當前位置:首頁 » 基礎知識 » 初中數學分式知識點
擴展閱讀
奇速英語基礎知識大全 2024-11-10 13:31:55
兒童手環手錶多少錢 2024-11-10 13:19:28

初中數學分式知識點

發布時間: 2022-03-03 16:54:21

Ⅰ 初中數學知識

1 過兩點有且只有一條直線 2 兩點之間線段最短 3 同角或等角的補角相等 4 同角或等角的餘角相等 5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內錯角相等,兩直線平行 11 同旁內角互補,兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內錯角相等 14 兩直線平行,同旁內角互補 15 定理 三角形兩邊的和大於第三邊 16 推論 三角形兩邊的差小於第三邊 17 三角形內角和定理 三角形三個內角的和等於180° 18 推論1 直角三角形的兩個銳角互余 19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和 20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角 21 全等三角形的對應邊、對應角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等 28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合 30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,並且每一個角都等於60° 34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊) 35 推論1 三個角都相等的三角形是等邊三角形 36 推論 2 有一個角等於60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半 38 直角三角形斜邊上的中線等於斜邊上的一半 39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 42 定理1 關於某條直線對稱的兩個圖形是全等形 43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上 45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形 48定理 四邊形的內角和等於360° 49四邊形的外角和等於360° 50多邊形內角和定理 n邊形的內角的和等於(n-2)×180° 51推論 任意多邊的外角和等於360° 52平行四邊形性質定理1 平行四邊形的對角相等 53平行四邊形性質定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質定理3 平行四邊形的對角線互相平分 56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60矩形性質定理1 矩形的四個角都是直角 61矩形性質定理2 矩形的對角線相等 62矩形判定定理1 有三個角是直角的四邊形是矩形 63矩形判定定理2 對角線相等的平行四邊形是矩形 64菱形性質定理1 菱形的四條邊都相等 65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 66菱形面積=對角線乘積的一半,即S=(a×b)÷2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對角線互相垂直的平行四邊形是菱形 69正方形性質定理1 正方形的四個角都是直角,四條邊都相等 70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 71定理1 關於中心對稱的兩個圖形是全等的 72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 點平分,那麼這兩個圖形關於這一點對稱 74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 75等腰梯形的兩條對角線相等 76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 77對角線相等的梯形是等腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那麼在其他直線上截得的線段也相等 79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 三邊 81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 的一半 82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 一半 L=(a+b)÷2 S=L×h 83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc 如果ad=bc,那麼a:b=c:d 84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d 85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼 (a+c+…+m)/(b+d+…+n)=a/b 86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 線段成比例 87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊 89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似 91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA) 92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS) 94 判定定理3 三邊對應成比例,兩三角形相似(SSS) 95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似 96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 分線的比都等於相似比 97 性質定理2 相似三角形周長的比等於相似比 98 性質定理3 相似三角形面積的比等於相似比的平方 99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等 於它的餘角的正弦值 100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等 於它的餘角的正切值 101圓是定點的距離等於定長的點的集合 102圓的內部可以看作是圓心的距離小於半徑的點的集合 103圓的外部可以看作是圓心的距離大於半徑的點的集合 104同圓或等圓的半徑相等 105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半 徑的圓 106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 平分線 107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 離相等的一條直線 109定理 不在同一直線上的三點確定一個圓。 110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧 111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧 ②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧 ③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧 112推論2 圓的兩條平行弦所夾的弧相等 113圓是以圓心為對稱中心的中心對稱圖形 114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等 115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等 116定理 一條弧所對的圓周角等於它所對的圓心角的一半 117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑 119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形 120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 的內對角 121①直線L和⊙O相交 d<r ②直線L和⊙O相切 d=r ③直線L和⊙O相離 d>r 122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線 123切線的性質定理 圓的切線垂直於經過切點的半徑 124推論1 經過圓心且垂直於切線的直線必經過切點 125推論2 經過切點且垂直於切線的直線必經過圓心 126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角 127圓的外切四邊形的兩組對邊的和相等 128弦切角定理 弦切角等於它所夾的弧對的圓周角 129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等 130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積 相等 131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的 兩條線段的比例中項 132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 線與圓交點的兩條線段長的比例中項 133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等 134如果兩個圓相切,那麼切點一定在連心線上 135①兩圓外離 d>R+r ②兩圓外切 d=R+r ③兩圓相交 R-r<d<R+r(R>r) ④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r) 136定理 相交兩圓的連心線垂直平分兩圓的公共弦 137定理 把圓分成n(n≥3): ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形 ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形 138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓 139正n邊形的每個內角都等於(n-2)×180°/n 140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形 141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長 142正三角形面積√3a/4 a表示邊長 143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 144弧長計算公式:L=n兀R/180 145扇形面積公式:S扇形=n兀R^2/360=LR/2 146內公切線長= d-(R-r) 外公切線長= d-(R+r) (還有一些,大家幫補充吧) 實用工具:常用數學公式 公式分類 公式表達式 乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理 判別式 b2-4ac=0 註:方程有兩個相等的實根 b2-4ac>0 註:方程有兩個不等的實根 b2-4ac0 拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py 直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h 正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h' 圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2 圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l 弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r 錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長 柱體體積公式 V=s*h 圓柱體 V=pi*r2h

Ⅱ 初中數學知識要點

1.圓:圓的標准方程(x-a)2+(y-b)2=r2。再知道圓點和半價的情況下使用標准方程列出圓的函數表達式是比較直接的。
2.二次函數(簡稱拋物線):函數表達式:y=ax2+bx+c(a≠0);二次函數的幾個重要性質必須熟記。
3.概率:概率是對隨機事件發生的可能性的度量,一般以一個在0到1之間的實數。
4.三角形相似:我對三角形相似的理解是這樣的,你把三角形方大或者縮小。那麼前後這兩個圖形就叫相似。
5.一元二次方程:表達式ax2+bx+c=0(a≠0)。其實就是二次函數的變形,二次函數把y等於0時對求x的解。

Ⅲ 初中數學得所有知識點

知識點
一、基本知識
一、數與代數A、數與式:1、

:①整數→正整數/0/負整數②分數→正分數/負分數

:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到
。②任何一個
都可以用
上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的
,也稱這兩個數互為
。在數軸上,表示互為
的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。

:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。

:求N個相同因數A的積的運算叫做

的結果叫冪,A叫
,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數



:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的
。②如果一個數X的平方等於A,那麼這個數X就叫做A的
。③一個正數有2個
/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做
,其中A叫做


:①如果一個數X的立方等於A,那麼這個數X就叫做A的
。②正數的
是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫
,其中A叫做

實數:①實數分有理數和
。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、

:單獨一個數或者一個字母也是


:①所含字母相同,並且相同字母的指數也相同的項,叫做
。②把
合並成一項就叫做
。③在
時,我們把
的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫
,幾個
的和叫


統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個
中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的
。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:
/

:①單項式相除,把系數,同
冪分別相除後,作為商的
;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個
。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:
、運用



分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。

:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先
,化為同分母的分式,再加減。

:①分母中含有未知數的方程叫
。②使方程的分母為0的解稱為原方程的

B、方程與不等式
1、方程與方程組

:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫
。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

的步驟:去分母,
,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。

:兩個
成的方程組叫做

適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次

解二元一次方程組的方法:
/


:只有一個未知數,並且未知數的項的最高系數為2的方程
1)

的關系
大家已經學過
(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實
也可以用
來表示,其實一元
也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元
了。那如果在
中表示出來,一元
就是二次函數中,圖象與X軸的交點。也就是該

2)一元二次

大家知道,二次函數有
(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)

利用配方,使方程變為
,在用直接
法去求出解
(2)分解因式法
提取
,套用
,和
。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)

這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)
的步驟:
先把
移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成

(2)分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取
,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,
的系數為c
4)

利用
去了解,
就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的
去了解,根的
可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的

II當△=0時,一元二次方程有2個相同的

III當△<0時,一元二次方程沒有
(在這里,學到高中就會知道,這里有2個
根)
2、不等式與

不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,
的方向不變。③不等式的兩邊都乘以或者除以一個正數,
方向不變。④不等式的兩邊都乘以或除以同一個負數,
方向相反。
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解。②一個含有未知數的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做

一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。

:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了
。②
中各個不等式的解集的公共部分,叫做這個一元一次
的解集。③求
解集的過程,叫做
組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<B*C(C<0)
如果不等式乘以0,那麼不等號改為等號
所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立;
3、函數
變數:


在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點
,用豎直方向的數軸上的點表示


:①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的
。②當B=0時,稱Y是X的


的圖象:①把一個函數的
X與對應的
Y的值分別作為點的橫坐標與縱坐標,在
內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②
Y=KX的圖象是經過原點的一條直線。③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在
中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,
的所有側棱長相等,
的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。
截一個
:用一個平面去截一個圖形,截出的面叫做截面。
視圖:

,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做
。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做
。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。

:垂直和平分一條線段的直線叫


垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上

:把一個角平分的射線叫該角的

定義中有幾個要點要注意一下的,就是角的
是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的
相等
4、同角或等角的
相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、
經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、
相等,兩直線平行
10、
相等,兩直線平行
11、
互補,兩直線平行
12、兩直線平行,
相等
13、兩直線平行,
相等
14、兩直線平行,
互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、
三角形三個內角的和等於180°
18、推論1 直角三角形的兩個
互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、
的對應邊、對應角相等
22、邊角邊
(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角
( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊
(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個
等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的
、等於斜邊c的平方,即a2+b2=c2
47、
如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的
等於360°
50、
n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的
等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、
1 矩形的四個角都是直角
61、
2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、
等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、
如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、
三角形的中位線平行於第三邊,並且等於它的一半
82、
梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、
三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、
1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意

等於它的
的餘弦值,任意銳角的餘弦值等於它的


100、任意銳角的
等於它的餘角的
值,任意銳角的
值等於它的餘角的

101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓
小於半徑的點的集合
103、圓的外部可以看作是圓
大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、
垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的

114、定理 在同圓或等圓中,相等的
所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個
、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的
等於它所對的
的一半
117、推論1 同弧或等弧所對的
相等;同圓或等圓中,相等的
所對的弧也相等
118、推論2 半圓(或直徑)所對的圓
是直角;90°的圓
所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、
從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、
弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、
圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的

132、
從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的

133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上

135、①兩圓外離 d>R+r ②兩圓外切 d=R+r③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何
都有一個
和一個
,這兩個圓是

139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、
:L=n兀R/180
145、
公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)
望採納

Ⅳ 初中數學知識點概念,如:什麼是一元一次方程,什麼事分式

只含有一個未知數,並且未知數的次數是1的方程叫做一元一次方程,這小學就學過的啊,分式就是幾分之幾嘍,分子不為零,分母為任意數

Ⅳ 初中分式數學

單獨完工甲x天,乙x+3天。甲每天作1/x,乙1/(x+3)。1=(2/x)+[x/(x+3)]。去分母,x(x+3)=[2(x+3)]+x•x。x^2+3x=2x+6+x^2。3x=2x+6。x=6。甲6天,乙要:6+3=9天。規定日期6天。

Ⅵ 初中數學(分式)

設甲乙丙得速度是a,b,c,總工程是1

a=m(b+c)
b=n(a+c)
c=k(a+b)
進一步
(m+1)a=m(a+b+c)
(n+1)b=n(a+b+c)
(k+1)c=k(a+b+c)

m/(m+1)+n/(n+1)+k/(k+1)=
a/(a+b+c)+b/(a+b+c)+c/(a+b+c)=1

Ⅶ 初中數學知識點歸納

有理數的加法運算
同號兩數來相加,絕對值加不變號。
異號相加大減小,大數決定和符號。
互為相反數求和,結果是零須記好。
【注】「大」減「小」是指絕對值的大小。
有理數的減法運算
減正等於加負,減負等於加正。
有理數的乘法運算符號法則
同號得正異號負,一項為零積是零。
合並同類項
說起合並同類項,法則千萬不能忘。
只求系數代數和,字母指數留原樣。
去、添括弧法則
去括弧或添括弧,關鍵要看連接號。
擴號前面是正號,去添括弧不變號。
括弧前面是負號,去添括弧都變號。
解方程
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式
兩數和乘兩數差,等於兩數平方差。
積化和差變兩項,完全平方不是它。
完全平方公式
二數和或差平方,展開式它共三項。
首平方與末平方,首末二倍中間放。
和的平方加聯結,先減後加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先減後加差平方。
解一元一次方程
先去分母再括弧,移項變號要記牢。
同類各項去合並,系數化「1」還沒好。
求得未知須檢驗,回代值等才算了。
解一元一次方程
先去分母再括弧,移項合並同類項。
系數化1還沒好,准確無誤不白忙。
因式分解與乘法
和差化積是乘法,乘法本身是運算。
積化和差是分解,因式分解非運算。
因式分解
兩式平方符號異,因式分解你別怕。
兩底和乘兩底差,分解結果就是它。
兩式平方符號同,底積2倍坐中央。
因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負號。
同正則正負就負,異則需添冪符號。
因式分解
一提二套三分組,十字相乘也上數。
四種方法都不行,拆項添項去重組。
重組無望試求根,換元或者算余數。
多種方法靈活選,連乘結果是基礎。
同式相乘若出現,乘方表示要記住。
【注】 一提(提公因式)二套(套公式)
因式分解
一提二套三分組,叉乘求根也上數。
五種方法都不行,拆項添項去重組。
對症下葯穩又准,連乘結果是基礎。
二次三項式的因式分解
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
比和比例
兩數相除也叫比,兩比相等叫比例。
外項積等內項積,等積可化八比例。
分別交換內外項,統統都要叫更比。
同時交換內外項,便要稱其為反比。
前後項和比後項,比值不變叫合比。
前後項差比後項,組成比例是分比。
兩項和比兩項差,比值相等合分比。
前項和比後項和,比值不變叫等比。
解比例
外項積等內項積,列出方程並解之。
求比值
由已知去求比值,多種途徑可利用。
活用比例七性質,變數替換也走紅。
消元也是好辦法,殊途同歸會變通。
正比例與反比例
商定變數成正比,積定變數成反比。
正比例與反比例
變化過程商一定,兩個變數成正比。
變化過程積一定,兩個變數成反比。
判斷四數成比例
四數是否成比例,遞增遞減先排序。
兩端積等中間積,四數一定成比例。
判斷四式成比例
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
比例中項
成比例的四項中,外項相同會遇到。
有時內項會相同,比例中項少不了。
比例中項很重要,多種場合會碰到。
成比例的四項中,外項相同有不少。
有時內項會相同,比例中項出現了。
同數平方等異積,比例中項無處逃。
根式與無理式
表示方根代數式,都可稱其為根式。
根式異於無理式,被開方式無限制。
被開方式有字母,才能稱為無理式。
無理式都是根式,區分它們有標志。
被開方式有字母,又可稱為無理式。
求定義域
求定義域有講究,四項原則須留意。
負數不能開平方,分母為零無意義。
指是分數底正數,數零沒有零次冪。
限制條件不唯一,滿足多個不等式。
求定義域要過關,四項原則須注意。
負數不能開平方,分母為零無意義。
分數指數底正數,數零沒有零次冪。
限制條件不唯一,不等式組求解集。
解一元一次不等式
先去分母再括弧,移項合並同類項。
系數化「1」有講究,同乘除負要變向。
先去分母再括弧,移項別忘要變號。
同類各項去合並,系數化「1」注意了。
同乘除正無防礙,同乘除負也變號。
解一元一次不等式組
大於頭來小於尾,大小不一中間找。
大大小小沒有解,四種情況全來了。
同向取兩邊,異向取中間。
中間無元素,無解便出現。
幼兒園小鬼當家,(同小相對取較小)
敬老院以老為榮,(同大就要取較大)
軍營里沒老沒少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
解一元二次不等式
首先化成一般式,構造函數第二站。
判別式值若非負,曲線橫軸有交點。
a正開口它向上,大於零則取兩邊。
代數式若小於零,解集交點數之間。
方程若無實數根,口上大零解為全。
小於零將沒有解,開口向下正相反。
用平方差公式因式分解
異號兩個平方項,因式分解有辦法。
兩底和乘兩底差,分解結果就是它。
用完全平方公式因式分解
兩平方項在兩端,底積2倍在中部。
同正兩底和平方,全負和方相反數。
分成兩底差平方,方正倍積要為負。
兩邊為負中間正,底差平方相反數。
一平方又一平方,底積2倍在中路。
三正兩底和平方,全負和方相反數。
分成兩底差平方,兩端為正倍積負。
兩邊若負中間正,底差平方相反數。
用公式法解一元二次方程
要用公式解方程,首先化成一般式。
調整系數隨其後,使其成為最簡比。
確定參數abc,計算方程判別式。
判別式值與零比,有無實根便得知。
有實根可套公式,沒有實根要告之。
用常規配方法解一元二次方程
左未右已先分離,二系化「1」是其次。
一系折半再平方,兩邊同加沒問題。
左邊分解右合並,直接開方去解題。
該種解法叫配方,解方程時多練習。
用間接配方法解一元二次方程
已知未知先分離,因式分解是其次。
調整系數等互反,和差積套恆等式。
完全平方等常數,間接配方顯優勢
【注】 恆等式
解一元二次方程
方程沒有一次項,直接開方最理想。
如果缺少常數項,因式分解沒商量。
b、c相等都為零,等根是零不要忘。
b、c同時不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。
正比例函數的鑒別
判斷正比例函數,檢驗當分兩步走。
一量表示另一量, 有沒有。
若有再去看取值,全體實數都需要。
區分正比例函數,衡量可分兩步走。
一量表示另一量, 是與否。
若有還要看取值,全體實數都要有。
正比例函數的圖象與性質
正比函數圖直線,經過 和原點。
K正一三負二四,變化趨勢記心間。
K正左低右邊高,同大同小向爬山。
K負左高右邊低,一大另小下山巒。
一次函數
一次函數圖直線,經過 點。
K正左低右邊高,越走越高向爬山。
K負左高右邊低,越來越低很明顯。
K稱斜率b截距,截距為零變正函。
反比例函數
反比函數雙曲線,經過 點。
K正一三負二四,兩軸是它漸近線。
K正左高右邊低,一三象限滑下山。
K負左低右邊高,二四象限如爬山。
二次函數
二次方程零換y,二次函數便出現。
全體實數定義域,圖像叫做拋物線。
拋物線有對稱軸,兩邊單調正相反。
A定開口及大小,線軸交點叫頂點。
頂點非高即最低。上低下高很顯眼。
如果要畫拋物線,平移也可去描點,
提取配方定頂點,兩條途徑再挑選。
列表描點後連線,平移規律記心間。
左加右減括弧內,號外上加下要減。
二次方程零換y,就得到二次函數。
圖像叫做拋物線,定義域全體實數。
A定開口及大小,開口向上是正數。
絕對值大開口小,開口向下A負數。
拋物線有對稱軸,增減特性可看圖。
線軸交點叫頂點,頂點縱標最值出。
如果要畫拋物線,描點平移兩條路。
提取配方定頂點,平移描點皆成圖。
列表描點後連線,三點大致定全圖。
若要平移也不難,先畫基礎拋物線,
頂點移到新位置,開口大小隨基礎。
【注】基礎拋物線
直線、射線與線段
直線射線與線段,形狀相似有關聯。
直線長短不確定,可向兩方無限延。
射線僅有一端點,反向延長成直線。
線段定長兩端點,雙向延伸變直線。
兩點定線是共性,組成圖形最常見。

一點出發兩射線,組成圖形叫做角。
共線反向是平角,平角之半叫直角。
平角兩倍成周角,小於直角叫銳角。
直平之間是鈍角,平周之間叫優角。
互余兩角和直角,和是平角互補角。
一點出發兩射線,組成圖形叫做角。
平角反向且共線,平角之半叫直角。
平角兩倍成周角,小於直角叫銳角。
鈍角界於直平間,平周之間叫優角。
和為直角叫互余,互為補角和平角。
證等積或比例線段
等積或比例線段,多種途徑可以證。
證等積要改等比,對照圖形看特徵。
共點共線線相交,平行截比把題證。
三點定型十分像,想法來把相似證。
圖形明顯不相似,等線段比替換證。
換後結論能成立,原來命題即得證。
實在不行用面積,射影角分線也成。
只要學習肯登攀,手腦並用無不勝。
解無理方程
一無一有各一邊,兩無也要放兩邊。
乘方根號無蹤跡,方程可解無負擔。
兩無一有相對難,兩次乘方也好辦。
特殊情況去換元,得解驗根是必然。
解分式方程
先約後乘公分母,整式方程轉化出。
特殊情況可換元,去掉分母是出路。
求得解後要驗根,原留增舍別含糊。
列方程解應用題
列方程解應用題,審設列解雙檢答。
審題弄清已未知,設元直間兩辦法。
列表畫圖造方程,解方程時守章法。
檢驗准且合題意,問求同一才作答。
添加輔助線
學習幾何體會深,成敗也許一線牽。
分散條件要集中,常要添加輔助線。
畏懼心理不要有,其次要把觀念變。
熟能生巧有規律,真知灼見靠實踐。
圖中已知有中線,倍長中線把線連。
旋轉構造全等形,等線段角可代換。
多條中線連中點,便可得到中位線。
倘若知角平分線,既可兩邊作垂線。
也可沿線去翻折,全等圖形立呈現。
角分線若加垂線,等腰三角形可見。
角分線加平行線,等線段角位置變。
已知線段中垂線,連接兩端等線段。
輔助線必畫虛線,便與原圖聯系看。
兩點間距離公式
同軸兩點求距離,大減小數就為之。
與軸等距兩個點,間距求法亦如此。
平面任意兩個點,橫縱標差先求值。
差方相加開平方,距離公式要牢記。
矩形的判定
任意一個四邊形,三個直角成矩形;
對角線等互平分,四邊形它是矩形。
已知平行四邊形,一個直角叫矩形;
兩對角線若相等,理所當然為矩形。
菱形的判定
任意一個四邊形,四邊相等成菱形;
四邊形的對角線,垂直互分是菱形。
已知平行四邊形,鄰邊相等叫菱形;
兩對角線若垂直,順理成章為菱形。
祝你學習進步!

Ⅷ 初中數學知識點總結

很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?

知識點

當老師在講完內容之後會講一些課外的內容,一般是定理、概念等等,會讓你對這些知識更加的了解,所以如果對這類題目有問題的同學可以多看一些課外的題目,當然想要提升分數是離不開練習題的,想要多好就需要多做一些習題,但是不可以過多,需要邊做邊思考才可以,這樣所學的知識就會運用出來.

以上就是初中數學應該怎樣學習的內容,如果在這個階段對自己分數不滿意的同學可以借鑒一下以上的內容,或許會對你有一定的幫助,將自身的分數提升.

Ⅸ 初中數學分式重點

重點:
1.分式的有無意義,值為0;
2:分式的計算,中考有一個大題;
3:分式方程,以及解的情況(有解,無解,解為正等等)
4:分式的應用題