當前位置:首頁 » 基礎知識 » 初一數學知識點上冊
擴展閱讀
數學題三年級下冊知識點 2025-01-10 10:57:44
蘭花之戀什麼歌的歌詞 2025-01-10 10:38:41

初一數學知識點上冊

發布時間: 2022-03-06 18:13:07

Ⅰ 七年級上冊數學知識點歸納

七年級(上)數學知識點歸納與總結
一、 知識梳理

知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、 -0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。

知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:

註:有限小數和無限循環小數都可看作分數。

知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。

知識點4:絕對值的概念:
(1) 幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;
(2) 代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。
註:任何一個數的絕對值均大於或等於0(即非負數).

知識點5:相反數的概念:
(1) 幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;
(2) 代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。
知識點6:有理數大小的比較:
有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。
數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。
用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。

知識點7:有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.

知識點8:有理數加法運算律:
加法交換律:兩個數相加,交換加數的位置,和不變。

加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

知識點9:有理數減法法則:減去一個數,等於加上這個數的相反數。

知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然後省略括弧和加號,並運用加法法則、加法運算律進行計算。

知識點11: 乘法與除法
1.乘法法則
2.除法法則
3.多個非零的數相乘除最後結果符號如何確定

知識點12:倒數
1. 倒數概念
2. 如何求一個數的倒數?(注意與相反數的區別)

知識點13:乘方
1. 乘方的概念,乘方的結果叫什麼?
2. 認識底數,指數
3. 正數的任何次冪是_________,零的任何次冪________
負數的偶次冪是_________奇次冪是________

知識點14:混合計算
注意:運算順序是關鍵,計算時要嚴格按照順序運算.考試經常考帶乘方的計算.

知識點15:科學記數法
科學記數法的概念? 注意a的范圍一定要採納我哦!

Ⅱ 初一數學全部知識點有哪些

一、正負數

1、正數:大於0的數。

2、負數:小於0的數。

3、正數大於0,負數小於0,正數大於負數。

注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

二、有理數

1、有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)

三、數軸

1、數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

2、數軸的三要素:原點、正方向、單位長度。

3、相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

相反數的和為0 a+b=0 a、b互為相反數。

四、有理數的加減法

1、先定符號,再算絕對值。

2、加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

五、有理數乘法(先定積的符號,再定積的大小)

1、同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。

2、乘積是1的兩個數互為倒數。

Ⅲ 初一數學上冊知識點

一:有理數
知識網路:
概念、定義:
1、大於0的數叫做正數(positive number)。
2、在正數前面加上負號「-」的數叫做負數(negative number)。
3、整數和分數統稱為有理數(rational number)。
4、人們通常用一條直線上的點表示數,這條直線叫做數軸(number axis)。
5、在直線上任取一個點表示數0,這個點叫做原點(origin)。
6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value)。
7、 由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。
8、正數大於0,0大於負數,正數大於負數。
9、兩個負數,絕對值大的反而小。
10、有理數加法法則
(1)同號兩數相加,取相同的符號,並把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
13、有理數減法法則
減去一個數,等於加上這個數的相反數。
14、有理數乘法法則
兩數相乘,同號得正,異號得負,並把絕對值向乘。
任何數同0相乘,都得0。
15、有理數中仍然有:乘積是1的兩個數互為倒數。
16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。
17、 三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。
18、 一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。
19、有理數除法法則
除以一個不等於0的數,等於乘這個數的倒數。
20、兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。
21、 求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an 中,a叫做底數(basenumber),n叫做指數(exponeht)
22、根據有理數的乘法法則可以得出
負數的奇次冪是負數,負數的偶次冪是正數。
顯然,正數的任何次冪都是正數,0的任何次冪都是0。
23、做有理數混合運算時,應注意以下運算順序:
(1)先乘方,再乘除,最後加減;
(2) 同級運算,從左到右進行;
(3) 如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
24、把一個大於10數表示成a×10n 的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。
25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximate number)。
26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significant digit)

註:黑體字為重要部分
二:整式的加減
知識網路:
概念、定義:
1、都是數或字母的積的式子叫做單項式(monomial),單獨的一個數或一個字母也是單項式。
2、單項式中的數字因數叫做這個單項式的系數(coefficient)。
3、 一個單項式中,所有字母的指數的和叫做這個單項式的次數(degree of a monomial)。
4、幾個單項的和叫做多項式(polynomial),其中,每個單項式叫做多項式的項(term),不含字母的項叫做常數項(constantly
term)。
5、多項式里次數最高項的次數,叫做這個多項式的次數(degree of a polynomial)。
6、把多項式中的同類項合並成一項,叫做合並同類項。
合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變。
7、如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同;
8、如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
9、一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。
三:一元一次方程
知識網路:
概念、定義:
1、列方程時,要先設字母表示未知數,然後根據問題中的相等關系,寫出還有未知數的等式——方程(equation)。
2、含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程(linear equation withone unknown)。
3、分析實際問題中的數量關系,利用其中的等量關系列出方程,是用數學解決實際問題的一種方法。
4、等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。
5、等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。
6、把等式一邊的某項變號後移到另一邊,叫做移項。
7、應用:行程問題:s=v×t 工程問題:工作總量=工作效率×時間
盈虧問題:利潤=售價-成本 利率=利潤÷成本×100%
售價=標價×折扣數×10% 儲蓄利潤問題:利息=本金×利率×時間
本息和=本金+利息
三:圖形初步認識
知識網路:
概念、定義:
1、 我們把實物中抽象的各種圖形統稱為幾何圖形(geometric figure)。
2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內,它們是立體圖形(solidfigure)。
3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形(planefigure)。
4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖(net)。
5、幾何體簡稱為體(solid)。
6、包圍著體的是面(surface),面有平的面和曲的面兩種。
7、面與面相交的地方形成線(line),線和線相交的地方是點(point)。
8、點動成面,面動成線,線動成體。
9、經過探究可以得到一個基本事實:經過兩點有一條直線,並且只有一條直線。
簡述為:兩點確定一條直線(公理)。
10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointof intersection)。
11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center)。
12、經過比較,我們可以得到一個關於線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)
13、連接兩點間的線段的長度,叫做這兩點的距離(distance)。
14、角∠(angle)也是一種基本的幾何圖形。
15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。
16、從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線(angular bisector)。
17、如果兩個角的和等於90°(直角),就是說這兩個叫互為餘角(complementary
angle),即其中的每一個角是另一個角的餘角。
18、如果兩個角的和等於180°(平角),就說這兩個角互為補角(supplementary
angle),即其中一個角是另一個角的補角
19、等角的補角相等,等角的餘角相等

Ⅳ 初一上學期數學知識點歸納

初中數學寶典,你知道學習數學最重要的是什麼嗎?

在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!

復習知識點

以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.

Ⅳ 初一數學上冊學習方法和知識點

重要知識點
1、數的范圍從自然數變成了有理數,包括整數和分數、正數、0和負數,數軸。絕對值
2、平方(冪),這也是一個重點
3、一元一次方程
4、初步認識了幾何圖形,重點學習的是線段
5、有理數的混合運算,運算律

方法:
課本上講的定理,你可以自己試著自己去推理。這樣不但提高自己的證明能力,也加深對公式的理解。還有就是大量練習題目。基本上每課之後都要做課余練習的題目(不包括老師的作業)。數學成績的提高,數學方法的掌握都和同學們良好的學習習慣分不開的,因此.良好的數學學習習慣包括:聽講、閱讀、探究、作業.聽講:應抓住聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好筆記.每堂課結束以後應深思一下進行歸納,做到一課一得.閱讀:閱讀時應仔細推敲,弄懂弄通每一個概念、定理和法則,對於例題應與同類參考書聯系起來一同學習,博採眾長,增長知識,發展思維.探究:要學會思考,在問題解決之後再探求一些新的方法,學會從不同角度去思考問題,甚至改變條件或結論去發現新問題,經過一段學習,應當將自己的思路整理一下,以形成自己的思維規律.作業:要先復習後作業,先思考再動筆,做會一類題領會一大片,作業要認真、書寫要規范,只有這樣腳踏實地,一步一個腳印,才能學好數學.總之,在學習數學的過程中,要認識到數學的重要性,充分發揮自己的主觀能動性,從小的細節注意起,養成良好的數學學習習慣,進而培養思考問題、分析問題和解決問題的能力,最終把數學學好.

Ⅵ 七年級數學上冊知識點歸納

七年級(上)數學知識點歸納與總結
一、 知識梳理

知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、 -0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。

知識點2:有理數的概念和分類:整數和分數統稱有理數。有理數的分類主要有兩種:

註:有限小數和無限循環小數都可看作分數。

知識點3:數軸的概念:像下面這樣規定了原點、正方向和單位長度的直線叫做數軸。

知識點4:絕對值的概念:
(1) 幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;
(2) 代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的絕對值是零。
註:任何一個數的絕對值均大於或等於0(即非負數).

知識點5:相反數的概念:
(1) 幾何意義:在數軸上分別位於原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;
(2) 代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。
知識點6:有理數大小的比較:
有理數大小比較的基本法則:正數都大於零,負數都小於零,正數大於負數。
數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。
用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。

知識點7:有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.

知識點8:有理數加法運算律:
加法交換律:兩個數相加,交換加數的位置,和不變。

加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

知識點9:有理數減法法則:減去一個數,等於加上這個數的相反數。

知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統一成加法運算,然後省略括弧和加號,並運用加法法則、加法運算律進行計算。

知識點11: 乘法與除法
1.乘法法則
2.除法法則
3.多個非零的數相乘除最後結果符號如何確定

知識點12:倒數
1. 倒數概念
2. 如何求一個數的倒數?(注意與相反數的區別)

知識點13:乘方
1. 乘方的概念,乘方的結果叫什麼?
2. 認識底數,指數
3. 正數的任何次冪是_________,零的任何次冪________
負數的偶次冪是_________奇次冪是________

知識點14:混合計算
注意:運算順序是關鍵,計算時要嚴格按照順序運算.考試經常考帶乘方的計算.

知識點15:科學記數法
科學記數法的概念? 注意a的范圍
(人教)

Ⅶ 初一上冊數學知識點

1、位置 2、分數乘法 3、分數除法 4、圓 5、百分數
6、統計 7、雞兔同籠

Ⅷ 初一上冊數學知識點概括

初一上冊數學知識點
第一章
有理數
1正數、負數、有理數、相反數、科學記數法、近似數
2數軸:用數軸來表示數
3絕對值:正數的絕對值是它本身;負數的絕對值是它的相反數;零的絕對值是零
4正負數的大小比較:正數大於零,零大於負數,正數大於負數,絕對值大的負數值反而小

5有理數的加法法則:
同號兩數相加,取相同的符號,並把絕對值相加;
絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去減小的絕對值;
互為相反數的兩數相加為零;
一個數加上零,仍得這個數。
6有理數的減法(把減法轉換為加法)
減去一個數,等於加上這個數的相反數。
7有理數乘法法則
兩數相乘,同號得正,異號得負,並把絕對值相乘;
任何數同零相乘,都得零。
乘積是一的兩個數互為倒數。
8有理數的除法(轉換為乘法)
除以一個不為零的數,等於乘這個數的倒數。
9有理數的乘方
正數的任何次冪都是正數;
零的任何次冪都是負數;
負數的奇次冪是負數,負數的偶次冪是正數。
10混合運算順序
(1)
先乘方,再乘除,最後加減;
(2)
同級運算,從左到右進行;
(3)
如果有括弧,先做括弧內的運算,按照小括弧、中括弧、大括弧依次進行。
第二章
整式的加減
1
整式:單項式和多項式的統稱;
2整式的加減
(1)
合並同類項
(2)
去括弧
第三章
一元一次方程
1
一元一次方程的認識
2
等式的性質
等式兩邊加上或減去同一個數或者式子,結果仍然相等;
等式兩邊乘同一個數,或除以同一個不為零的數,結果仍相等。
3
解一元一次方程
一般步驟:去分母、去括弧、移項、合並同類項、系數化為一
第四章
圖形認識初步
1
幾何圖形:平面圖和立體圖
2
點、線、面、體
3
直線、射線、線段
兩點確定一條直線;
兩點之間,線段最短
4

角的度量度數
角的比較和運算
補角和餘角:等角的補角和餘角相等

Ⅸ 初一上冊數學的知識點

主要就是有理數加減混合運算。這個是基礎。