當前位置:首頁 » 基礎知識 » 數學必修四知識點總結
擴展閱讀
歌詞寫作格式有哪些 2024-12-26 00:10:08
農具知識大全 2024-12-26 00:09:59

數學必修四知識點總結

發布時間: 2022-02-24 15:08:59

⑴ 誰有高一數學必修4的復習提綱

第1章 集 合
§1.1 集合的含義及其表示
重難點:集合的含義與表示方法,用集合語言表達數學對象或數學內容;區別元素與集合等概念及其符號表示;用集合語言(描述法)表達數學對象或數學內容;集合表示法的恰當選擇.
考綱要求:①了解集合的含義、元素與集合的「屬於」關系;
②能用自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題.
經典例題:若x∈R,則{3,x,x2-2x}中的元素x應滿足什麼條件?
當堂練習:
1.下面給出的四類對象中,構成集合的是( )
A.某班個子較高的同學 B.長壽的人 C. 的近似值 D.倒數等於它本身的數
2.下面四個命題正確的是( )
A.10以內的質數集合是{0,3,5,7} B.由1,2,3組成的集合可表示為{1,2,3}或{3,2,1}
C.方程 的解集是{1,1} D.0與{0}表示同一個集合
3. 下面四個命題: (1)集合N中最小的數是1; (2)若 -a Z,則a Z;
(3)所有的正實數組成集合R+;(4)由很小的數可組成集合A;
其中正確的命題有( )個
A.1 B.2 C.3 D.4
4.下面四個命題: (1)零屬於空集; (2)方程x2-3x+5=0的解集是空集;
(3)方程x2-6x+9=0的解集是單元集; (4)不等式 2 x-6>0的解集是無限集;
其中正確的命題有( )個
A.1 B.2 C.3 D.4
5. 平面直角坐標系內所有第二象限的點組成的集合是( )
A. {x,y且 } B. {(x,y) }
C. {(x,y) } D. {x,y且 }
6.用符號 或 填空:
0__________{0}, a__________{a}, __________Q, __________Z,-1__________R, 0__________N, 0 .
7.由所有偶數組成的集合可表示為{ }.
8.用列舉法表示集合D={ }為 .
9.當a滿足 時, 集合A={ }表示單元集.
10.對於集合A={2,4,6},若a A,則6-a A,那麼a的值是__________.
11.數集{0,1,x2-x}中的x不能取哪些數值?
12.已知集合A={x N| N },試用列舉法表示集合A.
13.已知集合A={ }.
(1)若A中只有一個元素,求a的值; (2)若A中至多有一個元素,求a的取值范圍.
14.由實數構成的集合A滿足條件:若a A, a 1,則 ,證明:
(1)若2 A,則集合A必還有另外兩個元素,並求出這兩個元素;
(2)非空集合A中至少有三個不同的元素。

⑵ 高一數學必修一至四知識點總結


集合與簡易邏輯
集合具有四個性質
廣泛性
集合的元素什麼都可以
確定性
集合中的元素必須是確定的,比如說是好學生就不具有這種性質,因為它的概念是模糊不清的
互異性
集合中的元素必須是互不相等的,一個元素不能重復出現
無序性
集合中的元素與順序無關

函數
這是個重點,但是說起來也不好說,要作專題訓練,比如說二次函數,指數對數函數等等做這一類型題的時候,要掌握幾個函數思想如
構造函數
函數與方程結合
對稱思想,換元等等

數列
這也是個比較重要的題型,做體的時候要有整體思想,整體代換,等比等差要分開來,也要注意聯系,這樣才能做好,注意觀察數列的形式判斷是什麼數列,還要掌握求數列通向公式的幾種方法,和求和公式,求和方法,比如裂項相消,錯位相減,公式法,分組求和法等等

三角函數
三角函數不是考試題型,只是個應用的知識點,所以只要記熟特殊角的三角函數值和一些重要的定理就行

平面向量
這是個比較抽象的把幾何與代數結合起來的重難點,結體的時候要有技巧,主要就是把基本知識掌握到位,注意拓展,另外要多做題,見的題型多,結體的時候就有思路,能夠把問題簡單化,有利於提高做題效率
高一的數學只是入門,只要把基礎的掌握了,做題就沒什麼大問題了,數學就可以上130

⑶ 高中數學必修4知識點總結

⑷ 高一數學必修4的知識點的總結

同角三角函數基本關系

⒈同角三角函數的基本關系式
倒數關系:
tanα •cotα=1
sinα •cscα=1
cosα •secα=1
商的關系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)

同角三角函數關系六角形記憶法

六角形記憶法:(參看圖片或參考資料鏈接)
構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
(1)倒數關系:對角線上兩個函數互為倒數;
(2)商數關系:六邊形任意一頂點上的函數值等於與它相鄰的兩個頂點上函數值的乘積。
(主要是兩條虛線兩端的三角函數值的乘積)。由此,可得商數關系式。
(3)平方關系:在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等於下面頂點上的三角函數值的平方。

兩角和差公式

⒉兩角和與差的三角函數公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ
tan(α+β)=——————
1-tanα •tanβ

tanα-tanβ
tan(α-β)=——————
1+tanα •tanβ

倍角公式

⒊二倍角的正弦、餘弦和正切公式(升冪縮角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

2tanα
tan2α=—————
1-tan^2(α)

半形公式

⒋半形的正弦、餘弦和正切公式(降冪擴角公式)

1-cosα
sin^2(α/2)=—————
2

1+cosα
cos^2(α/2)=—————
2

1-cosα
tan^2(α/2)=—————
1+cosα

萬能公式

⒌萬能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)

1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)

2tan(α/2)
tanα=——————
1-tan^2(α/2)

萬能公式推導

附推導:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因為cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))
然後用α/2代替α即可。
同理可推導餘弦的萬能公式。正切的萬能公式可通過正弦比餘弦得到。

三倍角公式

⒍三倍角的正弦、餘弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα

3tanα-tan^3(α)
tan3α=——————
1-3tan^2(α)

三倍角公式推導

附推導:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα

三倍角公式聯想記憶

記憶方法:諧音、聯想
正弦三倍角:3元 減 4元3角(欠債了(被減成負數),所以要「掙錢」(音似「正弦」))
餘弦三倍角:4元3角 減 3元(減完之後還有「余」)
☆☆注意函數名,即正弦的三倍角都用正弦表示,餘弦的三倍角都用餘弦表示。

和差化積公式

⒎三角函數的和差化積公式

α+β α-β
sinα+sinβ=2sin—----•cos—---
2 2

α+β α-β
sinα-sinβ=2cos—----•sin—----
2 2

α+β α-β
cosα+cosβ=2cos—-----•cos—-----
2 2

α+β α-β
cosα-cosβ=-2sin—-----•sin—-----
2 2

積化和差公式

⒏三角函數的積化和差公式
sinα •cosβ=0.5[sin(α+β)+sin(α-β)]
cosα •sinβ=0.5[sin(α+β)-sin(α-β)]
cosα •cosβ=0.5[cos(α+β)+cos(α-β)]
sinα •sinβ=- 0.5[cos(α+β)-cos(α-β)]

⑸ 高一數學必修4函數知識點總結

§1.2.1、函數的概念
1、 設A、B是非空的數集,如果按照某種確定的對應關系,使對於集合A中的任意一個數,在集合B中都有惟一確定的數和它對應,那麼就稱為集合A到集合B的一個函數,記作:.
2、 一個函數的構成要素為:定義域、對應關系、值域.如果兩個函數的定義域相同,並且對應關系完全一致,則稱這兩個函數相等.

§1.2.2、函數的表示法
1、 函數的三種表示方法:解析法、圖象法、列表法.
§1.3.1、單調性與最大(小)值
1、 注意函數單調性證明的一般格式:
§1.3.2、奇偶性
1、 一般地,如果對於函數的定義域內任意一個,都有,那麼就稱函數為偶函數.偶函數圖象關於軸對稱.
2、 一般地,如果對於函數的定義域內任意一個,都有,那麼就稱函數為奇函數.奇函數圖象關於原點對稱.
第二章、基本初等函數(Ⅰ)
§2.1.1、指數與指數冪的運算
1、 一般地,如果,那麼叫做 的次方根。其中.
若需要可以發郵箱

⑹ 跪求高中數學選修4-1知識點總結

知識點總結
相似三角形的判定及有關性質
相似三角形的定義:對應角相等,對應邊成比例的兩個三角形叫做相似三角形。
相似三角形的預備定理:如果一條直線平行於三角形的一條邊,且這條直線與原三角形的兩條邊(或其延長線)分別相交,那麼所構成的三角形與原三角形相似。
判定定理1:兩角對應相等,兩三角形相似。
判定定理2:兩邊對應成比例且夾角相等,兩三角形相似。
判定定理3:三邊對應成比例,兩三角形相似。
直角三角形相似的判定定理:斜邊和一條直角邊對應成比例,兩直角三角形相似。
相似三角形的性質:
相似三角形對應角相等,對應邊成比例
相似三角形具有傳遞性
相似三角形對應高的比、對應中線的比和對應角平分線的比都等於相似比
相似三角形周長的比等於相似比
相似三角形面積比等於相似比的平方

直線和圓的位置關系
1.直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關系.
①Δ>0,直線和圓相交.②Δ=0,直線和圓相切.③Δ<0,直線和圓相離.
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較.
①d<R,直線和圓相交.②d=R,直線和圓相切.③d>R,直線和圓相離.
2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況.
3.直線和圓相交,這類問題主要是求弦長以及弦的中點問題.
切線的性質
⑴圓心到切線的距離等於圓的半徑;⑵過切點的半徑垂直於切線;⑶經過圓心,與切線垂直的直線必經過切點;⑷經過切點,與切線垂直的直線必經過圓心;當一條直線滿足(1)過圓心;(2)過切點;(3)垂直於切線三個性質中的兩個時,第三個性質也滿足.
切線的判定定理
經過半徑的外端點並且垂直於這條半徑的直線是圓的切線.
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角.

圓錐曲線性質的探討
一、圓錐曲線的定義
1. 橢圓:到兩個定點的距離之和等於定長(定長大於兩個定點間的距離)的動點的軌跡叫做橢圓。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。
2. 雙曲線:到兩個定點的距離的差的絕對值為定值(定值小於兩個定點的距離)的動點軌跡叫做雙曲線。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。
3. 圓錐曲線的統一定義:到定點的距離與到定直線的距離的比e是常數的點的軌跡叫做圓錐曲線。當0<E<1< SPAN>時為橢圓:當e=1時為拋物線;當e>1時為雙曲線。
二、圓錐曲線的方程
1.橢圓: + =1(a>b>0)或 + =1(a>b>0)(其中,a2=b2+c2)
2.雙曲線: - =1(a>0, b>0)或 - =1(a>0, b>0)(其中,c2=a2+b2)
3.拋物線:y2=±2px(p>0),x2=±2py(p>0)
三、圓錐曲線的性質
1.橢圓: + =1(a>b>0)
(1)范圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e= ∈(0,1)(5)准線:x=±
2.雙曲線: - =1(a>0, b>0)(1)范圍:|x|≥a, y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e= ∈(1,+∞)(5)准線:x=± (6)漸近線:y=± x
3.拋物線:y2=2px(p>0)(1)范圍:x≥0, y∈R(2)頂點:(0,0)(3)焦點:( ,0)(4)離心率:e=1(5)准線:x=-

【典型例題】
[例1] 如圖△ABC中,∠C,∠B的平分線相交於O,過O作AO的垂線與邊AB、AC分別交於D、E,求證:△BDO∽△BOC∽△OEC。

證明:易得AO平分∠BAC,AO⊥DE ∴ ∠ADO=∠AEO ∴ ∠BDO=∠CEO
又∠BDO=90°+ ∠BAC ∠BOC=180°- (∠ABC+∠ACB)
=90°+ ∠BAC∴ ∠BDO=∠BOC 又∠DBO=∠OBC
∴ △BDO∽△BOC 同理△ECO∽△OCB∴ △BDO∽△BOC∽△OEC
[例2] △ABE中,D、C為AB上兩點,AC=AE, ,求證:EC平分∠DEB。
證明:∵ AE=AC ∴ 即 又∵∠A=∠A ∴ △EAD∽△BAE ∴ ∠1=∠B ∵ AE=AC
∴ ∠1+∠2=∠ACE 又∵∠3+∠B=∠ACE ∴ ∠2=∠3∴ EC平分∠DEB
[例3] 已知:D、E分別在△ABC的邊AC和AB上,BD與CE交於F,其中AE=BE, , ,求 。
證明:取AD中點N,連結EN ∴ EN BD
∴ ∴
∵ ∴ × = ∵ = ∴ = = =11
[例4]如圖,直角梯形ABCD中,∠A=∠B=90°,AD‖BC,E為AB上一點,DE平分∠ADC,CE平分∠BCD,以AB為直徑的圓與邊CD有怎樣的位置關系?
解:以AB為直徑的圓與CD是相切關系 如圖,過E作EF⊥CD,垂足為F.
∵∠A=∠B=90°,∴EA⊥AD,EB⊥BC,∵DE平分∠ADC,CE平分∠BCD,∴ .∴以AB為直徑的圓的圓心為E,且 ,∴以AB為直徑的圓與邊CD相切.
[例5]已知:ΔABC內接於⊙O,過點A作直線EF.
⑴如圖甲,AB為直徑,要使得EF是⊙O的切線,還需添加的條件是(只需寫出三種情況):
①________; ②_________;③_________. ⑵如圖乙,AB為非直徑的弦,∠CAE=∠B,求證:EF是⊙O的切線.
解:⑴①∠FAB=90°.②∠B=∠EAC.③∠BAE=90°.
⑵連結AO並延長交⊙O於D,連結CD. ∵AD為⊙O的直徑,∴∠ACD=90°,∴∠D+∠CAD=90°. ∵∠D=∠B,∠B=∠CAE,∴∠CAE+∠CAD=90°,即OA⊥EF. 又∵EF經過半徑OA的外端A,∴EF為⊙O的切線.
[例6]如圖所示,AB=AC,以AB為直徑作⊙O,交BC於點D,交AC於點E,過點D作⊙O的切線DF,交AC於F,求證:(1)DF⊥AC,(2)FC=FE.
證明:(1)連結OD,AD.∵ DF為⊙O的切線,
∴ OD⊥DF(切線的性質定理).又∵ AB為⊙O的直徑,∴ AD⊥BC.又∵ AB=AC,∴D為BC中點. ∵O為AB中點,∴ ∴ DF⊥AC.
(2)連結DE.則∠DEC=∠B(圓內接四邊形的性質),又∵ AB=AC,∴∠B=∠C.
∴∠DEC=∠C,∴ DE=DC.又∵ DF⊥AC,∴ FC=EF(等腰三角形的性質)
[例7]如圖:橢圓 + =1(a>b>0),F1為左焦點,A、B是兩個頂點,P為橢圓上一點,PF1⊥x軸,且PO//AB,求橢圓的離心率e。
解:設橢圓的右焦點為F2,由第一定義:|PF1|+|PF2|=2a, ∵ PF1⊥x軸,∴ |PF1|2+|F1F2|2=|PF2|2, 即(|PF2|+|PF1|)(|PF2|-|PF1|)=4c2,
∴ |PF1|= 。∵ PO//AB,∴ ΔPF1O∽ΔBOA,
∴ = c=b a= c, ∴ e= = 。
[例8] 已知 、 是橢圓 ( )長軸的兩個端點, 是與 垂直的弦.求直線 與 的交點M的軌跡方程.

解 如圖,由已知 軸,可設 、 .設動點M( ).∵ ( ,0)、 ( ,0)∴ 方程為 方程為 把上面兩個等式左、右分別相乘,可得: 而P ( )又在橢圓上, 即 ,變形為
即 ,代入,可得M點軌跡方程為: .
[例9] 已知橢圓 ,A(1,1),過A的直線 交橢圓於P、Q兩點,若 ,求直線 的方程.
解:設P( , ),Q( , )∵ ,由定比分點公式得: ∵ P、Q在橢圓上 ∴
整理得 解得 或
∴ 直線PQ的方程為 或

⑺ 高一數學必修一和四的知識點總結

唉,年輕的時候還願意回憶回憶順便打幾個字,孩子你自己總結總結吧,網路文庫挺多這種資料的,但是太全了也沒必要,根據自身情況酌情刪減吧,然後合上回憶下,或者先看教材然後回憶總結(包括題型、方法)

⑻ 高中數學知識點總結

《高中數學基礎知識梳理(數學小飛俠)》網路網盤免費下載

鏈接:

提取碼: i8i2

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

資源目錄

01.集合例題講解.mp4

01.集合進階.mp4

02函數的值域.mp4

03函數的定義域與解析式.mp4

04函數的單調性.mp4

04函數的奇偶性.mp4

05指數運算與指數函數.mp4

07對數運算與對數函數.mp4

08冪函數突破.mp4

09函數零點專題.mp4

10含參二次函數與不等式專題.mp4

11二次函數根的分布專題.mp4

12空間幾何體.mp4

13點線面位置關系進階.mp4

14平行關系突破.mp4

15垂直關系突破.mp4

16空間幾何關系綜合.mp4

17直線方程突破.mp4

18圓的方程突破.mp4

19演算法初步.mp4

20演算法語句與演算法案例.mp4

21數據的收集與頻率分布.mp4

22常用統計量與相關關系.mp4

23古典概型概率.mp4

24幾何概型概率.mp4

25任意角重難點.mp4

26三角函數定義與誘導公式.mp4

27三角函數圖像及性質.mp4

28平面向量幾何運算.mp4

29平面向量代數運算.mp4

30.三角恆等變換.mp4

31.三角函數計算專題.mp4

32.正弦定理與餘弦定理.mp4

33.等差數列突破.mp4

34.等比數列突破.mp4

35.數列通項公式專題 .mp4

36.數列求和公式專題 .mp4

37.二次不等式與分式不等式.mp4

38.線性規劃問題.mp4

39.基本不等式突破.mp4

40.邏輯用語專題.mp4

41.橢圓方程及其幾何性質.mp4

42.雙曲線方程及其性質.mp4

43.拋物線方程及其性質.mp4

44.直線與圓錐曲線綜合.mp4

45.空間向量突破.mp4

46.導數的計算專題.mp4

47.導數的應用.mp4

48.導數的應用(二).mp4

49.定積分與微積分.mp4

50.復數專題.mp4

51.排列組合.mp4

52.二項式定理.mp4

53.隨機變數及其變數.mp4

54回歸分析與獨立性檢驗.mp4

⑼ 總結高中數學必修三、四知識點

必修3:http://wenku..com/view/a5c51e11f18583d0496459f6.html
必修4:http://wenku..com/view/f0c3a56ba45177232f60a2ee.html

⑽ 高一數學必修1和必修4的知識點總結

看書去,沒什麼可總結……多做點基礎題,自己就會了