當前位置:首頁 » 基礎知識 » 初二數學知識點總結圖
擴展閱讀
司考常考知識點大全 2025-01-09 15:07:08
搞笑地理知識大全 2025-01-09 15:06:19

初二數學知識點總結圖

發布時間: 2022-03-05 19:21:12

㈠ 初二數學知識點歸納

有這么些:
1. 分式
2.二次根式
3.三角形
4.一次函數
5.四邊形
6.相似
7.簡單概率統計

(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+ an+ bm+ bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)•(a +b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.
(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.
2. 運用公式x2 +(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於
一次項的系數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
① 列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等於一次項系數.
3.將原多項式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.
6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.
(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.
5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.

9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.
(九)含有字母系數的一元一次方程
1.含有字母系數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。
含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。

㈡ 初二上學期數學所有知識點歸納

初二數學知識點
第一章 一次函數
1 函數的定義,函數的定義域、值域、表達式,函數的圖像
2 一次函數和正比例函數,包括他們的表達式、增減性、圖像
3 從函數的觀點看方程、方程組和不等式
第二章 數據的描述
1 了解幾種常見的統計圖表:條形圖、扇形圖、折線圖、復合條形圖、直方圖,了解各種圖表的特點
條形圖特點:
(1)能夠顯示出每組中的具體數據;
(2)易於比較數據間的差別
扇形圖的特點:
(1)用扇形的面積來表示部分在總體中所佔的百分比;
(2)易於顯示每組數據相對與總數的大小
折線圖的特點;
易於顯示數據的變化趨勢
直方圖的特點:
(1)能夠顯示各組頻數分布的情況;
(2)易於顯示各組之間頻數的差別
2 會用各種統計圖表示出一些實際的問題
第三章 全等三角形
1 全等三角形的性質:
全等三角形的對應邊、對應角相等
2 全等三角形的判定
邊邊邊、邊角邊、角邊角、角角邊、直角三角形的HL定理
3 角平分線的性質
角平分線上的點到角的兩邊的距離相等;
到角的兩邊距離相等的點在角的平分線上。
第四章 軸對稱
1 軸對稱圖形和關於直線對稱的兩個圖形
2 軸對稱的性質
軸對稱圖形的對稱軸是任何一對對應點所連線段的垂直平分線;
如果兩個圖形關於某條直線對稱,那麼對稱軸是任何一對對應點所連的線段的垂直平分線;
線段垂直平分線上的點到線段兩個端點的距離相等;
到線段兩個端點距離相等的點在這條線段的垂直平分線上
3 用坐標表示軸對稱
點(x,y)關於x軸對稱的點的坐標是(x,-y),關於y軸對稱的點的坐標是(-x,y),關於原點對稱的點的坐標是(-x,-y).
4 等腰三角形
等腰三角形的兩個底角相等;(等邊對等角)
等腰三角形的頂角平分線、底邊上的中線、底邊上的高線互相重合;(三線合一)
一個三角形的兩個相等的角所對的邊也相等。(等角對等邊)
5 等邊三角形的性質和判定
等邊三角形的三個內角都相等,都等於60度;
三個角都相等的三角形是等邊三角形;
有一個角是60度的等腰三角形是等邊三角形;
推論:
直角三角形中,如果有一個銳角是30度,那麼他所對的直角邊等於斜邊的一半。
在三角形中,大角對大邊,大邊對大角。

第五章 整式
1 整式定義、同類項及其合並
2 整式的加減
3 整式的乘法
(1)同底數冪的乘法:
(2)冪的乘方
(3)積的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底數冪的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法

初二下冊知識點
第一章 分式
1 分式及其基本性質
分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2 分式的運算
(1)分式的乘除
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母
除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2) 分式的加減
加減法法則:同分母分式相加減,分母不變,把分子相加減;
異分母分式相加減,先通分,變為同分母的分式,再加減
3 整數指數冪的加減乘除法
4 分式方程及其解法
第二章 反比例函數
1 反比例函數的表達式、圖像、性質
圖像:雙曲線
表達式:y=k/x(k不為0)
性質:兩支的增減性相同;
2 反比例函數在實際問題中的應用
第三章 勾股定理
1 勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方
2 勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形。
第四章 四邊形
1 平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,並且等於第三邊的一半。
2 特殊的平行四邊形:矩形、菱形、正方形
(1) 矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定: 有一個角是直角的平行四邊形是矩形;
對角線相等的平行四邊形是矩形;
推論: 直角三角形斜邊的中線等於斜邊的一半。
(2) 菱形
性質:菱形的四條邊都相等;
菱形的對角線互相垂直,並且每一條對角線平分一組對角;
菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;
對角線互相垂直的平行四邊形是菱形;
四邊相等的四邊形是菱形。
(3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;
等腰梯形的兩條對角線相等;
同一個底上的兩個角相等的梯形是等腰梯形。
第五章 數據的分析
加權平均數、中位數、眾數、極差、方差

㈢ 初二上冊數學的知識點

1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角

㈣ 初二數學幾何知識點歸納

重點:四邊形的有關概念及內角和定理.因為四邊形的有關概念及內角和定理是本章的基礎知識,對後繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限於我們現在研究的是平面圖形,所以在四邊形的定義中加上「在同一平面內」這個條件,這幾個字的意思學生不好理解,所以是難點。
1.使學生掌握四邊形的有關概念及四邊形的內角和定理;
2.通過引導學生觀察氣象站的實例,培養學生從具體事物中抽象出幾何圖形的能力;
3.通過推導四邊形內角和定理,對學生滲透化歸轉化的數學思想;
4.講解四邊形的有關概念時,聯系三角形的有關概念向學生滲透類比思想.
教學重點:
四邊形的內角和定理.
教學難點:
四邊形的概念
教學過程:
(一)復習
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念
1.四邊形:在平面內,由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調「在同一平面內」這個條件,或為學生稍微說明一下.其次,要給學生講清楚「首尾」和「順次」的含義.
2.類比三角形的邊、頂點、內角、外角的概念,找學生答出四邊形的邊、頂點、內角、外交的概念.
3.四邊形的記法:對照圖形向學生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向學生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
(四)四邊形的內角和定理
定理:四邊形的內角和等於 .
注意:在研究四邊形時,常常通過作它的對角線,把關於四邊形的問題化成關於三角形的問題來解決.
(五)應用、反思
例1 已知:如圖,直線 ,垂足為B, 直線 , 垂足為C.
求證:(1) ;(2)
證明:(1) (四邊形的內角和等於 ),

(2)
.
練習:
1.課本124頁3題.
2.如果四邊形有一個角是直角,另外三個角之比是1:3:6,那麼這三個角的度數分別是多少?
小結:
知識:四邊形的有關概念及其內角和定理.
能力:向學生滲透類比和轉化的思想方法.
作業: 課本130頁 2、3、4題.

㈤ 初二數學都有哪些知識點

《新初二曹.笑數學秋季培優班(人教版高清視頻)》網路網盤資源下載

鏈接:

提取碼: q2vy

若資源有問題歡迎追問~

㈥ 初二數學上冊知識點總結

1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10
內錯角相等,兩直線平行

11 同旁內角互補,兩直線平行

12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補

15
定理

三角形兩邊的和大於第三邊

16
推論

三角形兩邊的差小於第三邊

17
三角形內角和定理

三角形三個內角的和等於
180°

18
推論
1
直角三角形的兩個銳角互余

19
推論
2
三角形的一個外角等於和它不相鄰的兩個內角的和

20
推論
3
三角形的一個外角大於任何一個和它不相鄰的內角

21
全等三角形的對應邊、對應角相等

22
邊角邊公理
(SAS)
有兩邊和它們的夾角對應相等的兩個三角形全等

23
角邊角公理
( ASA)
有兩角和它們的夾邊對應相等的兩個三角形全等

24
推論
(AAS)
有兩角和其中一角的對邊對應相等的兩個三角形全等

25
邊邊邊公理
(SSS)
有三邊對應相等的兩個三角形全等

26
斜邊、直角邊公理
(HL)
有斜邊和一條直角邊對應相等的兩個直角三角形全等

27
定理
1
在角的平分線上的點到這個角的兩邊的距離相等

28
定理
2
到一個角的兩邊的距離相同的點,在這個角的平分線上

29
角的平分線是到角的兩邊距離相等的所有點的集合

30
等腰三角形的性質定理

等腰三角形的兩個底角相等

(
即等邊對等角)

31
推論
1
等腰三角形頂角的平分線平分底邊並且垂直於底邊

32
等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33
推論
3
等邊三角形的各角都相等,並且每一個角都等於
60°

34
等腰三角形的判定定理

如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等
(等角對等邊)

35
推論
1
三個角都相等的三角形是等邊三角形

36
推論

2
有一個角等於
60°
的等腰三角形是等邊三角形

37
在直角三角形中,如果一個銳角等於
30°
那麼它所對的直角邊等於斜邊的一半

38
直角三角形斜邊上的中線等於斜邊上的一半

39
定理

線段垂直平分線上的點和這條線段兩個端點的距離相等

人教版新目標初二下英語同步輔導(一)
初中二年級下un...初中二年級下Un...

40
逆定理

和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41
線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42
定理
1
關於某條直線對稱的兩個圖形是全等形

43
定理

2
如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44
定理
3
兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱
軸上

45
逆定理

如果兩個圖形的對應點連線被同一條直線垂直平分,
那麼這兩個圖形關於這條直
線對稱

46
勾股定理

直角三角形兩直角邊
a

b
的平方和、等於斜邊
c
的平方,即
a^2+b^2=c^2

47
勾股定理的逆定理

如果三角形的三邊長
a

b

c
有關系
a^2+b^2=c^2
,那麼這個三角
形是直角三角形

48
定理

四邊形的內角和等於
360°

49
四邊形的外角和等於
360°

50
多邊形內角和定理

n
邊形的內角的和等於(
n-2

×
180°

51
推論

任意多邊的外角和等於
360°

52
平行四邊形性質定理
1
平行四邊形的對角相等

53
平行四邊形性質定理
2
平行四邊形的對邊相等

54
推論

夾在兩條平行線間的平行線段相等

55
平行四邊形性質定理
3
平行四邊形的對角線互相平分

56
平行四邊形判定定理
1
兩組對角分別相等的四邊形是平行四邊形

57
平行四邊形判定定理
2
兩組對邊分別相等的四邊形是平行四邊形

58
平行四邊形判定定理
3
對角線互相平分的四邊形是平行四邊形

59
平行四邊形判定定理
4
一組對邊平行相等的四邊形是平行四邊形

60
矩形性質定理
1
矩形的四個角都是直角

學好初二數學的方法

一、該記的記,該背的背,不要以為理解了就行

數學的定義、法則、公式、定理等一定要記熟,有些最好能背誦
,朗朗上口。比如大
家熟悉的

整式乘法三個公式

,我看在座的有的背得出,有的就背不出。在這里,我向背不
出的同學敲一敲警鍾,
如果背不出這三個公式,
將會對今後的學習造成很大的麻煩,
因為今
後的學習將會大量地用到這三個公式,
特別是初二即
將學的因式分解

其中相當重要的三個
因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。

對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在
記憶的基礎上、在應用它們解決問題時再加深理解
。打一個比方,數學的定義、法則、公
式、
定理就像木匠手中的斧頭、
鋸子、
墨斗、
刨子等,
沒有這些工具,
木匠是打不出傢具的;
有了這些工具,
再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的傢具。同樣,記不住
數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和
敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。

二、幾個重要的數學思想

1


方程

的思想

數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次
是不等量關系。最常見的等量關系就是

方程

。比如等速運動中,路程、速度和時間三者之
間就有一種等量關系,可以建立一個相關等式:速度
*
時間
=
路程,在這樣的等式中,一般會
有已知量,也有未知量,像這樣含有未知量的等式就是

方程

,而通過方程里的已知量求出
未知量的過程就是解方程。
我們在小學就已經接觸過簡易方程,
而初一則比較系統地學習解
一元一次方程,
並總結出解一元一次方程的五個步驟。
如果學會並掌握了這五個步驟,
任何
一個一元一次方程都能順利地解出來。
初二、
初三我們還將學習解一元二次方程、
二元二次
方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參
數方程、
極坐標方程等。
解這些方程的思維幾乎一致,
都是通過一定的方法將它們轉化成一
元一次方程或一元二次方程的形式,
然後用大家熟悉的解一元一次方程的五個步驟或者解一
元二次方程的求根公式加以解決。
物理中的能量守恆,
化學中的化學平衡式,
現實中的大量
實際應用,
都需要建立方程,通過解方程來求出結果。因此,
同學們一定要將解一元一次方
程和解一元二次方程學好,進而學好其它形式的方程。

所謂的

方程

思想就是對於數學問題,
特別是現實當中碰到的未知量和已知量的錯綜復
雜的關系,善於用

方程

的觀點去構建有關的方程,進而用解方程的方法去解決它。

2


數形結合

的思想

大千世界,







無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這
兩個屬性,就交給數學去研究了。初中數學的兩個分支棗
-
代數和幾何,代數是研究



的,
幾何是研究



的。但是,研究代數要藉助



,研究幾何要藉助





數形結合

是一種趨
勢,越學下去,







越密不可分,到了高中,就出現了專門用代數方法去研究幾何問
題的一門課,叫做

解析幾何

。在初三,建立平面直角坐標系後,研究函數的問題就離不開
圖象了。往往藉助圖象能使問題明朗化,
比較容易找到問題的關鍵所在,從而解決問題。在
今後的數學學習中,要重視

數形結合

的思維訓練,任何一道題,只要與



沾得上一點邊,
就應該根據題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出
切入點,對解題大有益處。嘗到甜頭的人慢慢會養成一種

數形結合

的好習慣。

3


對應

的思想


對應

的思想由來已久,
比如我們將一支鉛筆、
一本書、
一棟房子對應一個抽象的數
「1」

將兩隻眼睛、一對耳環、雙胞胎對應一個抽象的數
「2」
;隨著學習的深入,我們還將

對應

擴展到對應一種形式,
對應一種關系,
等等。
比如我們在計算或化簡中,
將對應公式的左邊
,
對應

a , y
對應
b
,再利用公式的右邊直接得出原式的結果

即。這就是運用

對應

的思想
和方法來解題。
初二、
初三我們還將看到數軸上的點與實數之間的一一對應,
直角坐標平面
上的點與一對有序實數之間的一一對應,函數與其圖象之間的對應。
「對應」的思想在今後的學習中將會發揮越來越大的作用。
三、自學能力的培養是深化學習的必由之路
在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠
成,亦即所謂「溫故而知新」。因此說,數學是一門能自學的學科,自學成才最典型的例子就
是數學家華羅庚。
我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數學
思維習慣,逐漸地培養起自己對數學的一種悟性。他說:我是教物理的,學生物理學得好,不是我教出來的,而是他們自
己悟出來的。當然,校長是謙虛的,但他說明了一個道理,學生不能被動地學習,而應主動
地學習。一個班裡幾十個學生,同一個老師教,差異那麼大,這就是學習主動性問題了。
自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養成預習的習慣。在老師講新課前,能不能運用自己所學過的已掌握的舊知識去預習新課,結合新課中的新規定去分析、理解新的學習內容。由於數學知識的無矛盾性,你所學過的數學知識永遠都是有用的,都是正確的,數學的進一步學習只是加深拓廣而已。因此,以前的數學學得扎實,就為以後的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什麼自己解決不了的問題,帶著問題去聽老師講解新課,收獲之
大是不言而喻的。有些同學為什麼聽老師講新課時總有一種似懂非懂的感覺,或者是
「一聽就懂、一做就錯」,就是因為沒有預習,沒有帶著問題學,沒有將「要我學」真正變為「我要學,力求把知識變為自己的。
學來學去,
知識還是別人的。
檢驗數學學得好不好的標准就是會不
會解題。聽懂並記憶有關的定義、法則、公式、定理,只是學好數學的必要條件,能獨立解
題、解對題才是學好數學的標志。

四、自信才能自強
在考試中,總是看見有些同學的試卷出現許多空白,即有好幾題根本沒有動手去做。
當然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回
事。稍為難一點的數學題都不是一眼就能看出它的解法和結果的。
要去分析、探索、比比畫
畫、寫寫算算,
經過迂迴曲折的推理或演算,
才顯露出條件和結論之間的某種聯系,整個思
路才會明朗清晰起來。
你都沒有動手去做,
又怎麼知道自己不會做呢?即使是老師,
拿到一
道難題,也不能立即答復你。也同樣要先分析、研究,找到正確的思路後才向你講授。不敢
去做稍為復雜一點的題(不一定是難題,
有些題只不過是敘述多一點)
,是缺乏自信心的表
現。在數學解題中,自信心是相當重要的。要相信自己,只要不超出自己的知識范疇,不管
哪道題,總是能夠用自己所學過的知識把它解出來。要敢於去做題,要善於去做題。這就叫


在戰略上藐視敵人,在戰術上重視敵人」具體解題時,一定要認真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個
條件。
一道題和一類題之間有一定的共性,
可以想想這一類題的一般思路和一般解法,
但更
重要的是抓住這一道題的特殊性,
抓住這一道題與這一類題不同的地方。
數學的題目幾乎沒

有相同的,
總有一個或幾個條件不盡相同,
因此思路和解題過程也不盡相同。
有些同學老師
講過的題會做,
其它的題就不會做,
只會依樣畫瓢,
題目有些小的變化就乾瞪眼,
無從下手。
當然,
做題先從哪兒下手是一件棘手的事,不一定找得准。但是,
做題一定要抓住其特殊性
則絕對沒錯。
選擇一個或幾個條件作為解題的突破口,
看由這個條件能得出什麼,
得出的越
多越好,
然後從中選擇與其它條件有關的、
或與結論有關的、
或與題目中的隱含條件有關的,
進行推理或演算。一般難題都有多種解法,條條大路通北京。
要相信利用這道題的條件,加
上自己學過的那些知識,一定能推出正確的結論。
數學題目是無限的,但數學的思想和方法卻是有限的。我們只要學好了有關的基礎知識,掌握了必要的數學思想和方法,就能順利地對付那無限的題目。題目並不是做得越多越好,題海無邊,總也做不完。關鍵是你有沒有培養起良好的數學思維習慣,有沒有掌握正確的數學解題方法。當然,題目做得多也有若干好處:一是「熟能生巧」加快速度,節省時間,這一點在考試時間有限時顯得很重要;一是利用做題來鞏固、記憶所學的定義、定理、法則、公式,形成良性循環。
解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才
能勇往直前,才不會輕言放棄,才會加倍努力地學習,才有希望攻克難關,迎來屬於自己的春天。

㈦ 求初二數學上冊知識點總結(整理)北師大版的。

直角三角形的判定和勾股定理
不等式或不等式組的應用和性質
一次函數的應用和性質
平方差,標准差,平均數的應用
函數圖像

基本這些是重點

㈧ 初二數學知識點,

(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+ an+ bm+ bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)•(a +b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.
(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.
2. 運用公式x2 +(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於
一次項的系數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
① 列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等於一次項系數.
3.將原多項式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.
6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.
(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.
5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.
(九)含有字母系數的一元一次方程
1.含有字母系數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。
含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。