當前位置:首頁 » 基礎知識 » 高二數學命題知識點
擴展閱讀
10個創業小知識 2024-09-20 00:37:17
qq音樂藍牙怎麼沒有歌詞 2024-09-20 00:16:20

高二數學命題知識點

發布時間: 2022-03-06 21:13:48

A. 高二數學知識點及公式是什麼

高二數學知識點及公式是如下:

一、復合函數定義域

若函數y=f(u)的定義域是B,u=g(x)的定義域是A,則復合函數y=f的定義域是D={x|x∈A,且g(x)∈B}綜合考慮各部分的x的取值范圍,取他們的交集。

求函數的定義域主要應考慮以下幾點:

⑴當為整式或奇次根式時,R的值域。

⑵當為偶次根式時,被開方數不小於0(即≥0)。

⑶當為分式時,分母不為0;當分母是偶次根式時,被開方數大於0。

⑷當為指數式時,對零指數冪或負整數指數冪,底不為0。

⑸當是由一些基本函數通過四則運算結合而成的,它的定義域應是使各部分都有意義的自變數的值組成的集合,即求各部分定義域集合的交集。

⑹分段函數的定義域是各段上自變數的取值集合的並集。

⑺由實際問題建立的函數,除了要考慮使解析式有意義外,還要考慮實際意義對自變數的要求。

⑻對於含參數字母的函數,求定義域時一般要對字母的取值情況進行分類討論,並要注意函數的定義域為非空集合。

⑼對數函數的真數必須大於零,底數大於零且不等於1。

二、復合函數常見題型

(ⅰ)已知f(x)定義域為A,求f的定義域:實質是已知g(x)的范圍為A,以此求出x的范圍。

(ⅱ)已知f定義域為B,求f(x)的定義域:實質是已知x的范圍為B,以此求出g(x)的范圍。

(ⅲ)已知f定義域為C,求f的定義域:實質是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然後將其作為h(x)的范圍,以此再求出x的范圍。

B. 高二數學知識點有哪些

1、函數模型及其應用:利用計算工具,比較指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。收集一些社會生活中普遍使用的函數模型(指數函數、對數函數、冪函數、分段函數等)的實例,了解函數模型的廣泛應用。

2、在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。

3、理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。

4、根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系。

5、能根據斜率判定兩條直線平行或垂直。

C. 高二的數學知識

高二數學選修2-1知識點
1、命題:用語言、符號或式子表達的,可以判斷真假的陳述句.
真命題:判斷為真的語句.
假命題:判斷為假的語句.
2、「若 ,則 」形式的命題中的 稱為命題的條件, 稱為命題的結論.
3、對於兩個命題,如果一個命題的條件和結論分別是另一個命題的結論和條件,則這兩個命題稱為互逆命題.其中一個命題稱為原命題,另一個稱為原命題的逆命題.
若原命題為「若 ,則 」,它的逆命題為「若 ,則 」.
4、對於兩個命題,如果一個命題的條件和結論恰好是另一個命題的條件的否定和結論的否定,則這兩個命題稱為互否命題.中一個命題稱為原命題,另一個稱為原命題的否命題.
若原命題為「若 ,則 」,則它的否命題為「若 ,則 」.
5、對於兩個命題,如果一個命題的條件和結論恰好是另一個命題的結論的否定和條件的否定,則這兩個命題稱為互為逆否命題.其中一個命題稱為原命題,另一個稱為原命題的逆否命題.
若原命題為「若 ,則 」,則它的否命題為「若 ,則 」.
6、四種命題的真假性:
原命題 逆命題 否命題 逆否命題
真 真 真 真
真 假 假 真
假 真 真 真
假 假 假 假
四種命題的真假性之間的關系:
兩個命題互為逆否命題,它們有相同的真假性;
兩個命題為互逆命題或互否命題,它們的真假性沒有關系.
7、若 ,則 是 的充分條件, 是 的必要條件.
若 ,則 是 的充要條件(充分必要條件).
8、用聯結詞「且」把命題 和命題 聯結起來,得到一個新命題,記作 .
當 、 都是真命題時, 是真命題;當 、 兩個命題中有一個命題是假命題時, 是假命題.
用聯結詞「或」把命題 和命題 聯結起來,得到一個新命題,記作 .
當 、 兩個命題中有一個命題是真命題時, 是真命題;當 、 兩個命題都是假命題時, 是假命題.
對一個命題 全盤否定,得到一個新命題,記作 .
若 是真命題,則 必是假命題;若 是假命題,則 必是真命題.
9、短語「對所有的」、「對任意一個」在邏輯中通常稱為全稱量詞,用「 」表示.
含有全稱量詞的命題稱為全稱命題.
全稱命題「對 中任意一個 ,有 成立」,記作「 , 」.
短語「存在一個」、「至少有一個」在邏輯中通常稱為存在量詞,用「 」表示.
含有存在量詞的命題稱為特稱命題.
特稱命題「存在 中的一個 ,使 成立」,記作「 , 」.
10、全稱命題 : , ,它的否定 : , .全稱命題的否定是特稱命題.
11、平面內與兩個定點 , 的距離之和等於常數(大於 )的點的軌跡稱為橢圓.這兩個定點稱為橢圓的焦點,兩焦點的距離稱為橢圓的焦距.
12、橢圓的幾何性質:
焦點的位置 焦點在 軸上
焦點在 軸上

圖形
標准方程

范圍 且


頂點 、




軸長 短軸的長 長軸的長

焦點 、


焦距

對稱性 關於 軸、 軸、原點對稱

離心率

准線方程

13、設 是橢圓上任一點,點 到 對應准線的距離為 ,點 到 對應准線的距離為 ,則 .
14、平面內與兩個定點 , 的距離之差的絕對值等於常數(小於 )的點的軌跡稱為雙曲線.這兩個定點稱為雙曲線的焦點,兩焦點的距離稱為雙曲線的焦距.
15、雙曲線的幾何性質:
焦點的位置 焦點在 軸上
焦點在 軸上

圖形
標准方程

范圍 或 ,
或 ,

頂點 、


軸長 虛軸的長 實軸的長

焦點 、


焦距

對稱性 關於 軸、 軸對稱,關於原點中心對稱

離心率

准線方程

漸近線方程

16、實軸和虛軸等長的雙曲線稱為等軸雙曲線.
17、設 是雙曲線上任一點,點 到 對應准線的距離為 ,點 到 對應准線的距離為 ,則 .
18、平面內與一個定點 和一條定直線 的距離相等的點的軌跡稱為拋物線.定點 稱為拋物線的焦點,定直線 稱為拋物線的准線.
19、過拋物線的焦點作垂直於對稱軸且交拋物線於 、 兩點的線段 ,稱為拋物線的「通徑」,即 .
20、焦半徑公式:
若點 在拋物線 上,焦點為 ,則 ;
若點 在拋物線 上,焦點為 ,則 ;
若點 在拋物線 上,焦點為 ,則 ;
若點 在拋物線 上,焦點為 ,則 .

有的表格復制不出來 你留下郵箱 我發給你

D. 高一高二高三數學所有知識點

這個。。。。可以幫我也發一下嗎。。。或者發給我一下

E. 高二數學知識點總結

一、求雙曲線的標准方程
求雙曲線的標准方程 或 (a、b>0),通常是利用雙曲線的有關概念及性質再 結合其它知識直接求出a、b或利用待定系數法.
例1 求與雙曲線 有公共漸近線,且過點 的雙曲線的共軛雙曲線方程.
解 令與雙曲線 有公共漸近線的雙曲線系方程為 ,將點 代入,得 ,∴雙曲線方程為 ,由共軛雙曲線的定義,可得此雙曲線的共軛雙曲線方程為 .
評 此例是「求與已知雙曲線共漸近線的雙曲線方程」類型的題.一般地,與雙曲線 有公共漸近線的雙曲線的方程可設為 (kR,且k≠0);有公共焦點的雙曲線方程可設為 ,本題用的是待定系數法.
例2 雙曲線的實半軸與虛半軸長的積為 ,它的兩焦點分別為F1、F2,直線 過F2且與直線F1F2的夾角為 ,且 , 與線段F1F2的垂直平分線的交點為P,線段PF2與雙曲線的交點為Q,且 ,建立適當的坐標系,求雙曲線的方程.
解 以F1F2的中點為原點,F1、F2所在直線為x軸建立坐標系,則所求雙曲線方程為 (a>0,b>0),設F2(c,0),不妨設 的方程為 ,它與y軸交點 ,由定比分點坐標公式,得Q點的坐標為 ,由點Q在雙曲線上可得 ,又 ,
∴ , ,∴雙曲線方程為 .
評 此例用的是直接法.
二、雙曲線定義的應用
1、第一定義的應用
例3 設F1、F2為雙曲線 的兩個焦點,點P在雙曲線上,且滿足∠F1PF2=900,求ΔF1PF2的面積.
解 由雙曲線的第一定義知, ,兩邊平方,得 .
∵∠F1PF2=900,∴ ,
∴ ,
∴ .
2、第二定義的應用
例4 已知雙曲線 的離心率 ,左、右焦點分別為F1、F2,左准線為l,能否在雙曲線左支上找到一點P,使 是 P到l的距離d與 的比例中項?
解 設存在點 ,則 ,由雙曲線的第二定義,得 ,
∴ , ,又 ,
即 ,解之,得 ,
∵ ,
∴ , 矛盾,故點P不存在.
評 以上二例若不用雙曲線的定義得到焦半徑 、
或其關系,解題過程將復雜得多.
三、雙曲線性質的應用

例5 設雙曲線 ( )的半焦距為c,
直線l過(a,0)、(0,b)兩點,已知原點到 的距離為 ,
求雙曲線的離心率.
解析 這里求雙曲線的離心率即求 ,是個幾何問題,怎麼把
題目中的條件與之聯系起來呢?如圖1,
∵ , , ,由面積法知ab= ,考慮到 ,
知 即 ,亦即 ,注意到a<b的條件,可求得 .
四、與雙曲線有關的軌跡問題
例6 以動點P為圓心的圓與⊙A: 及⊙B: 都外切,求點P的軌跡方程.
解 設動點P(x,y),動圓半徑為r,由題意知 , , .
∴ .∴ , ,據 雙曲線的定義知,點P的軌跡是以A、B為焦點的雙曲線的右支,方程為 : .
例 7 如圖2,從雙曲線 上任一點Q引直線 的垂線,垂足為N,求線段QN的中點P的軌跡方程.
解析 因點P隨Q的運動而運動,而點Q在已知雙曲線上,
故可從尋求 Q點的坐標與P點的坐標之間的關系入手,用轉移法達到目的.
設動點P的坐標為 ,點Q的坐標為 ,
則 N點的坐標為 .
∵點 N在直線 上,∴ ……①
又∵PQ垂直於直線 ,∴ ,
即 ……②
聯立 ①、②解得 .又∵點N 在雙曲線 上,
∴ ,
即 ,化簡,得點P的軌跡方程為: .
五、與雙曲線有關的綜合題
例8 已知雙曲線 ,其左右焦點分別為F1、F2,直線l過其右焦點F2且與雙曲線 的右支交於A、B兩點,求 的最小值.
解 設 , ,( 、 ).由雙曲線的第二定義,得
, ,
∴ ,
設直線l的傾角為θ,∵l與雙曲線右支交於兩點A、B,∴ .
①當 時,l的方程為 ,代入雙曲線方程得
.
由韋達定理得: .
∴ .
②當 時,l的方程為 ,∴ ,∴ .
綜①②所述,知所求最小值為 .

F. 高二上學期數學知識點歸納有哪些

高二上學期數學知識點歸納有:

1、四種命題:原命題:若p則q;逆命題:若q則p;否命題:若p則q;逆否命題:若q則p。

2、注意命題的否定與否命題的區別:命題否定形式是;否命題是.命題「或」的否定是「且」;「且」的否定是「或」。

3、邏輯聯結詞:且(and):命題形式p q; p q p q p q p或(or):命題形式p q;真真真真假非(not):命題形式p .真假假真假。「或命題」的真假特點是「一真即真,要假全假」;「且命題」的真假特點是「一假即假,要真全真」;「非命題」的真假特點是「一真一假」。

4、充要條件:由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。

5、全稱命題與特稱命題:短語「所有」在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,並用符號表示。含有全體量詞的命題,叫做全稱命題。短語「有一個」或「有些」或「至少有一個」在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,並用符號表示,含有存在量詞的命題,叫做存在性命題。

G. 高二上學期數學知識點梳理總結

單元知識總結

一、坐標法
1.點和坐標
建立了平面直角坐標系後,坐標平面上的點和一對有序實數(x,y)建立了一一對應的關系.
2.兩點間的距離公式
設兩點的坐標為P1(x1,y1),P2(x2,y2),則兩點間的距離

特殊位置的兩點間的距離,可用坐標差的絕對值表示:
(1)當x1=x2時(兩點在y軸上或兩點連線平行於y軸),則
|P1P2|=|y2-y1|
(2)當y1=y2時(兩點在x軸上或兩點連線平行於x軸),則
|P1P2|=|x2-x1|
3.線段的定比分點

(2)公式:分P1(x1,y2)和P2(x2,y2)連線所成的比為λ的分點坐標是

公式

二、直線
1.直線的傾斜角和斜率
(1)當直線和x軸相交時,把x軸繞著交點按逆時針方向旋轉到和直線重合時所轉的最小正角,叫做這條直線的傾斜角.
當直線和x軸平行線重合時,規定直線的傾斜角為0.
所以直線的傾斜角α∈[0,π).
(2)傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜

∴當k≥0時,α=arctank.(銳角)
當k<0時,α=π-arctank.(鈍角)
(3)斜率公式:經過兩點P1(x1,y1)、P2(x2,y2)的直線的斜率為

2.直線的方程
(1)點斜式 已知直線過點(x0,y0),斜率為k,則其方程為:y-y0=k(x-x0)
(2)斜截式 已知直線在y軸上的截距為b,斜率為k,則其方程為:y=kx+b
(3)兩點式 已知直線過兩點(x1,y1)和(x2,y2),則其方程為:

(4)截距式 已知直線在x,y軸上截距分別為a、b,則其方程為:

(5)參數式 已知直線過點P(x0,y0),它的一個方向向量是(a,b),

v(cosα,sinα)(α為傾斜角)時,則其參數式方程為

(6)一般式 Ax+By+C=0 (A、B不同時為0).
(7)特殊的直線方程
①垂直於x軸且截距為a的直線方程是x=a,y軸的方程是x=0.
②垂直於y軸且截距為b的直線方程是y=b,x軸的方程是y=0.
3.兩條直線的位置關系
(1)平行:當直線l1和l2有斜截式方程時,k1=k2且b1≠b2.

(2)重合:當l1和l2有斜截式方程時,k1=k2且b1=b2,當l1和l2是

(3)相交:當l1,l2是斜截式方程時,k1≠k2

4.點P(x0,y0)與直線l:Ax+By+C=0的位置關系:

5.兩條平行直線l1∶Ax+By+C1=0,l2∶Ax+By+C2=0間

6.直線系方程
具有某一共同屬性的一類直線的集合稱為直線系,它的方程的特點是除含坐標變數x,y以外,還含有特定的系數(也稱參變數).
確定一條直線需要兩個獨立的條件,在求直線方程的過程中往往先根據一個條件寫出所求直線所在的直線系方程,然後再根據另一個條件來確定其中的參變數.
(1)共點直線系方程:
經過兩直線l1∶A1x+B1y+C1=0,l2∶A2x+B2y+C2=0的交點的直線系方程為:A1x+B1y+C1+λ(A2x+B2y+C2)=0,其中λ是待定的系數.
在這個方程中,無論λ取什麼實數,都得不到A2x+B2y+C2=0,因此它不表示l2.當λ=0時,即得A1x+B1y+C1=0,此時表示l1.
(2)平行直線系方程:直線y=kx+b中當斜率k一定而b變動時,表示平行直線系方程.與直線Ax+By+C=0平行的直線系方程是Ax+By+λ=0(λ≠C),λ是參變數.
(3)垂直直線系方程:與直線Ax+By+C=0(A≠0,B≠0)垂直的直線系方程是:Bx-Ay+λ=0.
如果在求直線方程的問題中,有一個已知條件,另一個條件待定時,可選用直線系方程來求解.
7.簡單的線性規劃
(1)二元一次不等式Ax+By+C>0(或<0)表示直線Ax+By+C=0某一側所有點組成的平面區域.
二元一次不等式組所表示的平面區域是各個不等式所表示的平面點集的交集,即各個不等式所表示的平面區域的公共部分.
(2)線性規劃:求線性目標函數在線性約束條件下的最大值或最小值的問題,稱為線性規劃問題,
例如,z=ax+by,其中x,y滿足下列條件:

求z的最大值和最小值,這就是線性規劃問題,不等式組(*)是一組對變數x、y的線性約束條件,z=ax+by叫做線性目標函數.滿足線性約束條件的解(x,y)叫做可行解,由所有可行解組成的集合叫做可行域,使線性目標函數取得最大值和最小值的可行解叫做最優解.
三、曲線和方程
1.定義
在選定的直角坐標系下,如果某曲線C上的點與一個二元方程f(x,y)=0的實數解建立了如下關系:
(1)曲線C上的點的坐標都是方程f(x,y)=0的解(一點不雜);
(2)以方程f(x,y)=0的解為坐標的點都是曲線C上的點(一點不漏).
這時稱方程f(x,y)=0為曲線C的方程;曲線C為方程f(x,y)=0的曲線(圖形).
設P={具有某種性質(或適合某種條件)的點},Q={(x,y)|f(x,y)=0},若設點M的坐標為(x0,y0),則用集合的觀點,上述定義中的兩條可以表述為:

以上兩條還可以轉化為它們的等價命題(逆否命題):

為曲線C的方程;曲線C為方程f(x,y)=0的曲線(圖形).
2.曲線方程的兩個基本問題
(1)由曲線(圖形)求方程的步驟:
①建系,設點:建立適當的坐標系,用變數對(x,y)表示曲線上任意一點M的坐標;
②立式:寫出適合條件p的點M的集合p={M|p(M)};
③代換:用坐標表示條件p(M),列出方程f(x,y)=0;
④化簡:化方程f(x,y)=0為最簡形式;
⑤證明:以方程的解為坐標的點都是曲線上的點.
上述方法簡稱「五步法」,在步驟④中若化簡過程是同解變形過程;或最簡方程的解集與原始方程的解集相同,則步驟⑤可省略不寫,因為此時所求得的最簡方程就是所求曲線的方程.
(2)由方程畫曲線(圖形)的步驟:
①討論曲線的對稱性(關於x軸、y軸和原點);
②求截距:

③討論曲線的范圍;
④列表、描點、畫線.
3.交點
求兩曲線的交點,就是解這兩條曲線方程組成的方程組.
4.曲線系方程
過兩曲線f1(x,y)=0和f2(x,y)=0的交點的曲線系方程是f1(x,y)+λf2(x,y)=0(λ∈R).
四、圓
1.圓的定義
平面內與定點距離等於定長的點的集合(軌跡)叫圓.
2.圓的方程
(1)標准方程(x-a)2+(y-b)2=r2.(a,b)為圓心,r為半徑.
特別地:當圓心為(0,0)時,方程為x2+y2=r2
(2)一般方程x2+y2+Dx+Ey+F=0

當D2+E2-4F<0時,方程無實數解,無軌跡.
(3)參數方程 以(a,b)為圓心,以r為半徑的圓的參數方程為

特別地,以(0,0)為圓心,以r為半徑的圓的參數方程為

3.點與圓的位置關系
設點到圓心的距離為d,圓的半徑為r.

4.直線與圓的位置關系
設直線l:Ax+By+C=0和圓C:(x-a)2+(y-b)2=r2,則

5.求圓的切線方法
(1)已知圓x2+y2+Dx+Ey+F=0.
①若已知切點(x0,y0)在圓上,則切線只有一條,其方程是

過兩個切點的切點弦方程.
②若已知切線過圓外一點(x0,y0),則設切線方程為y-y0=k(x-x0),再利用相切條件求k,這時必有兩條切線,注意不要漏掉平行於y軸的切線.
③若已知切線斜率為k,則設切線方程為y=kx+b,再利用相切條件求b,這時必有兩條切線.
(2)已知圓x2+y2=r2.
①若已知切點P0(x0,y0)在圓上,則該圓過P0點的切線方程為x0x+y0y=r2.

6.圓與圓的位置關系
已知兩圓圓心分別為O1、O2,半徑分別為r1、r2,則

單元知識總結

一、圓錐曲線
1.橢圓
(1)定義
定義1:平面內一個動點到兩個定點F1、F2的距離之和等於常數(大於|F1F2|),這個動點的軌跡叫橢圓(這兩個定點叫焦點).
定義2:點M與一個定點的距離和它到一條定直線的距離的比是常

(2)圖形和標准方程

(3)幾何性質

2.雙曲線
(1)定義
定義1:平面內與兩個定點F1、F2的距離的差的絕對值等於常數(小於|F1F2|)的點的軌跡叫做雙曲線(這兩個定點叫雙曲線的焦點).
定義2:動點到一定點的距離與它到一條定直線的距離之比是常數e(e>1)時,這個動點的軌跡是雙曲線(這定點叫做雙曲線的焦點).
(2)圖形和標准方程

圖8-3的標准方程為:

圖8-4的標准方程為:

(3)幾何性質

3.拋物線
(1)定義
平面內與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線,定點F叫做拋物線的焦點,定直線l叫做拋物線的准線.
(2)拋物線的標准方程,類型及幾何性質,見下表:

①拋物線的標准方程有以下特點:都以原點為頂點,以一條坐標軸為對稱軸;方程不同,開口方向不同;焦點在對稱軸上,頂點到焦點的距離等於頂點到准線距離.
②p的幾何意義:焦點F到准線l的距離.

焦點弦長公式:|AB|=p+x1+x2
4.圓錐曲線(橢圓、雙曲線、拋物線統稱圓錐曲線)的統一定義
與一定點的距離和一條定直線的距離的比等於常數的點的軌跡叫做圓錐曲線,定點叫做焦點,定直線叫做准線、常數叫做離心率,用e表示,當0<e<1時,是橢圓,當e>1時,是雙曲線,當e=1時,是拋物線.
二、利用平移化簡二元二次方程
1.定義
缺xy項的二元二次方程Ax2+Cy2+Dx+Ey+F=0(A、C不同時為0)※,通過配方和平移,化為圓型或橢圓型或雙曲線型或拋物線型方程的標准形式的過程,稱為利用平移化簡二元二次方程.
A=C是方程※為圓的方程的必要條件.
A與C同號是方程※為橢圓的方程的必要條件.
A與C異號是方程※為雙曲線的方程的必要條件.
A與C中僅有一個為0是方程※為拋物線方程的必要條件.
2.對於缺xy項的二元二次方程:
Ax2+Cy2+Dx+Ey+F=0(A,C不同時為0)利用平移變換,可把圓錐曲線的一般方程化為標准方程,其方法有:①待定系數法;②配方法.

中心O′(h,k)

中心O′(h,k)
拋物線:對稱軸平行於x軸的拋物線方程為
(y-k)2=2p(x-h)或(y-k)2=-2p(x-h),
頂點O′(h,k).
對稱軸平行於y軸的拋物線方程為:(x-h)2=2p(y-k)或(x-h)2=-2p(y-k)
頂點O′(h,k).
以上方程對應的曲線按向量a=(-h,-k)平移,就可將其方程化為圓錐曲線的標准方程的形式.

H. 高二數學知識點

一、集合與簡易邏輯:
一、理解集合中的有關概念
(1)集合中元素的特徵: 確定性 , 互異性 , 無序性 。
(2)集合與元素的關系用符號=表示。
(3)常用數集的符號表示:自然數集 ;正整數集 ;整數集 ;有理數集 、實數集 。
(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。

二、函數
一、映射與函數:
(1)映射的概念: (2)一一映射:(3)函數的概念:

二、函數的三要素:
相同函數的判斷方法:①對應法則 ;②定義域 (兩點必須同時具備)
(1)函數解析式的求法:
①定義法(拼湊):②換元法:③待定系數法:④賦值法:
(2)函數定義域的求法:
①含參問題的定義域要分類討論;
②對於實際問題,在求出函數解析式後;必須求出其定義域,此時的定義域要根據實際意義來確定。
(3)函數值域的求法:
①配方法:轉化為二次函數,利用二次函數的特徵來求值;常轉化為型如: 的形式;
②逆求法(反求法):通過反解,用 來表示 ,再由 的取值范圍,通過解不等式,得出 的取值范圍;常用來解,型如: ;
④換元法:通過變數代換轉化為能求值域的函數,化歸思想;
⑤三角有界法:轉化為只含正弦、餘弦的函數,運用三角函數有界性來求值域;
⑥基本不等式法:轉化成型如: ,利用平均值不等式公式來求值域;
⑦單調性法:函數為單調函數,可根據函數的單調性求值域。
⑧數形結合:根據函數的幾何圖形,利用數型結合的方法來求值域。

三、函數的性質:
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區間而言。
判定方法有:定義法(作差比較和作商比較)
導數法(適用於多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關於原點對稱,比較f(x) 與f(-x)的關系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數。
判別方法:定義法, 圖像法 ,復合函數法
應用:把函數值進行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.
應用:求函數值和某個區間上的函數解析式。

四、圖形變換:函數圖像變換:(重點)要求掌握常見基本函數的圖像,掌握函數圖像變換的一般規律。
常見圖像變化規律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯系起來思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經過 平移得到函數y=f(2x+4)的圖象。
(ⅱ)會結合向量的平移,理解按照向量 (m,n)平移的意義。
對稱變換 y=f(x)→y=f(-x),關於y軸對稱
y=f(x)→y=-f(x) ,關於x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關於x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然後將y軸右邊部分關於y軸對稱。(注意:它是一個偶函數)
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。
一個重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關於直線x=a對稱;

五、反函數:
(1)定義:
(2)函數存在反函數的條件:
(3)互為反函數的定義域與值域的關系:
(4)求反函數的步驟:①將 看成關於 的方程,解出 ,若有兩解,要注意解的選擇;②將 互換,得 ;③寫出反函數的定義域(即 的值域)。
(5)互為反函數的圖象間的關系:
(6)原函數與反函數具有相同的單調性;
(7)原函數為奇函數,則其反函數仍為奇函數;原函數為偶函數,它一定不存在反函數。

七、常用的初等函數:
(1)一元一次函數:
(2)一元二次函數:
一般式
兩點式
頂點式
二次函數求最值問題:首先要採用配方法,化為一般式,
有三個類型題型:
(1)頂點固定,區間也固定。如:
(2)頂點含參數(即頂點變動),區間固定,這時要討論頂點橫坐標何時在區間之內,何時在區間之外。
(3)頂點固定,區間變動,這時要討論區間中的參數.
等價命題 在區間 上有兩根 在區間 上有兩根 在區間 或 上有一根
注意:若在閉區間 討論方程 有實數解的情況,可先利用在開區間 上實根分布的情況,得出結果,在令 和 檢查端點的情況。
(3)反比例函數:
(4)指數函數:
指數函數:y= (a>o,a≠1),圖象恆過點(0,1),單調性與a的值有關,在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數圖象的簡圖。
(5)對數函數:
對數函數:y= (a>o,a≠1) 圖象恆過點(1,0),單調性與a的值有關,在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數圖象的簡圖。
注意:
(1)比較兩個指數或對數的大小的基本方法是構造相應的指數或對數函數,若底數不相同時轉化為同底數的指數或對數,還要注意與1比較或與0比較。

八、導 數
1.求導法則:
(c)/=0 這里c是常數。即常數的導數值為0。
(xn)/=nxn-1 特別地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k?f(x))/= k?f/(x)
2.導數的幾何物理意義:
k=f/(x0)表示過曲線y=f(x)上的點P(x0,f(x0))的切線的斜率。
V=s/(t) 表示即時速度。a=v/(t) 表示加速度。
3.導數的應用:
①求切線的斜率。
②導數與函數的單調性的關系
已知 (1)分析 的定義域;(2)求導數 (3)解不等式 ,解集在定義域內的部分為增區間(4)解不等式 ,解集在定義域內的部分為減區間。
我們在應用導數判斷函數的單調性時一定要搞清以下三個關系,才能准確無誤地判斷函數的單調性。以下以增函數為例作簡單的分析,前提條件都是函數 在某個區間內可導。
③求極值、求最值。
注意:極值≠最值。函數f(x)在區間[a,b]上的最大值為極大值和f(a) 、f(b)中最大的一個。最小值為極小值和f(a) 、f(b)中最小的一個。
f/(x0)=0不能得到當x=x0時,函數有極值。
但是,當x=x0時,函數有極值 f/(x0)=0
判斷極值,還需結合函數的單調性說明。
4.導數的常規問題:
(1)刻畫函數(比初等方法精確細微);
(2)同幾何中切線聯系(導數方法可用於研究平面曲線的切線);
(3)應用問題(初等方法往往技巧性要求較高,而導數方法顯得簡便)等關於 次多項式的導數問題屬於較難類型。
2.關於函數特徵,最值問題較多,所以有必要專項討論,導數法求最值要比初等方法快捷簡便。
3.導數與解析幾何或函數圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。

九、不等式
一、不等式的基本性質:
注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用於不成立的命題。
(2)注意課本上的幾個性質,另外需要特別注意:
①若ab>0,則 。即不等式兩邊同號時,不等式兩邊取倒數,不等號方向要改變。
②如果對不等式兩邊同時乘以一個代數式,要注意它的正負號,如果正負號未定,要注意分類討論。
③圖象法:利用有關函數的圖象(指數函數、對數函數、二次函數、三角函數的圖象),直接比較大小。
④中介值法:先把要比較的代數式與「0」比,與「1」比,然後再比較它們的大小
二、均值不等式:兩個數的算術平均數不小於它們的幾何平均數。
基本應用:①放縮,變形;
②求函數最值:注意:①一正二定三相等;②積定和最小,和定積最大。
常用的方法為:拆、湊、平方;
三、絕對值不等式:
注意:上述等號「=」成立的條件;
四、常用的基本不等式:
五、證明不等式常用方法:
(1)比較法:作差比較:
作差比較的步驟:
⑴作差:對要比較大小的兩個數(或式)作差。
⑵變形:對差進行因式分解或配方成幾個數(或式)的完全平方和。
⑶判斷差的符號:結合變形的結果及題設條件判斷差的符號。
注意:若兩個正數作差比較有困難,可以通過它們的平方差來比較大小。
(2)綜合法:由因導果。
(3)分析法:執果索因。基本步驟:要證……只需證……,只需證……
(4)反證法:正難則反。
(5)放縮法:將不等式一側適當的放大或縮小以達證題目的。
放縮法的方法有:
⑴添加或捨去一些項,
⑵將分子或分母放大(或縮小)
⑶利用基本不等式,
(6)換元法:換元的目的就是減少不等式中變數,以使問題化難為易,化繁為簡,常用的換元有三角換元和代數換元。
(7)構造法:通過構造函數、方程、數列、向量或不等式來證明不等式;

十、不等式的解法:
(1)一元二次不等式: 一元二次不等式二次項系數小於零的,同解變形為二次項系數大於零;註:要對 進行討論:
(2)絕對值不等式:若 ,則 ; ;
注意:
(1)解有關絕對值的問題,考慮去絕對值,去絕對值的方法有:
⑴對絕對值內的部分按大於、等於、小於零進行討論去絕對值;
(2).通過兩邊平方去絕對值;需要注意的是不等號兩邊為非負值。
(3).含有多個絕對值符號的不等式可用「按零點分區間討論」的方法來解。
(4)分式不等式的解法:通解變形為整式不等式;
(5)不等式組的解法:分別求出不等式組中,每個不等式的解集,然後求其交集,即是這個不等式組的解集,在求交集中,通常把每個不等式的解集畫在同一條數軸上,取它們的公共部分。
(6)解含有參數的不等式:
解含參數的不等式時,首先應注意考察是否需要進行分類討論.如果遇到下述情況則一般需要討論:
①不等式兩端乘除一個含參數的式子時,則需討論這個式子的正、負、零性.
②在求解過程中,需要使用指數函數、對數函數的單調性時,則需對它們的底數進行討論.
③在解含有字母的一元二次不等式時,需要考慮相應的二次函數的開口方向,對應的一元二次方程根的狀況(有時要分析△),比較兩個根的大小,設根為 (或更多)但含參數,要討論。

十一、數列
本章是高考命題的主體內容之一,應切實進行全面、深入地復習,並在此基礎上,突出解決下述幾個問題:(1)等差、等比數列的證明須用定義證明,值得注意的是,若給出一個數列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數列計算是本章的中心內容,利用等差數列和等比數列的通項公式、前 項和公式及其性質熟練地進行計算,是高考命題重點考查的內容.(3)解答有關數列問題時,經常要運用各種數學思想.善於使用各種數學思想解答數列題,是我們復習應達到的目標. ①函數思想:等差等比數列的通項公式求和公式都可以看作是 的函數,所以等差等比數列的某些問題可以化為函數問題求解.
②分類討論思想:用等比數列求和公式應分為 及 ;已知 求 時,也要進行分類;
③整體思想:在解數列問題時,應注意擺脫呆板使用公式求解的思維定勢,運用整
體思想求解.
(4)在解答有關的數列應用題時,要認真地進行分析,將實際問題抽象化,轉化為數學問題,再利用有關數列知識和方法來解決.解答此類應用題是數學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關的等比數列的第幾項不要弄錯.
一、基本概念:
1、 數列的定義及表示方法:
2、 數列的項與項數:
3、 有窮數列與無窮數列:
4、 遞增(減)、擺動、循環數列:
5、 數列的通項公式an:
6、 數列的前n項和公式Sn:
7、 等差數列、公差d、等差數列的結構:
8、 等比數列、公比q、等比數列的結構:
二、基本公式:
9、一般數列的通項an與前n項和Sn的關系:an=
10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。
11、等差數列的前n項和公式:Sn= Sn= Sn=
當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。

12、等比數列的通項公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項、ak為已知的第k項,an≠0)
13、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關於n的正比例式);
當q≠1時,Sn= Sn=
三、有關等差、等比數列的結論
14、等差數列的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數列。
15、等差數列中,若m+n=p+q,則
16、等比數列中,若m+n=p+q,則
17、等比數列的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數列。
18、兩個等差數列與的和差的數列、仍為等差數列。
19、兩個等比數列與的積、商、倒數組成的數列
、 、 仍為等比數列。
20、等差數列的任意等距離的項構成的數列仍為等差數列。
21、等比數列的任意等距離的項構成的數列仍為等比數列。
22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數成等比的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3
24、為等差數列,則 (c>0)是等比數列。
25、(bn>0)是等比數列,則 (c>0且c 1) 是等差數列。
四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。
26、分組法求數列的和:如an=2n+3n
27、錯位相減法求和:如an=(2n-1)2n
28、裂項法求和:如an=1/n(n+1)
29、倒序相加法求和:
30、求數列的最大、最小項的方法:
① an+1-an=…… 如an= -2n2+29n-3
② an=f(n) 研究函數f(n)的增減性
31、在等差數列 中,有關Sn 的最值問題——常用鄰項變號法求解:
(1)當 >0,d<0時,滿足 的項數m使得 取最大值.
(2)當 <0,d>0時,滿足 的項數m使得 取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。

十二、平面向量
1.基本概念:
向量的定義、向量的模、零向量、單位向量、相反向量、共線向量、相等向量。
2. 加法與減法的代數運算:
(1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
向量加法有如下規律: + = + (交換律); +( +c)=( + )+c (結合律);
3.實數與向量的積:實數 與向量 的積是一個向量。
(1)| |=| |·| |;
(2) 當 a>0時, 與a的方向相同;當a<0時, 與a的方向相反;當 a=0時,a=0.
兩個向量共線的充要條件:
(1) 向量b與非零向量 共線的充要條件是有且僅有一個實數 ,使得b= .
(2) 若 =( ),b=( )則 ‖b .
平面向量基本定理:
若e1、e2是同一平面內的兩個不共線向量,那麼對於這一平面內的任一向量 ,有且只有一對實數 , ,使得 = e1+ e2.
4.P分有向線段 所成的比:
設P1、P2是直線 上兩個點,點P是 上不同於P1、P2的任意一點,則存在一個實數 使 = , 叫做點P分有向線段 所成的比。
當點P在線段 上時, >0;當點P在線段 或 的延長線上時, <0;
分點坐標公式:若 = ; 的坐標分別為( ),( ),( );則 ( ≠-1), 中點坐標公式: .
5. 向量的數量積:
(1).向量的夾角:
已知兩個非零向量 與b,作 = , =b,則∠AOB= ( )叫做向量 與b的夾角。
(2).兩個向量的數量積:
已知兩個非零向量 與b,它們的夾角為 ,則 ·b=| |·|b|cos .
其中|b|cos 稱為向量b在 方向上的投影.
(3).向量的數量積的性質:
若 =( ),b=( )則e· = ·e=| |cos (e為單位向量);
⊥b ·b=0 ( ,b為非零向量);| |= ;
cos = = .
(4) .向量的數量積的運算律:
·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.
6.主要思想與方法:
本章主要樹立數形轉化和結合的觀點,以數代形,以形觀數,用代數的運算處理幾何問題,特別是處理向量的相關位置關系,正確運用共線向量和平面向量的基本定理,計算向量的模、兩點的距離、向量的夾角,判斷兩向量是否垂直等。由於向量是一新的工具,它往往會與三角函數、數列、不等式、解幾等結合起來進行綜合考查,是知識的交匯點。

十三、立體幾何
1.平面的基本性質:掌握三個公理及推論,會說明共點、共線、共面問題。
能夠用斜二測法作圖。
2.空間兩條直線的位置關系:平行、相交、異面的概念;
會求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。
3.直線與平面
①位置關系:平行、直線在平面內、直線與平面相交。
②直線與平面平行的判斷方法及性質,判定定理是證明平行問題的依據。
③直線與平面垂直的證明方法有哪些?
④直線與平面所成的角:關鍵是找它在平面內的射影,范圍是
⑤三垂線定理及其逆定理:每年高考試題都要考查這個定理. 三垂線定理及其逆定理主要用於證明垂直關系與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點到直線的垂線.
4.平面與平面
(1)位置關系:平行、相交,(垂直是相交的一種特殊情況)
(2)掌握平面與平面平行的證明方法和性質。
(3)掌握平面與平面垂直的證明方法和性質定理。尤其是已知兩平面垂直,一般是依據性質定理,可以證明線面垂直。
(4)兩平面間的距離問題→點到面的距離問題→
(5)二面角。二面角的平面交的作法及求法:
①定義法,一般要利用圖形的對稱性;一般在計算時要解斜三角形;
②垂線、斜線、射影法,一般要求平面的垂線好找,一般在計算時要解一個直角三角形。
③射影面積法,一般是二面交的兩個面只有一個公共點,兩個面的交線不容易找到時用此法?

I. 高二數學知識點及公式有哪些

高二數學知識點及公式是如下:

一、集合與函數

內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數。正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。

二、復合函數常見題型

(1)已知f(x)定義域為A,求f的定義域:實質是已知g(x)的范圍為A,以此求出x的范圍。

(2)已知f定義域為B,求f(x)的定義域:實質是已知x的范圍為B,以此求出g(x)的范圍。

(3)已知f定義域為C,求f的定義域:實質是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然後將其作為h(x)的范圍,以此再求出x的范圍。

三、函數圖像與軸垂線至多一個公共點,但與軸垂線的公共點可能沒有,也可是任意個。

四、偶函數在關於原點對稱的區間上若有單調性,則其單調性恰恰相反。

五、奇函數在關於原點對稱的區間上若有單調性,則其單調性完全相同。