A. 高中數學必修四各章節的思維導圖
我是學物理競賽的 ,很多人都問我這樣的問題。。。。其實,對於高中來說 題沒什麼難的,就是看平常學的怎麼樣了。。。
真正理解透了。。學會了,還要什麼筆記本、糾錯本。。。。等等一些一些的東西啊 根本不需要。我一本都沒有課本至今連名字都沒寫。。。。。。。好了 言歸正傳
對於物理這東西,當然好的數學基礎 是必須的。。。比如幾何啦。。。三角恆等變換、以及對式子的處理、還有導數之類的 。。。當然對於高中物理來講,數學應該不是大部分人的瓶頸。。。僅限於競賽中
很多人都認為物理真的很難啊,就是套公式啊,多做題啊,題海戰術啊, 。。。。好吧 我想說,這是完全錯誤的。 或者我可以這么說,公式神馬的連記都不用記,用的時候自己推出來, 做幾道題訓練訓練就好了, 不用多做,我相信老師布置的作業就已經夠了。
物理,悟理也,掌握好的思維方法很重要,我看你倒是對這些方法的名字記得倒是不錯(什麼整體法,又是什麼正交分解法,我都沒聽說過)。。這個都無所謂,,,,真正的方法是自己 琢磨出來的,,,,
其實哲學性也很強啊, 比如一些大自然的規律問題。。。。。這個可以幫助你打開思路 ,有助於你的定性分析問題。。。。 為定量打下基礎。。。。。留下你的QQ號 和你詳聊把
追問:
我Q:399384934
B. 人教版高一數學必修4復習提綱
第1章 集 合
§1.1 集合的含義及其表示
重難點:集合的含義與表示方法,用集合語言表達數學對象或數學內容;區別元素與集合等概念及其符號表示;用集合語言(描述法)表達數學對象或數學內容;集合表示法的恰當選擇.
考綱要求:①了解集合的含義、元素與集合的「屬於」關系;
②能用自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題.
經典例題:若x∈R,則{3,x,x2-2x}中的元素x應滿足什麼條件?
當堂練習:
1.下面給出的四類對象中,構成集合的是( )
A.某班個子較高的同學 B.長壽的人 C. 的近似值 D.倒數等於它本身的數
2.下面四個命題正確的是( )
A.10以內的質數集合是{0,3,5,7} B.由1,2,3組成的集合可表示為{1,2,3}或{3,2,1}
C.方程 的解集是{1,1} D.0與{0}表示同一個集合
3. 下面四個命題: (1)集合N中最小的數是1; (2)若 -a Z,則a Z;
(3)所有的正實數組成集合R+;(4)由很小的數可組成集合A;
其中正確的命題有( )個
A.1 B.2 C.3 D.4
4.下面四個命題: (1)零屬於空集; (2)方程x2-3x+5=0的解集是空集;
(3)方程x2-6x+9=0的解集是單元集; (4)不等式 2 x-6>0的解集是無限集;
其中正確的命題有( )個
A.1 B.2 C.3 D.4
5. 平面直角坐標系內所有第二象限的點組成的集合是( )
A. {x,y且 } B. {(x,y) }
C. {(x,y) } D. {x,y且 }
6.用符號 或 填空:
0__________{0}, a__________{a}, __________Q, __________Z,-1__________R, 0__________N, 0 .
7.由所有偶數組成的集合可表示為{ }.
8.用列舉法表示集合D={ }為 .
9.當a滿足 時, 集合A={ }表示單元集.
10.對於集合A={2,4,6},若a A,則6-a A,那麼a的值是__________.
11.數集{0,1,x2-x}中的x不能取哪些數值?
12.已知集合A={x N| N },試用列舉法表示集合A.
13.已知集合A={ }.
(1)若A中只有一個元素,求a的值; (2)若A中至多有一個元素,求a的取值范圍.
14.由實數構成的集合A滿足條件:若a A, a 1,則 ,證明:
(1)若2 A,則集合A必還有另外兩個元素,並求出這兩個元素;
(2)非空集合A中至少有三個不同的元素。
C. 高中數學知識結構框架圖
原發布者:呂明龍88
高中數學知識結構框圖必修一:第一章集合第三章基本初等函數(Ⅰ)必修二:第一章立體幾何初步第二章平面解析幾何初步必修三:第一章演算法初步第二章統計第三章概率必修四:第一章基本初等函數(II)第二章平面向量第三章三角恆等變換必修五:第一章解三角形第二章數列第三章不等式選修2-1:第一章常用邏輯用語第二章圓錐曲線與方程第三章空間向量與立體幾何選修2-2:第一章導數及其應用第二章推理與證明第三章數系的擴充與復數選修2-3:第一章計數原理第二章概率第三章統計案例
D. 數學必修一四知識點
高一嗎?應該是集合,三種基本函數,就是對數函數,指數函數,冥函數。只是必修一的。必修4就是三角函數,這個很重要,如果這個你不熟悉的話,後面的平面幾何向量你也會很暈的,三角函數會貫穿整個高中數學的,希望你能滿意,歡迎追問!
E. 高一數學必修4的知識點的總結
同角三角函數基本關系
⒈同角三角函數的基本關系式
倒數關系:
tanα •cotα=1
sinα •cscα=1
cosα •secα=1
商的關系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數關系六角形記憶法
六角形記憶法:(參看圖片或參考資料鏈接)
構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
(1)倒數關系:對角線上兩個函數互為倒數;
(2)商數關系:六邊形任意一頂點上的函數值等於與它相鄰的兩個頂點上函數值的乘積。
(主要是兩條虛線兩端的三角函數值的乘積)。由此,可得商數關系式。
(3)平方關系:在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等於下面頂點上的三角函數值的平方。
兩角和差公式
⒉兩角和與差的三角函數公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα •tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα •tanβ
倍角公式
⒊二倍角的正弦、餘弦和正切公式(升冪縮角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
2tanα
tan2α=—————
1-tan^2(α)
半形公式
⒋半形的正弦、餘弦和正切公式(降冪擴角公式)
1-cosα
sin^2(α/2)=—————
2
1+cosα
cos^2(α/2)=—————
2
1-cosα
tan^2(α/2)=—————
1+cosα
萬能公式
⒌萬能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)
1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)
2tan(α/2)
tanα=——————
1-tan^2(α/2)
萬能公式推導
附推導:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因為cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))
然後用α/2代替α即可。
同理可推導餘弦的萬能公式。正切的萬能公式可通過正弦比餘弦得到。
三倍角公式
⒍三倍角的正弦、餘弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
3tanα-tan^3(α)
tan3α=——————
1-3tan^2(α)
三倍角公式推導
附推導:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
即
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式聯想記憶
記憶方法:諧音、聯想
正弦三倍角:3元 減 4元3角(欠債了(被減成負數),所以要「掙錢」(音似「正弦」))
餘弦三倍角:4元3角 減 3元(減完之後還有「余」)
☆☆注意函數名,即正弦的三倍角都用正弦表示,餘弦的三倍角都用餘弦表示。
和差化積公式
⒎三角函數的和差化積公式
α+β α-β
sinα+sinβ=2sin—----•cos—---
2 2
α+β α-β
sinα-sinβ=2cos—----•sin—----
2 2
α+β α-β
cosα+cosβ=2cos—-----•cos—-----
2 2
α+β α-β
cosα-cosβ=-2sin—-----•sin—-----
2 2
積化和差公式
⒏三角函數的積化和差公式
sinα •cosβ=0.5[sin(α+β)+sin(α-β)]
cosα •sinβ=0.5[sin(α+β)-sin(α-β)]
cosα •cosβ=0.5[cos(α+β)+cos(α-β)]
sinα •sinβ=- 0.5[cos(α+β)-cos(α-β)]
F. 高一數學必修四知識結構圖
我告訴你個網站上面有,我看了下還行。給分哦http://www.ks5u.com/down/2010-7/27/400471.shtml
G. 誰可以給我一個高中數學必修一,必修二,必修三,必修四的知識點的框架(人教版的)
可能拍得不清楚。
H. 高一數學,即必修一.必修四的所有知識要點。
高一數學必修1第一章知識點總結
一、集合有關概念
1. 集合的含義
2. 集合的中元素的三個特性:
(1) 元素的確定性,
(2) 元素的互異性,
(3) 元素的無序性,
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
�8�4 注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
1) 列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{x�8�3R| x-3>2} ,{x| x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個元素的集合
(2) 無限集 含有無限個元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}<br _extended="true"><br _extended="true">二、集合間的基本關系<br _extended="true">1.「包含」關系—子集<br _extended="true">注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。<br _extended="true">反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A<br _extended="true">2.「相等」關系:A=B (5≥5,且5≤5,則5=5)<br _extended="true">實例:設 A={x|x2-1=0} B={-1,1} 「元素相同則兩集合相等」
即:① 任何一個集合是它本身的子集。A�8�2A
②真子集:如果A�8�2B,且A�8�2 B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 A�8�2B, B�8�2C ,那麼 A�8�2C
④ 如果A�8�2B 同時 B�8�2A 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
�8�4 有n個元素的集合,含有2n個子集,2n-1個真子集
三、集合的運算
運算類型 交 集 並 集 補 集
定 義 由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A B(讀作『A交B』),即A B={x|x A,且x B}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A B(讀作『A並B』),即A B ={x|x A,或x B}).
設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作 ,即
CSA=
韋
恩
圖
示
性
質 A A=A
A Φ=Φ
A B=B A
A B A
A B B
A A=A
A Φ=A
A B=B A
A B A
A B B
(CuA) (CuB)
= Cu (A B)
(CuA) (CuB)
= Cu(A B)
A (CuA)=U
A (CuA)= Φ.
例題:
1.下列四組對象,能構成集合的是 ( )
A某班所有高個子的學生 B著名的藝術家 C一切很大的書 D 倒數等於它自身的實數
2.集合{a,b,c }的真子集共有 個
3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0},則M與N的關系是 .
4.設集合A= ,B= ,若A B,則 的取值范圍是
5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人,
兩種實驗都做錯得有4人,則這兩種實驗都做對的有 人。
6. 用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M= .
7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值
二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
注意:
1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。
求函數的定義域時列不等式組的主要依據是:
(1)分式的分母不等於零;
(2)偶次方根的被開方數不小於零;
(3)對數式的真數必須大於零;
(4)指數、對數式的底必須大於零且不等於1.
(5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等於零,
(7)實際問題中的函數的定義域還要保證實際問題有意義.
�8�4 相同函數的判斷方法:①表達式相同(與表示自變數和函數值的字母無關);②定義域一致 (兩點必須同時具備)
(見課本21頁相關例2)
2.值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .
(2) 畫法
A、 描點法:
B、 圖象變換法
常用變換方法有三種
1) 平移變換
2) 伸縮變換
3) 對稱變換
4.區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間
(2)無窮區間
(3)區間的數軸表示.
5.映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作f:A→B
6.分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變數的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的並集.
補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。
二.函數的性質
1.函數的單調性(局部性質)
(1)增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數.區間D稱為y=f(x)的單調增區間.
如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:函數的單調性是函數的局部性質;
(2) 圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1<x2;
○2 作差f(x1)-f(x2);
○3 變形(通常是因式分解和配方);
○4 定號(即判斷差f(x1)-f(x2)的正負);
○5 下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:「同增異減」
注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集.
8.函數的奇偶性(整體性質)
(1)偶函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2).奇函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特徵
偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
利用定義判斷函數奇偶性的步驟:
○1首先確定函數的定義域,並判斷其是否關於原點對稱;
○2確定f(-x)與f(x)的關系;
○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;
(3)利用定理,或藉助函數的圖象判定 .
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2)求函數的解析式的主要方法有:
1) 湊配法
2) 待定系數法
3) 換元法
4) 消參法
10.函數最大(小)值(定義見課本p36頁)
○1 利用二次函數的性質(配方法)求函數的最大(小)值
○2 利用圖象求函數的最大(小)值
○3 利用函數單調性的判斷函數的最大(小)值:
如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
例題:
1.求下列函數的定義域:
⑴ ⑵
2.設函數 的定義域為 ,則函數 的定義域為_ _
3.若函數 的定義域為 ,則函數 的定義域是
4.函數 ,若 ,則 =
6.已知函數 ,求函數 , 的解析式
7.已知函數 滿足 ,則 = 。
8.設 是R上的奇函數,且當 時, ,則當 時 =
在R上的解析式為
9.求下列函數的單調區間:
⑴ (2)
10.判斷函數 的單調性並證明你的結論.
11.設函數 判斷它的奇偶性並且求證:
I. 高一數學必修一和四的知識點總結
唉,年輕的時候還願意回憶回憶順便打幾個字,孩子你自己總結總結吧,網路文庫挺多這種資料的,但是太全了也沒必要,根據自身情況酌情刪減吧,然後合上回憶下,或者先看教材然後回憶總結(包括題型、方法)
J. 高中數學必修四復習提綱
三角函數?一聽就懂,一看就會,一做就錯?別擔心咯,給你幾條好的方法吧:
1 熟記誘導公式,三角變換公式 最好自己拿張A4大小的紙自己推推,哪推不下去哪就問題!!【理解 奇變偶不變 符號看象限 的含義】
2 三角函數題的類型不多,你可以從課本 輔導書 試題上找一些做作,最好記下一些經典的解題過程,步驟。注意運用函數思想 數行結合思想。
3 特別注意掌握三角函數圖像方面的所有知識,對你的解題有極大的幫助!
4 高考中三角函數都不難,選擇大題各一題,考的都比較基本,做高考的三角函數題也不錯。
一個暑假做夠你學好三角函數了,好好加油!
純手工呀!