總體中的一小部分個體,因此他的優點是調查范圍小,節省時間,人力,物力和財力,但其調查結果往往不如普查得到的結果准確。為了獲得較為准確的調查結果,抽樣時要主要樣本的代表性和廣泛性。

頻數與頻率:①每個對象出現的次數為頻數,而每個對象出現的次數與總次數的比值為頻率。②當收集的數據連續取值時,我們通常先將數據適當分組,然後再繪制頻數分布直方圖。

2、概率

可能性:①有些事情我們能確定他一定會發生,這些事情稱為必然事件;有些事情我們能肯定他一定不會發生,這些事情稱為不可能事件;必然事件和不可能事件都是確定的。②有很多事情我們無法肯定他會不會發生,這些事情稱為不確定事件。③一般來說,不確定事件發生的可能性是有大小的。

概率:①人們通常用1(或100%)來表示必然事件發生的可能性,用0來表示不可能事件發生的可能性。②游戲對雙方公平是指雙方獲勝的可能性相同。③必然事件發生的概率為1,記作P(必然事件)=1;不可能事件發生的概率為0,記作P(不可能事件)=0;如果A為不確定事件,那麼0〈P(A)〈1。

❼ 初中數學平移和旋轉的定義與其它知識

今天,我說課的課題是《平移和旋轉》。下面,我將從五個方面來進行解說。

一、說教材

(一)、教材簡析

《平移和旋轉》是北師大版小學數學三年級下冊第二單元的內容。是在學生認識了前後、上下和左右,以及簡單圖形的基礎上學習的,為今 後進一步學習平移和旋轉,以及相關幾何知識打下基礎。《平移和旋轉》是從運動變化的角度去探索和認識空間與圖形。教材注重挖掘和利用身邊豐富有趣的實例,充分感知平移、旋轉兩種運動的不同特徵及其普遍存在性,並通過「移一移、說一說」「填一填」「畫一畫」3個數學活動,來感受平移的幾何特徵,進一步發展學生的空間觀念。

(二)、學情分析

學生對平移和旋轉的現象,在生活中已經有了一些感性的認識,但不能真正體會平移和旋轉的特點。由於本學段的學生正處在直觀形象思維階段,他們觀察圖形的平移常常會被表面現象所迷惑。大部分學生會把兩幅圖之間的距離看作是平移的距離。

(三)、教學目標

根據上述教材分析,考慮到學生已有的認知結構,我將本節課的教學目標確定為:

1.結合學生的生活經驗和實例,感知平移和旋轉的現象,並會直觀地區別這兩種常見的現象。

2.讓學生經歷觀察、操作、合作等學習活動,使其能在方格紙上畫出一個簡單圖形沿水平方向、豎直方向平移後的圖形。

3.激發學生學習數學的熱情,感受數學與生活的密切聯系。

(四)、教學重點、難點:

教學重點:感知平移和旋轉的現象。

教學難點:理解平移的距離。

(五)、教具、學具准備:多媒體課件、移動的小船、方格圖紙

二.說教法

根據以上的教學目標,教學重、難點,以及為了讓學生經歷從現實背景中抽象出數學模型,從現實生活空間中抽象出幾何圖形的過程,我主要採用以下兩種教法。

1、情景教學法:數學情景是學生掌握知識、形成能力、發展心理品質的重要源泉,是溝通現實生活與數學學習、具體問題與抽象概念之間的橋梁。「平移和旋轉」是生活中常見的現象,在本節課中,我主要採用從生活實例入手,為學生創設生活情境,讓學生在情境中感悟;創設活動情境,讓學生在情境中體驗;創設問題情境,讓學生在情境中探究,逐步實現對數學概念和方法意義的建構。

2、多媒體演示法:教師利用多媒體把平移的過程用動態的方式呈現出來,便於學生觀察、了解平移的方向和距離,用生動形象的方式突破難點。

三、說學法

在合理選擇教法的同時,更要注重對學生學法的指導。使學生不僅學會,還要會學。本節課我主要指導學生以下兩種學法:

1、操作發現法:教育家蘇霍姆林斯基提出:「兒童的智慧在他手指尖上。」可見,學生的思維是離不開實踐活動的。在本節課中,理解平移的距離,對學生來說是一個難點。為此,教師組織學生動手操作。通過操作、觀察、比較,引導學生發現:觀察一個圖形的平移過程,只需要觀察該圖形上任意一點的平移過程。

2、小組合作交流法:合作交流是學生學習數學的重要方式之一。在本課中,針對教學難點,教師兩次組織學生小組合作,給學生提供交流的機會。學生可以在小組內充分展示自己的思維過程,同時在傾聽中把自己的想法同其他人的方法做比較,在理解和採納不同意見和方法的同時也發現規律。

四.說教學流程

(一)、創設情境,初步感知平移和旋轉。

1、上課開始,教師談話引入。

「孩子們,你們去過游樂園嗎?游樂園里有好多好玩的游樂項目.今天,老師就和大家一起去看一看。(課件出示:游樂園中的一些動態畫面。)

請大家認真觀察這些游樂項目是怎樣運動變化的。」

2、待學生觀察完後,教師接著提問:這些物體的運動都相同嗎?請你根據它們的運動方式給它們分類,並說明理由。

對於最後這個問題,我先讓學生在小組里交流,然後再全班匯報交流。

3、根據學生交流的情況,教師進行小結。

像上面游樂園中的纜車、滑滑梯、小火車(邊說邊貼畫)那樣,都是沿著直線移動的,我們把這樣的運動方式稱為平移(板書:平移);像旋轉小屋、大風車(邊說邊貼畫)那樣,都是繞著一個固定的點轉動的,這樣的運動方式我們就稱為旋轉(板書:旋轉)。

今天我們就一起來研究「平移和旋轉」。

設計目的:讓學生在情景中,初步感知平移和旋轉的現象。正如《新課標》所倡導的:數學教學,要緊密聯系學生的生活實際,從學生的生活經驗和已有知識出發,創設生動、有趣的情景,讓學生從中獲得基本的數學知識和技能,體驗學習數學的價值。

(二)、聯系實際進一步認識平移和旋轉。

在第一個環節的學習中,學生對於平移和旋轉只是一種感性認識,為了幫助學生准確地建構平移和旋轉的概念,我設計了以下三個活動:

活動一:

下列物體的運動是平移的畫「—」,是旋轉的畫「o」。(課件出示)

設計目的:讓學生判斷日常生活中的平移和旋轉現象,經歷觀察、對比的思維過程,使其更深刻地認識平移和旋轉的運動特點。

活動二:

舉例說明生活中的平移和旋轉現象。

設計目的:使學生進一步體會平移和旋轉這兩種運動的本質特徵,感受平移和旋轉現象在生活中無處不在,加深學生對數學來源於生活的認識。

活動三:

試著做一個表示平移或旋轉的動作。

對於這個活動,我先讓學生在小組里進行,再推選出代表向全班表演。

設計目的:我這樣設計實際上是要求學生用獨創的形體語言來表示平移和旋轉的特徵。加深對平移和旋轉運動特徵的理解。

(三)、動手操作,進一步探究平移。

這個環節,我分三個步驟進行:

1、創設情境,感知平移的方向和距離。

(1)、出示課件,讓學生觀察。(課件出示:小兔過河圖。)

(2)、教師提問:小船的運動方式是什麼?它是往哪邊平移的?平移了幾格?對於第三個問題,我先讓學生在小組內說一說。然後,再全班匯報交流。

交流中,學生可能會說小船向左平移了3格;也可能會說小船向左平移了7格……

2、動手實踐,理解平移的距離。

當學生對平移的格數出現不同看法時,我並不及時作出肯定或否定的回答,而是通過兩個操作活動來引導學生理解平移的距離。

操作活動一:

(1)、分小組活動。

學生在小組內拿一個活動的小船在方格圖紙上再現小船平移的過程。

教師提問:你發現了什麼?

(2)、通過學生操作、觀察、比較後,學生可能會發現:

① 小船移動,船上的小兔也跟著移動;

② 紅兔和黃兔都移動了7格;

③ 船移動了7格等等。

對於學生的每一種發現,我都給予恰當地鼓勵性評價,讓他們體驗到成功的喜悅。

(3)、在學生得出結論後,教師用課件再次演示小船平移的過程,驗證學生的發現。(課件出示小船移動的過程)

引導學生得出:船上小兔平移的距離,就是小船平移的距離。

通過活動一,學生已經初步理解物體平移的距離。而此時,學生對物體平移的距離,只是停留在實物上的。為了讓學生進一步理解平移的幾何特徵,我將實物替換成平面圖形,設計了第二個操作活動。

(1)操作活動二: 「移一移,說一說」(課件出示)

問:三角形向下平移了幾格?你是怎麼知道的?學生可能會根據三角形上某一點或某一條線段向下平移的距離來得出:三角形向下平移了1格。

問:你認為用哪一種方法能又快又好地判斷出三角形平移的格數呢?

通過交流得出:根據三角形上任意一個頂點平移的格數,就能又快又好地得出三角形平移的格數。這樣,將面落實到點上,從而實現方法的優化。

(2)、讓學生用優化出的方法迅速判斷下面兩幅圖。(課件出示)

「三角形向什麼方向平移了幾格」?

讓學生從中體會到:觀察一個圖形的平移過程,只需要觀察該圖形上任意一點的平移過程。

(3)、學生獨立完成「填一填」。(課件出示)讓學生再次體驗通過觀察圖形上一點,來觀察圖形平移過程的策略。

設計目的:通過 「做中學」,讓學生積極參與操作活動,親身體驗知識的形成過程,培養學生的觀察能力,思維能力,以及空間想像能力,突破本課教學難點。實現教與學方式的變革,體現以學生發展為本的課程價值觀。

3、反饋練習:

在學生已經正確理解平移的方向和距離之後,我及時設計了以下反饋練習。

練習一:填一填。(課件出示)

設計目的:通過學生找上面三個圖形平移的方向和距離,讓學生在「做」中得到知識的深化,進一步理解平移。

練習二:畫一畫(課件出示)

對於這個練習,我先讓學生在小組內討論出一個能提高效率的合理的畫圖步驟,然後再畫。

設計目的:通過讓學生畫出平移後的圖形,讓學生運用所學平移知識,解決實際問題,體現數學的運用價值。

(四)、反思明理。

課堂小結我讓學生自己起來總結: 「我學會了什麼」「我是怎樣學會的?」「我還有什麼疑問?」

設計的目:通過讓學生自主反思學習過程、學習方法,培養學生反思的習慣。使其在反思中不斷進步。

(五)、鞏固加深,拓展運用。

本節課我設計了趣味練習和開放練習。

1、趣味練習:

讓學生欣賞生活中運用平移和旋轉設計出的美麗圖案。

2、開放練習:

我讓學生課後運用平移和旋轉的方法,通過畫一畫、剪一剪、拼一拼、貼一貼,設計出美麗的圖案。

設計目的:以上練習的設計,即有鞏固性,又有趣味性,還有創造性,適合不同特點的學生。特別是開放練習,思維空間大,方法靈活多樣,把課堂的知識延伸到課外,為學有餘力的同學提供了一個施展創造才能的機會,較好的發展個性,同時體現了「人人學好數學」「不同的人學不同的數學」的大眾數學教育思想。

五、說板書

我的板書設計是在教學的過程中動態生成的,它突出了本課的教學重點。體現了數學知識來源於生活。

(附:板書設計)

平移 和 旋轉

❽ 初中數學知識點總結

將△BAP繞B點旋轉90°使BA與BC重合,P點旋轉後到Q點,連接PQ

因為△BAP≌△BCQ

所以AP=CQ,BP=BQ,∠ABP=∠CBQ,∠BPA=∠BQC

因為四邊形DCBA是正方形

所以∠CBA=90°

所以∠ABP+∠CBP=90°

所以∠CBQ+∠CBP=90°

即∠PBQ=90°

所以△BPQ是等腰直角三角形

所以PQ=√2*BP,∠BQP=45°

因為PA=1,PB=2,PC=3

所以PQ=2√2,CQ=1

所以CP^2=9,PQ^2+CQ^2=8+K=9

所以CP^2=PQ^2+CQ^2

所以△CPQ是直角三角形且∠CQA=90°

所以∠BQC=90°+45°=135°

所以∠BPA=∠BQC=135°

❾ 初三上冊數學旋轉知識點總結

首先記住旋轉的性質:
1 對應點到旋轉中心的距離相等
2 對應點與旋轉中心所連線段的夾角等於旋轉角
其次是坐標系與對應點的關系,比如原點、軸對於點的坐標求法
最後要注意區別中心對稱與中心對稱圖形的區別

❿ 初三上冊數學知識點歸納

初三數學知識點 第一章 二次根式 1 二次根式:形如a
(0a)的式子為二次根式;
性質:a
(0a)是一個非負數;

02
aaa


02
aaa

2 二次根式的乘除: 0,0

baabba;

0,0
bab
ab
a。
3 二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合並。
4 海倫-秦九韶公式:)
)()((cpbpppS
,S是三角形的面積,
p為2
c
bap

第二章 一元二次方程
1 一元二次方程:等號兩邊都是整式,且只有一個未知數,未知數的最高次是2的方程。
2 一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然後兩邊開方; 公式法:a
acbbx242



因式分解法:左邊是兩個因式的乘積,右邊為零。 3 一元二次方程在實際問題中的應用
4 韋達定理:設21,xx是方程02cbxax的兩個根,那麼有

初三全科目課件教案習題匯總語文數學英語物理化學

a
cxxa
bxx


2121
,
第三章 旋轉 1 圖形的旋轉
旋轉:一個圖形繞某一點轉動一個角度的圖形變換 性質:對應點到旋轉中心的距離相等;
對應點與旋轉中心所連的線段的夾角等於旋轉角 旋轉前後的圖形全等。
2 中心對稱:一個圖形繞一個點旋轉180度,和另一個圖
形重合,則兩個圖形關於這個點中心對稱;
中心對稱圖形:一個圖形繞某一點旋轉180度後得到的
圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;
3 關於原點對稱的點的坐標 第四章 圓
1 圓、圓心、半徑、直徑、圓弧、弦、半圓的定義 2 垂直於弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它
的對稱軸;
垂直於弦的直徑平分弦,並且平方弦所對的兩條弧; 平分弦的直徑垂直弦,並且平分弦所對的兩條弧。 3 弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所

對的弦也相等。
4 圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等
於這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角
所對的弦是直徑。
5 點和圓的位置關系 點在
rd
點在圓上 d=r 點在圓內 d<r
定理:不在同一條直線上的三個點確定一個圓。 三角形的外接圓:經過三角形的三個頂點的圓,外接圓的
圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。
6直線和圓的位置關系 相交 d<r 相切 d=r 相離 d>r
切線的性質定理:圓的切線垂直於過切點的半徑; 切線的判定定理:經過圓的外端並且垂直於這條半徑的直
線是圓的切線;
切線長定理:從圓外一點引圓的兩條切線,它們的切線長

相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,
圓心是三角形的三條角平分線的交點,為三角形的內心。
7 圓和圓的位置關系
外離 d>R+r 外切 d=R+r 相交 R-r<d<R+r 內切 d=R-r 內含 d<R-r 8 正多邊形和圓
正多邊形的中心:外接圓的圓心 正多邊形的半徑:外接圓的半徑 正多邊形的中心角:沒邊所對的圓心角 正多邊形的邊心距:中心到一邊的距離 9 弧長和扇形面積 弧長 180
rnl

扇形面積:360
2
rnS
10 圓錐的側面積和全面積 側面積: 全面積
11 (附加)相交弦定理、切割線定理

第五章 概率初步
1 概率意義:在大量重復試驗中,事件A發生的頻率nm
穩定在
某個常數p附近,則常數p叫做事件A的概率。
2 用列舉法求概率
一般的,在一次試驗中,有n中可能的結果,並且它們發生的概率相等,事件A包含其中的m中結果,那麼事件A發生的概率就是p(A)=
n
m