1. 七年級下冊數學期知識點歸納
總的來說
就是
第一章 整式的運算
一. 整式
※1. 單項式
①由數與字母的積組成的代數式叫做單項式。單獨一個數或字母也是單項式。
②單項式的系數是這個單項式的數字因數,作為單項式的系數,必須連同數字前面的性質符號,如果一個單項式只是字母的積,並非沒有系數.
③一個單項式中,所有字母的指數和叫做這個單項式的次數.
※2.多項式
①幾個單項式的和叫做多項式.在多項式中,每個單項式叫做多項式的項.其中,不含字母的項叫做常數項.一個多項式中,次數最高項的次數,叫做這個多項式的次數.
②單項式和多項式都有次數,含有字母的單項式有系數,多項式沒有系數.多項式的每一項都是單項式,一個多項式的項數就是這個多項式作為加數的單項式的個數.多項式中每一項都有它們各自的次數,但是它們的次數不可能都作是為這個多項式的次數,一個多項式的次數只有一個,它是所含各項的次數中最高的那一項次數.
※3.整式單項式和多項式統稱為整式.
二. 整式的加減
¤1. 整式的加減實質上就是去括弧後,合並同類項,運算結果是一個多項式或是單項式.
¤2. 括弧前面是「-」號,去括弧時,括弧內各項要變號,一個數與多項式相乘時,這個數與括弧內各項都要相乘.
三. 同底數冪的乘法
※同底數冪的乘法法則: (m,n都是正數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
①法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
②指數是1時,不要誤以為沒有指數;
③不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;
④當三個或三個以上同底數冪相乘時,法則可推廣為 (其中m、n、p均為正數);
⑤公式還可以逆用: (m、n均為正整數)
四.冪的乘方與積的乘方
※1. 冪的乘方法則: (m,n都是正數)是冪的乘法法則為基礎推導出來的,但兩者不能混淆.
※2. .
※3. 底數有負號時,運算時要注意,底數是a與(-a)時不是同底,但可以利用乘方法則化成同底,
如將(-a)3化成-a3
※4.底數有時形式不同,但可以化成相同。
※5.要注意區別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※6.積的乘方法則:積的乘方,等於把積每一個因式分別乘方,再把所得的冪相乘,即 (n為正整數)。
※7.冪的乘方與積乘方法則均可逆向運用。
五. 同底數冪的除法
※1. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
※2. 在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,
④運算要注意運算順序.
六. 整式的乘法
※1. 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
①積的系數等於各因式系數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將系數相乘與指數相加混淆;
②相同字母相乘,運用同底數的乘法法則;
③只在一個單項式里含有的字母,要連同它的指數作為積的一個因式;
④單項式乘法法則對於三個以上的單項式相乘同樣適用;
⑤單項式乘以單項式,結果仍是一個單項式。
※2.單項式與多項式相乘
單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
單項式與多項式相乘時要注意以下幾點:
①單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;
②運算時要注意積的符號,多項式的每一項都包括它前面的符號;
③在混合運算時,要注意運算順序。
※3.多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合並同類項之前,積的項數應等於原兩個多項式項數的積;
②多項式相乘的結果應注意合並同類項;
③對含有同一個字母的一次項系數是1的兩個一次二項式相乘 ,其二次項系數為1,一次項系數等於兩個因式中常數項的和,常數項是兩個因式中常數項的積。對於一次項系數不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得到
七.平方差公式
¤1.平方差公式:兩數和與這兩數差的積,等於它們的平方差,
※即 。
¤其結構特徵是:
①公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;
②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
八.完全平方公式
¤1. 完全平方公式:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,
¤即 ;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2.結構特徵:
①公式左邊是二項式的完全平方;
②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
¤3.在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現 這樣的錯誤。
九.整式的除法
¤1.單項式除法單項式
單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
¤2.多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。
第二章 平行線與相交線
一.檯球桌面上的角
※1.互為餘角和互為補角的有關概念與性質
如果兩個角的和為90°(或直角),那麼這兩個角互為餘角;
如果兩個角的和為180°(或平角),那麼這兩個角互為補角;
注意:這兩個概念都是對於兩個角而言的,而且兩個概念強調的是兩個角的數量關系,與兩個角的相互位置沒有關系。
它們的主要性質:同角或等角的餘角相等;
同角或等角的補角相等。
二.探索直線平行的條件
※兩條直線互相平行的條件即兩條直線互相平行的判定定理,共有三條:
①同位角相等,兩直線平行;
②內錯角相等,兩直線平行;
③同旁內角互補,兩直線平行。
三.平行線的特徵
※平行線的特徵即平行線的性質定理,共有三條:
①兩直線平行,同位角相等;
②兩直線平行,內錯角相等;
③兩直線平行,同旁內角互補。
四.用尺規作線段和角
※1.關於尺規作圖
尺規作圖是指只用圓規和沒有刻度的直尺來作圖。
※2.關於尺規的功能
直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。
圓規的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為圓心,任意長度為半徑畫一段弧。
第三章生活中的數據
※1.科學記數法:對任意一個正數可能寫成a×10n的形式,其中1≤a<10,n是整數,這種記數的方法稱為科學記數法。
¤2.利用四捨五入法取一個數的近似數時,四捨五入到哪一位,就說這個近似數精確到哪一位;對於一個近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數字都叫做這個數的有效數字。
¤3.統計工作包括:
①設定目標;②收集數據;③整理數據;④表達與描述數據;⑤分析結果。
第四章 概率
¤1.隨機事件發生與不發生的可能性不總是各佔一半,都為50%。
※2.現實生活中存在著大量的不確定事件,而概率正是研究不確定事件的一門學科。
※3.了解必然事件和不可能事件發生的概率。
必然事件發生的概率為1,即P(必然事件)=1;不可能事件發生的概率為0,即P(不可能事件)=0;如果A為不確定事件,那麼0<P(A)<1
※4.了解幾何概率這類問題的計算方法
事件發生概率=
第五章 三角形
一.認識三角形
1.關於三角形的概念及其按角的分類
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
這里要注意兩點:
①組成三角形的三條線段要「不在同一直線上」;如果在同一直線上,三角形就不存在;
②三條線段「首尾是順次相接」,是指三條線段兩兩之間有一個公共端點,這個公共端點就是三角形的頂點。
三角形按內角的大小可以分為三類:銳角三角形、直角三角形、鈍角三角形。
2.關於三角形三條邊的關系
根據公理「連結兩點的線中,線段最短」可得三角形三邊關系的一個性質定理,即三角形任意兩邊之和大於第三邊。
三角形三邊關系的另一個性質:三角形任意兩邊之差小於第三邊。
對於這兩個性質,要全面理解,掌握其實質,應用時才不會出錯。
設三角形三邊的長分別為a、b、c則:
①一般地,對於三角形的某一條邊a來說,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三條線段才能構成三角形;
②特殊地,如果已知線段a最大,只要滿足b+c>a,那麼a、b、c三條線段就能構成三角形;如果已知線段a最小,只要滿足|b-c|<a,那麼這三條線段就能構成三角形。
3.關於三角形的內角和
三角形三個內角的和為180°
①直角三角形的兩個銳角互余;
②一個三角形中至多有一個直角或一個鈍角;
③一個三角中至少有兩個內角是銳角。
4.關於三角形的中線、高和中線
①三角形的角平分線、中線和高都是線段,不是直線,也不是射線;
②任意一個三角形都有三條角平分線,三條中線和三條高;
③任意一個三角形的三條角平分線、三條中線都在三角形的內部。但三角形的高卻有不同的位置:銳角三角形的三條高都在三角形的內部,如圖1;直角三角形有一條高在三角形的內部,另兩條高恰好是它兩條邊,如圖2;鈍角三角形一條高在三角形的內部,另兩條高在三角形的外部,如圖3。
④一個三角形中,三條中線交於一點,三條角平分線交於一點,三條高所在的直線交於一點。
二.圖形的全等
¤能夠完全重合的圖形稱為全等形。全等圖形的形狀和大小都相同。只是形狀相同而大小不同,或者說只是滿足面積相同但形狀不同的兩個圖形都不是全等的圖形。
四.全等三角形
¤1.關於全等三角形的概念
能夠完全重合的兩個三角形叫做全等三角形。互相重合的頂點叫做對應點,互相重合的邊叫做對應邊,互相重合的角叫做對應角
所謂「完全重合」,就是各條邊對應相等,各個角也對應相等。因此也可以這樣說,各條邊對應相等,各個角也對應相等的兩個三角形叫做全等三角形。
※2.全等三角形的對應邊相等,對應角相等。
¤3.全等三角形的性質經常用來證明兩條線段相等和兩個角相等。
五.探三角形全等的條件
※1.三邊對應相等的兩個三角形全等,簡寫為「邊邊邊」或「SSS」
※2.有兩邊和它們的夾角對應相等的兩個三角形全等,簡寫成「邊角邊」或「SAS」
※3.兩角和它們的夾邊對應相等的兩個三角形全等,簡寫成「角邊角」或「ASA」
※4.兩角和其中一個角的對邊對應相等的兩個三角形全等,簡寫成「角角邊」或「AAS」
六.作三角形
1.已知兩個角及其夾邊,求作三角形,是利用三角形全等條件「角邊角」即(「ASA」)來作圖的。
2.已知兩條邊及其夾角,求作三角形,是利用三角形全等條件「邊角邊」即(「SAS」)來作圖的。
3.已知三條邊,求作三角形,是利用三角形全等條件「邊邊邊」即(「SSS」)來作圖的。
八.探索直三角形全等的條件
※1.斜邊和一條直角邊對應相等的兩個直角三角形全等。簡稱為「斜邊、直角邊」或「HL」。這只對直角三角形成立。
※2.直角三角形是三角形中的一類,它具有一般三角形的性質,因而也可用「SAS」、「ASA」、「AAS」、「SSS」來判定。
直角三角形的其他判定方法可以歸納如下:
①兩條直角邊對應相等的兩個直角三角形全等;
②有一個銳角和一條邊對應相等的兩個直角三角形全等。
③三條邊對應相等的兩個直角三角形全等。
第七章 生活中的軸對稱
※1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
※2.角平分線上的點到角兩邊距離相等。
※3.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
※4.角、線段和等腰三角形是軸對稱圖形。
※5.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
※6.軸對稱圖形上對應點所連的線段被對稱軸垂直平分。
※7.軸對稱圖形上對應線段相等、對應角相等。
(註:※表示重點部分;¤表示了解部分;◎表示僅供參閱部分;)
2. 54版數學七年級下冊第6章整理題
把一個圓柱形的盒子豎直放在桌面上想知道盒子佔多大桌面是求圓柱形盒子的啥
3. 七年級數學第6章 角 主要概念
兩條直線被第三條所截,在第三條直線同側,並且同位(上、下、左、右位置要一樣)的兩角互為同位角
兩條直線相交後所得的有一個公共頂點且有一條公共邊的兩個角叫做鄰補角,一個角的鄰補角有兩個。一個角與它的鄰補角的和等於180°。
兩條直線被第三條所截,在第三條直線兩側,並且對位(上、下、左、右位置相反,如一個在左,另一個就在右)的兩角互為內錯角
兩條直線被第三條所截,在第三條直線同側,並且對位(上、下、左、右位置相反,如一個在左,另一個就在右)的兩角互為同旁內角
同位角是F字形,內錯角是Z字形,同旁內角是U字形
位於兩條直線同側的角為「同位角」
位於兩條直線內部且不在同側的角為「內錯角」
位於兩條直線內部且在同側的角為「同旁內角」
兩個相鄰且和為180°的角稱為鄰補角
4. 初一下冊數學五六章知識點
第五章:
本章重點:一元一次不等式的解法,
本章難點:了解不等式的解集和不等式組的解集的確定,正確運用
不等式基本性質3。
本章關鍵:徹底弄清不等式和等式的基本性質的區別.
(1)不等式概念:用不等號(「≠」、「<」、「>」)表示的不等關系的式子叫做不等式
(2)不等式的基本性質,它是解不等式的理論依據.
(3)分清不等式的解集和解不等式是兩個完全不同的概念.
(4)不等式的解一般有無限多個數值,把它們表示在數軸上,(5)一元一次不等式的概念、解法是本章的重點和核心
(6)一元一次不等式的解集,在數軸上表示一元一次不等式的解集
(7)由兩個一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(同未知數的)一元一次不等式組成
(8).利用數軸確定一元一次不等式組的解集
第六章:
1.二元一次方程,二元一次方程組以及它的解,明確二元一次方程組的解是一對未知數的值,會檢驗一對數值是不是某一個二元一次方程組的解.
2.一次方程組的兩種基本解法,能靈活運用代入法,加減法解二元一次方程組及簡單的三元一次方程組.
3.根據給出的應用問題,列出相應的二元一次方程組或三元一次方程組,從而求出問題的解,並能根據問題的實際意義,檢查結果是否合理.
本章的重點是:二元一次方程組的解法——代入法,加減法以及列一次方程組解簡單的應用問題.
本章的難點是:
1.會用適當的消元方法解二元一次方程組及簡單的三元一次方程組;
2.正確地找出應用題中的相等關系,列出一次方程組
5. 七年級下冊數學每章的總結,回答不用太復雜!!!
我們7年級上下冊都學了呢!呵呵,我幫你!
可是我的是浙教版的呀!!如果你是人教的怎麼辦...
我吧浙教的告訴你,如果你是人教也要採納我呀
全等三角形
重點:1.4與1.5合訂
1,了解全等三角形的概念,會用疊合等方法判定是否全等
2,了解全等三角形的概念
3,探索並掌握2個三角形全等的條件
4,了解三角形的穩定性
5,會用全等三角的性質判定角之間線段之間的互相關系
總結:1.4全等三角形的對應邊相等,對應角相等
1.5重點:1,三邊對應響等的2個三角形全等,簡稱sss或邊邊邊
2,有一個角和夾這個角的兩邊對應相等的2個三角形全等,簡稱sas或邊角邊
3,線段垂直平分線上的點到線段兩端點的距離相等
4,有兩個角呵這兩個角對應相等的兩個三角形全等,簡稱asa或角邊角
5,兩個角呵其中一角的對應相等的兩個三角形全等,簡稱角角邊或aas
6,角平分見上的點到角兩邊的距離相等
1.6
重點:1,了解線段的垂直平分線的概念,了解線段的垂直平分線的點到線段兩段的距離相等
2,了解角平分線上的點到角兩邊的距離相等
3,會用直尺呵圓規做角平分線呵線段的垂直平分線。會用直尺呵圓規作1個角等於已知角。會用直尺呵圓規作三角形:已知三邊作三角形,已知兩邊及其夾角作三角形,已知兩角1邊作三角形
總結:就是作圖,我怎麼說呢?
都是我自己打出來的,累死我了,我也初1,不過我在重點班,7年級所有內容都教完了,從下冊書上摘錄的,採納我吧!
6. 人教版七年級下冊數學第七章知識點總結,具體點,謝
版本可能變了,不過你自己找找看吧
七年級下學期數學知識梳理
第五章 相交線與平行線
一、知識結構圖
相交線
相交線 垂線
同位角、內錯角、同旁內角
平行線
平行線及其判定
平行線的判定
平行線的性質
平行線的性質
命題、定理
平移
二、知識定義
鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。
垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
平行線:在同一平面內,不相交的兩條直線叫做平行線。
同位角、內錯角、同旁內角:
同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。
內錯角:∠2與∠6像這樣的一對角叫做內錯角。
同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。
命題:判斷一件事情的語句叫命題。
平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
對應點:平移後得到的新圖形中每一點,都是由原圖形中的某一點移動後得到的,這樣的兩個點叫做對應點。
三、定理與性質
對頂角的性質:對頂角相等。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。
平行線的性質:
性質1:兩直線平行,同位角相等。
性質2:兩直線平行,內錯角相等。
性質3:兩直線平行,同旁內角互補。
平行線的判定:
判定1:同位角相等,兩直線平行。
判定2:內錯角相等,兩直線平行。
判定3:同旁內角相等,兩直線平行。
四、經典例題
例1 如圖,直線AB,CD,EF相交於點O,∠AOE=54°,∠EOD=90°,求∠EOB,∠COB的度數。
例2 如圖AD平分∠CAE,∠B = 350,∠DAE=600,那麼∠ACB等於多少?
例3 三角形的一個外角等於與它相鄰的內角的4倍,等於與它不
相鄰的一個內角的2倍,則這個三角形各角的度數為( )。
A.450、450、900 B.300、600、900
C.250、250、1300 D.360、720、720
例4 已知如圖,求∠A+∠B+∠C+∠D+∠E+∠F的度數。
例5 如圖,AB∥CD,EF分別與AB、CD交於G、H,MN⊥AB於G,∠CHG=1240,則∠EGM等於多少度?
第六章 平面直角坐標系
一、知識結構圖
有序數對
平面直角坐標系
平面直角坐標系
用坐標表示地理位置
坐標方法的簡單應用
用坐標表示平移
二、知識定義
有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b)
平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。
象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
三、經典例題
例1 一個機器人從O點出發,向正東方向走3米到達A1點,再向正北方向走6米到達A2點,再向正西方向走9米到達A3點,再向正南方向走12米到達A4點,再向正東方向走15米到達A5點,如果A1求坐標為(3,0),求點 A5的坐標。
例2 如圖是在方格紙上畫出的小旗圖案,若用(0,0)表示A點,(0,4)表示B點,那麼C點的位置可表示為( )
A、(0,3) B、(2,3) C、(3,2) D、(3,0)
例3 如圖2,根據坐標平面內點的位置,寫出以下各點的坐標:
A( ),B( ),C( )。
例4 如圖,面積為300px2的△ABC向x軸正方向平移至△DEF的位置,相應的坐標如圖所示(a,b為常數),
(1)、求點D、E的坐標
(2)、求四邊形ACED的面積。
例5 過兩點A(3,4),B(-2,4)作直線AB,則直線AB( )
A、經過原點 B、平行於y軸
C、平行於x軸 D、以上說法都不對
第七章 三角形
一、知識結構圖
邊
與三角形有關的線段 高
中線
角平分線
三角形的內角和 多邊形的內角和
三角形的外角和 多邊形的外角和
二、知識定義
三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。
平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
三、公式與性質
三角形的內角和:三角形的內角和為180°
三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
多邊形內角和公式:n邊形的內角和等於(n-2)·180°
多邊形的外角和:多邊形的內角和為360°。
多邊形對角線的條數:(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。
(2)n邊形共有條對角線。
四、經典例題
例1 如圖,已知△ABC中,AQ=PQ、PR=PS、PR⊥AB於R,PS⊥AC於S,有以下三個結論:①AS=AR;②QP∥AR;③△BRP≌△CSP,其中( ).
(A)全部正確 (B)僅①正確 (C)僅①、②正確 (D)僅①、③正確
例2 如圖,結合圖形作出了如下判斷或推理:
①如圖甲,CD⊥AB,D為垂足,那麼點C到AB的距離等於C、D兩點間的距離;
②如圖乙,如果AB∥CD,那麼∠B=∠D;
③如圖丙,如果∠ACD=∠CAB,那麼AD∥BC;
④如圖丁,如果∠1=∠2,∠D=120°,那麼∠BCD=60°.其中正確的個數是( )個.
(A)1 (B)2 (C)3 (D)4
例3 在如圖所示的方格紙中,畫出,△DEF和△DEG(F、G不能重合),使得△ABC≌△DEF≌DEG.你能說明它們為什麼全等嗎?
例4 測量小玻璃管口徑的量具CDE上,CD=l0mm,DE=80mm.如果小管口徑AB正對著量具上的50mm刻度,那麼小管口徑AB的長是多少?
例5 在直角坐標系中,已知A(-4,0)、B(1,0)、C(0,-2)三點.請按以下要求設計兩種方案:作一條與軸不重合,與△ABC的兩邊相交的直線,使截得的三角形與△ABC相似,並且面積是△AOC面積的.分別在下面的兩個坐標中系畫出設計圖形,並寫出截得的三角形三個頂點的坐標。
第八章 二元一次方程組
一、知識結構圖
設未知數,列方程
解 代入法
方 加減法
程 (消元)
組
檢驗
二、知識定義
二元一次方程:含有兩個未知數,並且未知數的指數都是1,像這樣的方程叫做二元一次方程,一般形式是 ax+by=c(a≠0,b≠0)。
二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組。
二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數的值叫做二元一次方程組的解。
二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。
消元:將未知數的個數由多化少,逐一解決的想法,叫做消元思想。
代入消元:將一個未知數用含有另一個未知數的式子表示出來,再代入另一個方程,實現消元,進而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。
加減消元法:當兩個方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,這種方法叫做加減消元法,簡稱加減法。
三、經典例題
例1 用加減消元法解方程組,由①×2—②得。
例2 如果是同類項,則、的值是( )
A、=-3,=2 B、=2,=-3
C、=-2,=3 D、=3,=-2
例3 計算:
例4 王大伯承包了25畝土地,今年春季改種茄子和西紅柿兩種大棚蔬菜,用去了44000元。其中種茄子每畝用了1700元,獲純利2400元;種西紅柿每畝用了1800元,獲純利2600元。問王大伯一共獲純利多少元?
例5 已知關於x、y的二元一次方程組的解滿足二元一次方程,求的值。
第九章 不等式與不等式組
一、知識結構圖
實際問題
(包含不等關系)
數學問題
(一元一次不等式(組))
設未知數,列不等式(組)
解
不
等
式
組
數學問題的解
(不等式(組)的解決)
實際問題的答案
檢驗
二、知識定義
不等式:一般地,用符號「<」「>」「≤ 」「≥」表示大小關系的式子叫做不等式。
不等式的解:使不等式成立的未知數的值,叫做不等式的解。
不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。
一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。
一元一次不等式組:一般地,關於同一未知數的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
一元一次不等式組的解集:一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
三、定理與性質
不等式的性質:
不等式的基本性質1:不等式的兩邊都加上(或減去)同一個數(或式子),不等號的方向不變。
不等式的基本性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變。
不等式的基本性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變
四、經典例題
例1 當x 時,代數代2-3x的值是正數。
例2 一元一次不等式組的解集是 ( )
A.-2<x<3 B.-3<x<2 C.x<-3 D.x<2
例3 已知方程組的解為負數,求k的取值范圍。
例4 某種植物適宜生長在溫度為18℃~20℃的山區,已知山區海拔每升高100米,氣溫下降0。5℃,現在測出山腳下的平均氣溫為22℃,問該植物種在山的哪一部分為宜?(假設山腳海拔為0米)
例5 某園林的門票每張10元,一次使用,考慮到人們的不同需求,也為了吸引更多的遊客,該園林除保留原來的售票方法外,還推出了一種「購買個人年票」的售票方法(個人年票從購買日起,可供持票者使用一年)。年票分A、B、C三類:A類年票每張120元,持票者進入園林時,無需再用門票;B類年票每張60元,持票者進入該園林時,需再購買門票,每次2元;C類年票每張40元,持票者進入該園林時,需再購買門票,每次3元。
(1)如果你只選擇一種購買門票的方式,並且你計劃在一年中用80元花在該園林的門票上,試通過計算,找出可進入該園林的次數最多的購票方式。
(2)求一年中進入該園林至少超過多少次時,購買A類年票比較合算。
第十章 數據的收集、整理與描述
一、知識結構圖
製表 繪圖
二、知識定義
全面調查:考察全體對象的調查方式叫做全面調查。
抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查。
總體:要考察的全體對象稱為總體。
個體:組成總體的每一個考察對象稱為個體。
樣本:被抽取的所有個體組成一個樣本。
樣本容量:樣本中個體的數目稱為樣本容量。
頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數。
頻率:頻數與數據總數的比為頻率。
組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距。
三、經典例題
例1 某班有50人,其中三好學生10人,優秀學生幹部5人,在扇形統計圖上表示三好學生和優秀學生幹部人數的圓心角分別是( )
A.720,360 B.1000,500 C.1200,600 D.800,400
例2 某音樂行出售三種音樂CD ,即古典音樂、流行音樂、民族音樂,為了表示這三種音樂唱片的銷售量的百分比,應該用( )
A.扇形統計圖 B.折線統計圖 C.條形統計圖 D.以上都可以
例3 在一次抽樣調查中收集了一些數據,對數據進行分組,繪制了下面的頻數分布表:
⑴已知最後一組(89.5-99.5)出現的頻率為15 %,則這一次抽樣調查的容量是________ .
⑵第三小組(69.5~79.5)的頻數是_______,頻率是________.
例4 如圖,是一位護士統計一位病人的體溫變化圖:根據統計圖回答下列問題:
⑴病人的最高體溫是達多少?
⑵什麼時間體溫升得最快?
例5 在一次抽樣調查中收集了一些數據,對數據進行分組,繪制了下面的頻數分布表:
⑴已知最後一組(89.5~99.5)出現的頻率為15 %,則這一次抽樣調查的容量是________ .
⑵第三小組(69.5~79.5)的頻數是_______,頻率是________.